Features of Ultrasonic Signs in the Diagnosis of Volume and Nature of Lung Disease

R.E. Lahin, A.V. Shhegolev, E.A. Zhirnova, A.A. Emeljanov, I.N. Grachev

Federal State Budgetary Educational Military Institution of Higher Professional Education Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation, Saint-Petersburg

For correspondence: Lahin Roman Evgenievich — Doctor of Medical Science, Associate Professor, Department of Anesthesiology and Intensive Care Federal State Budgetary Educational Military Institution of Higher Professional Education Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation, Saint-Petersburg; e-mail: doctor-lahin@yandex.ru

For citation: Lahin RE, Shhegolev AV, Zhirnova EA, Emeljanov AA, Grachev IN. Features of Ultrasonic Signs in the Diagnosis of Volume and Nature of Lung Disease. Intensive Care Herald. 2016;4:5–11.

Ultrasound is an evolving research method to assess the volume and nature of lung disease and interest in this direction is growing. Fast performance, accuracy, availability, reproducibility, portability, there is no need to transport patients to the place of study allows us to consider as a bedside ultrasound imaging diagnostic method, observing the principle of «point-of-care». Using the ultrasonic inspection to assess lung severe pneumonia showed a high degree of sensibility and specificity. Ultrasound can accurately define the nature of destruction of lung tissue, confirming signs of infiltration, consolidation, free fluid in the pleural cavity. Understanding of the pathophysiology of occurrence ultrasonic indication is not only important for the diagnosis of pneumonia, but also for control and correction of the intensive therapy, including respiratory support. Ultrasonic sign of B-lines is associated with interstitial infiltration of the lungs and is caused by many times reflected in the interlobular spaces between interalveolar, collapse, filled with a fluid and well-aerated alveoles. Ultrasonic Consolidation sign displayed with the disappearance of airiness of lung tissue and the tissue is visualized as a sign to him, as a rule, associated ultrasound sign aerobronhograms. Symptom-free fluid in the pleural cavity is determined by the echonegative space above the diaphragm.

