Evidence-based Medicine’s Point of View on Postoperative Analgesia

A.M. Ovechkin, M.E. Politov

First Moscow Medical State University of I.M. Sechenov, Moscow

For citation: Ovechkin AM, Politov ME. Evidence-based Medicine Point of View on Postoperative Analgesia. Intensive Care Herald. 2016;2:51–60.


The review considers modern approaches to postoperative pain management from the standpoint of evidence-based medicine. Adequate postoperative analgesia, according to foreign literature, does not exceed 50 %. Today the basis for postoperative analgesia is the concept of multimodal analgesia. Data EBM substantiated the combined use of schemes of multimodal analgesia: opioids, non-opioid analgesics (NSAIDs, paracetamol), adjuvant drugs (ketamine, gabapentinoids) and different variants of regional analgesia. From all drug combinations best evidence base has a combination of NSAIDs and paracetamol. In the presence of contraindications to NSAIDs, they may be replaced by a centrally acting analgesic drug — nefopam. The schemes of multimodal analgesia should be built individually for each type of surgical intervention, having regard to the features of post-operative pain syndrome after these interventions, as well as to the individual features of patient.

Keywords: postoperative pain, multimodal analgesia, non-opioid analgesics, regional analgesia

Received: 14.06.2016


References

  1. Benhamou D., Berti M., Brodner G. Postoperative analgesic therapy observational survey (PATHOS): a practice pattern study in 7 central/southern European countries. Pain. 2008; 136: 134–141.
  2. Dolin S., Cashman J., Bland J. Effectiveness of acute postoperative pain management: I. Evidence from published data. Br. J. Anae 2002; 89: 409–423.
  3. Institute of Medicine. Relieving pain in America. USA: National Academies Press, 2011; ISBN-13.9780-0-309-21484-1.
  4. Gan T., Habib A., Miller T. et al. Incidence, patient satisfaction, perception of postsurgical pain: results from a US national survey. Curr. Med. Res. Opin. 2014; 30: 149–160.
  5. Management of Postoperative Pain: A Clinical Practice Guideline from the American Pain Society, the American Society of Regional Anesthesia and Pain Medicine, and the American Society of Anesthesiologists’ Committee on Regional Anesthesia, Executive Committee, and Administrative Council. The Journal of Pain. 2016; 17(2): 131–157.
  6. Acute Pain Management: Scientific Evidence. Australian and New Zeland College of Anaesthetists, 3rd Eds.: P. Macintyre, D. Scott, S. Schug. 2010.
  7. Oderda G., Gan T. Effect of opioid-related adverse events on outcomes in selected surgical patients. J. Pain Palliat. Care Pharmacother. 2013; 27: 62–70.
  8. Nasir D., Howard J., Joshi G., Hill G. A survey of acute pain service structure and function in United States hospitals. Pain Res. Treat. 2011; 2011: 934932.
  9. Laulin J.-P., Maurette P., Rivat C. The role of ketamine in preven ting fentanyl­unduced hyperalgesia and subsequent acute morphine tolerance. Analg. 2002; 94: 1263–1269.
  10. Gottschalk A., Sharma S., Ford J. The role of the perioperative period in recurrence after cancer surgery. Analg. 2010; 110: 1636–1643.
  11. Stubhaug A., Romundstad L., Kaasa T., Breivik H. Methylprednisolone and ketorolac rapidly reduce hyperalgesia around a skin burn injury and increase pressure pain thresholds. Acta Anaesth. Scand. 2007; 51: 1138–1146.
  12. Forrest J., Kamu F., Greer I. Ketorolack, diclofenac and ketoprofen are equally safe for pain relief after major surgery. Brit. Anaesth. 2002; 88: 227–233.
  13. Schjerning Olsen A-M., Fosbol E., Lindhardsen J. Duration of treatment with nonsteroidal anti-inflammatory drugs and impact on risk of death and recurrent myocardial infarction in patients with prior myocardial infarction: a nationwide cohort study. Circulation. 2011; 123: 2226–2235.
  14. S. Food and Drug Administration: Information for Healthcare Professionals: Non-Selective Non-Steroidal Anti-Inflammatory Drugs (NSAIDs). Accessed October 30, 2014.
  15. Li Q., Zhang Z., Cai Z. High-dose ketorolac affects adult spinal fusion: A meta-analysis of the effect of periperative nonsteroidal anti-inflammatory drugs on spinal fusion. Spine. 2011; 36: E461–E468.
  16. Dodwell E., Latorre J., Parisini E. et al. NSAID exposure and risk of nonunion: A metaanalysis of case-control and cohort studies. Calcif. Tissue Int. 2010; 87: 193–202.
  17. Mimoz O., Chauvet S., Gregoire N. Nefopam pharmacokinetics in patients with end-stage renal disease. Anesth. Analg. 2010; 111: 1146–1153.
  18. Delage N., Maaliki H., Beloeil H. Median effective dose (ED50) of nefopam and ketoprofen in postoperative patients. Anesthesiol 2005; 102: 1211–1216.
  19. Durrieu G., Oliver P., Bagheri H. Overview of adverse reactions to nefopam: an analysis of French pharmacovigilance database. Clin. Pharmacol. 2007; 21: 555–558.
  20. McCartney C., Sinha A., Katz J. A qualitative systematic review of the role of N-methyl-D-aspartate receptor antagonists in preventive analgesia. Analg. 2004; 98: 1385–1400.
  21. De Kock M. Expanding our horisons: transition of acute postoperative pain to persistent pain and establishment of chronic postsurgical pain service. Anesthesiology. 2009; 111: 461–463.
  22. Lauretti G. Mechanisms of analgesia of Intravenous lidocaine. Rev. Bras. Anestesiol. 2008; 58(3): 280–286.
  23. Cohen S., Mao J. Is the analgesic effect of systemic lidocaine mediated through opioid receptors? Acta Anaesthesiol. Scand. 2003; 47: 910–911.
  24. Nagy I., Woolf C. Lignocaine selectivity reduces C fibreevoked neuronal activity in rat spinal cord in vitro by decreasing N-methyl-D-aspartate and neurokinin receptor-mediated postsynaptic depolarizations; implications for the development of novel centrally acting analgesics. Pain. 1996; 64: 59–70.