Keywords: lung, ultrasound, pneumonia, consolidation, infiltration, free fluid

Received: 05.12.2016


  1. Seif D., Perera P., Mailhot T. et al. Bedside ultrasound in resuscitation and the rapid ultrasound in shock protocol. Crit. Care Res. Pract. 2012; 2012: 503254. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485910/. doi: 10.1155/2012/503254.
  2. Labovitz A.J., Noble V.E., Bierig M. et al. Focused cardiac ultrasound in the emergent setting: a consensus statement of the American Society of Echocardiography and American College of Emergency Physicians. J. Am. Soc. Echocardiogr. 2010; 23(12): 1225–1230. URL: http://www.ncbi.nlm.nih.gov/pubmed/21111923. doi: 10.1016/j.echo.2010.10.005.
  3. Киллу К., Далчевски С., Коба В. УЗИ в отделении интенсивной терапии: Пер. с англ. под ред. Р.Е. Лахина. М.: ГЭОТАР-Медиа; 2016. [Killu K., Dulchavsky S., Coba V. Ultrasound in intensive care unit. Moscow: GEOTAR-Media, 2016. (In Russ)].
  4. Лахин Р.Е., Антипин Э.Э., Баутин А.Е. и др. Клинические рекомендации по катетеризации сосудов под контролем ультразвука. В кн.: Клинические рекомендации. Анестезиология-реаниматология. Под ред. И.Б.Заболотских, Е.М. Шифман. М.: ГЭОТАР-Медиа, 2016: 912–947. [Lakhin R.E., Antipin E.E., Bautin A.E. et al. Clinical practice guidelines for catheterization of vessels under the control of ultrasound. In: Zabolotskikh I.B., Shifman E.M. (eds.) Clinical practice guidelines Anesthesiology-Reanimatology. Moscow: GEOTAR-Media, 2016: 912–947. (In Russ)].
  5. Holm J.H., Frederiksen C.A., Juhl-Olsen P., Sloth E. Perioperative use of focus assessed transthoracic echocardiography (FATE). Anesth. Analg. 2012; 115(5): 1029–1032. URL: http://www.ncbi.nlm.nih.gov/pubmed/23051882. doi: 10.1213/ANE.0b013e31826dd867.
  6. Griffin J., Nicholls B. Ultrasound in regional anaesthesia. Anaesthesia. 2010; 65(Suppl 1): 1–12. URL: http://www.ncbi.nlm.nih.gov/pubmed/20377542. doi: 10.1111/j.1365-2044.2009.06200.x.
  7. Aksoy Y., Eyi Y.E. The Bedside Ultrasound: A Rapid Way of Measuring Optic Nerve Sheath Diameter in Emergency. J. Emerg. Med. 2016; 51(2): e25–e26. URL: http://www.ncbi.nlm.nih.gov/pubmed/27283482. doi: 10.1016/j.jemermed.2015.06.090.
  8. Via G., Storti E., Gulati G. et al. Lung ultrasound in the ICU: from diagnostic instrument to respiratory monitoring tool. Minerva Anestesiol. 2012; 78(11): 1282–1296. URL: http://www.ncbi.nlm.nih.gov/pubmed/22858877.
  9. Abdelhamid S., Mansour M. Ultrasound-guided intrathecal anesthesia: Does scanning help? Egypt J. Anaesth. 2013; 29(4): 389–394. URL: http://linkinghub.elsevier.com/retrieve/pii/S1110184913000809. doi.: 10.1016/j.egja.2013.06.003.
  10. Caltabeloti F.P., Rouby J.-J. Lung ultrasound: a useful tool in the weaning process? Rev. Bras. Ter. Intensiva. 2016; 28(1): 5–7. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4828084&tool=pmcentrez&rendertype=abstract. doi: 10.5935/0103-507X.20160002.
  11. Picano E., Frassi F., Agricola E. et al. Ultrasound lung comets: a clinically useful sign of extravascular lung water. J. Am. Soc. Echocardiogr. 2006; 19(3): 356–363. URL: http://www.ncbi.nlm.nih.gov/pubmed/16500505. doi: 10.1016/j.echo.2005.05.019.
  12. Reissig A. Lung Ultrasound in the Diagnosis and Follow-up of Community-Acquired Pneumonia. Chest. 2012; 142(4): 965. URL: http://www.ncbi.nlm.nih.gov/pubmed/22700780. doi: 10.1378/chest.12-0364.
  13. Reissig A., Copetti R. Lung Ultrasound in Community-Acquired Pneumonia and in Interstitial Lung Diseases. Respiration. 2014; 87(3): 179–189. URL: http://www.ncbi.nlm.nih.gov/pubmed/24481027. doi: 10.1159/000357449.
  14. Bourcier J.-E., Braga S., Garnier D. Lung Ultrasound Will Soon Replace Chest Radiography in the Diagnosis of Acute Community-Acquired Pneumonia. Curr. Infect. Dis. Rep. 2016; 18(12): 43. URL: http://www.ncbi.nlm.nih.gov/pubmed/27785748. doi: 10.1007/s11908-016-0550-9.
  15. Chavez M.A., Shams N., Ellington L.E. et al. Lung ultrasound for the diagnosis of pneumonia in adults: a systematic review and meta-analysis. Respir. Res. 2014; 15: 50. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4005846&tool=pmcentrez&rendertype=abstract. doi: 10.1186/1465-9921-15-50.
  16. Berlet T. Thoracic ultrasound for the diagnosis of pneumonia in adults: a meta-analysis. Respir Res. 2015; 16: 89. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4531799&tool=pmcentrez&rendertype=abstract. doi: 10.1186/s12931-015-0248-9.
  17. Lichtenstein D., Meziere G., Biderman P. et al. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am. J. Respir. Crit. Care Med. 1997; 156(5): 1640–1646. URL: http://www.ncbi.nlm.nih.gov/pubmed/9372688. doi: 10.1164/ajrccm.156.5.96-07096.
  18. Soldati G., Inchingolo R., Smargiassi A. et al. Ex vivo lung sonography: morphologic-ultrasound relationship. Ultrasound Med. Biol. 2012; 38(7): 1169–1179. URL: http://www.ncbi.nlm.nih.gov/pubmed/22579543. doi: 10.1016/j.ultrasmedbio.2012.03.001. doi: 10.1016/j.ultrasmedbio.2012.03.001.
  19. Spinelli A., Vinci B., Tirella A. et al. Realization of a poro-elastic ultrasound replica of pulmonary tissue. Biomatter. 2016; 2(1): 37–42. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3849056&tool=pmcentrez&rendertype=abstract. doi: 10.4161/biom.19835.
  20. Volpicelli G., Elbarbary M., Blaivas M. et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012; 38(4): 577–591. URL: http://www.ncbi.nlm.nih.gov/pubmed/22392031. doi: 10.1007/s00134-012-2513-4.
  21. Jambrik Z., Gargani L., Adamicza A. et al. B-lines quantify the lung water content: a lung ultrasound versus lung gravimetry study in acute lung injury. Ultrasound Med. Biol. 2010; 36(12): 2004–2010. URL: http://www.ncbi.nlm.nih.gov/pubmed/21030138. doi: 10.1016/j.ultrasmedbio.2010.09.003.
  22. Ma H., Huang D., Zhang M. et al. Lung ultrasound is a reliable method for evaluating extravascular lung water volume in rodents. BMC Anesthesiol. 2015; 15: 162. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4643534&tool=pmcentrez&rendertype=abstract. doi: 10.1186/s12871-015-0146-1.
  23. Enghard P., Rademacher S., Nee J. et al. Simplified lung ultrasound protocol shows excellent prediction of extravascular lung water in ventilated intensive care patients. Crit. Care. 2015; 19: 36. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4335373&tool=pmcentrez&rendertype=abstract. doi: 10.1186/s13054-015-0756-5.
  24. Gargani L., Lionetti V., Di Cristofano C. et al. Early detection of acute lung injury uncoupled to hypoxemia in pigs using ultrasound lung comets. Crit. Care Med. 2007; 35(12): 2769–2774. URL: http://www.ncbi.nlm.nih.gov/pubmed/17828031. doi: 10.1097/01.CCM.0000287525.03140.3F.
  25. Ye X., Xiao H., Chen B., Zhang S. Accuracy of Lung Ultrasonography versus Chest Radiography for the Diagnosis of Adult Community-Acquired Pneumonia: Review of the Literature and Meta-Analysis. PLoS One. 2015; 10(6): e0130066. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4479467&tool=pmcentrez&rendertype=abstract. doi: 10.1371/journal.pone.0130066.
  26. Liu X., Lian R., Tao Y. et al. Lung ultrasonography: an effective way to diagnose community-acquired pneumonia. Emerg. Med. J. 2015; 32(6): 433–438. URL: http://www.ncbi.nlm.nih.gov/pubmed/25142033. doi: 10.1136/emermed-2013-203039.
  27. Nazerian P., Volpicelli G., Vanni S. et al. Accuracy of lung ultrasound for the diagnosis of consolidations when compared to chest computed tomography. Am. J. Emerg. Med. 2015; 33(5): 620–625. URL: http://www.ncbi.nlm.nih.gov/pubmed/25758182. doi: 10.1016/j.ajem.2015.01.035.
  28. Balik M., Plasil P., Waldauf P. et al. Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med. 2006; 32(2): 318–21. doi: 10.1007/s00134-005-0024-2.