Molecular Mechanisms of Oxidative Stress

O.A. Grebenchikov1, 2, T.S. Zabelina1, Zh.S. Philippovskaya1, O.N. Gerasimenko1, E.Y. Plotnikov3, V.V. Likhvantsev1, 2

1M.F. Vladimirsky Moscow Regional Research Clinical Institute, Moscow

2V.A. Negovsky Research Institute of General Reanimatology, Russian Academy of Sciences, Moscow

3Belozersky Institute of Physico-Chemical Biology, Lomonosov, Moscow

For correspondence: Oleg A. Grebenchikov — Ph.D., Senior Research Fellow of Anesthesiology and Intensive Care Department, Moscow, Regional Research and Clinical Institute, Moscow, Russia;

For citation: Grebenchikov OA, Zabelina TS, Philippovskaya ZhS, Gerasimenko ON, Plotnikov EY, Likhvantsev VV. Molecular Mechanisms of Oxidative Stress. Intensive Care Herald. 2016;3:13–21. 

The role of oxidative stress in the pathogenesis of various diseases, the treatment of which is within the competence of doctors-intensivists, seems to us undervalued. Perhaps unnoticed in the clinical environment appeared some progress has occurred in recent years in understanding the molecular mechanisms of oxidative stress. In contrast to the long-known toxic effect of ROS, to date, they are recognized as signaling molecules, leading to a protective effect in the cell, which has found confirmation in the study of the phenomenon of ischemic preconditioning and anesthetic. It proved the key role of mitochondrial ROS in the development and regulation of the apoptotic program in the cell, which is implemented through the induction of a giant mitochondrial pore. The discovery of the key role of the enzyme GSK -3b in inhibiting its induction led to the understanding that the retention of the kinase phosphorylated state is the primary task to prevent the death of the target organ cells. It seems that the understanding of the molecular mechanisms of cell death in ischemia / reperfusion lead to a focused search for pharmacological agents cytoprotection.

Keywords: oxidative stress, reactive oxygen species, GSK-3b, mitochondrial pore, mitochondria-targeted antioxidants

Received: 28.06.2016


  1. Juhasova M., Rabuel C., Zorov D. et al. Protection in the aged heart: preventing the heart-break of old age? Cardiovascular Research. 2005; 66(2): 233–244. doi: 10.1016/j.cardiores.2004.12.020.
  2. Cadenas E., Sies H. Oxidative stress: Excited oxygen species and enzyme activity. Advances in Enzyme Regu 1985; 23: 217–237. doi: 10.1016/0065-2571(85)90049-4.
  3. Li C., Jackson R. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. AJP: Cell Physiology. 2002; 282(2): 227–241. doi: 10.1152/ajpcell.00112.2001.
  4. Braunwald E., Kloner R. Myocardial reperfusion: a double-edged sword? Journal of Clinical Investigation. 1985; 76(5): 1713–171 doi: 10.1172/jci112160.
  5. Barzegar Amiri Olia M., Schiesser C., Taylor M. New reagents for detecting free radicals and oxidative stress. Organic & Biomolecular Chemistry. 2014; 12(35): doi: 10.1039/c4ob01172d.
  6. Gupta R., Patel A., Shah N. et al. Asian Pacific Journal of Cancer Prevention. 2014; 15(11): 4405–4409. doi: 10.7314/apjcp.2014.15.11.4405.
  7. Noctor G., Lelarge-Trouverie C., Mhamdi A. The metabolomics of oxidative stress. Phytochemistry. 2015; 112: 33–53. doi: 1016/j.phytochem.2014.09.002.
  8. Гребенчиков О.А., Лихванцев В.В., Плотников Е.Ю. и др. Молекулярные механизмы развития и адресная терапия синдрома ишемии-реперфузии. Анестезиология и реаниматология. 2014; 3: 59–67. [Grebenchikov O.A., Lihvancev V.V., Plotnikov E.Yu. et al. Molecular mechanisms of development and targeted therapy of the syndrome of ischemia-reperfusion. Anesteziologiya i reanimatologiya. 2014; 3: 59–67. (In Russ)]
  9. Benveniste H., Drejer J., Schousboe A., Diemer N. Elevation of the Extracellular Concentrations of Glutamate and Aspartate in Rat Hippocampus During Transient Cerebral Ischemia Monitored by Intracerebral Microdialysis. Journal of Neurochemistry. 1984; 43(5): 1369–13 doi: 10.1111/j.1471-4159.1984.tb05396.x.
  10. Isaev N., Zorov D., Stelmashook E. et al. Neurotoxic glutamate treatment of cultured cerebellar granule cells induces Ca2+-dependent collapse of mitochondrial membrane potential and ultrastructural alterations of mitochondria. FEBS Letters. 1996; 392(2): 143–147. doi: 10.1016/0014-5793(96)00804-6.
  11. Nabeebaccus A., Zhang M., Shah A. NADPH oxidases and cardiac remodelling. Heart Failure Reviews. 2010; 16(1): 5–12. doi: 1007/s10741-010-9186-2.
  12. Schumacker P. Hypoxia, anoxia, and O2 sensing: the search continues. Am. J. Physiol. Lung. Cell Mol. Physiol. 2002; 283(5): 918–9 doi: 10.1152/ajplung.00205.2002.
  13. Зоров Д.Б., Плотников Е.Ю., Янкаускас С.С. и др. Феноптозная проблема: от чего гибнет организм? Уроки по почечной недостаточности. Биохимия. 2012; 77(7): 893–906. [Zorov D.B., Plotnikov E.Yu., Yankauskas S.S. et al. Phenoptosis problem: what is dying the body? Lessons on renal failure. Biohimiya. 2012; 77(7): 893–906. (In Russ)]
  14. Chaudhari N., Talwar P., Parimisetty A. et al. Molecular Web: Endoplasmic Reticulum Stress, Inflammation, and Oxidative Stress. Frontiers in Cellular Neuroscience. 2014; 8: 213. doi: 10.3389/fncel.2014.00213.
  15. Hawkins C., Davies M. Generation and propagation of radical reactions on proteins.Biochimica et Biophysica Acta (BBA) — Bioenergetics. 2001; 1504(2–3): 196–219. doi: 10.1016/s0005-2728(00)00252-8.
  16. Droge W. Free Radicals in the Physiological Control of Cell Function. Physiol. Rev. 2002; 82(1): 47–95. doi: 10.1152/physrev.00018.2001.
  17. Зоров Д.Б., Исаев Н.К., Плотников Е.Ю. Митохондрия как многоликий Янус. Биохимия. 2007; 72: 1371–1384. [Zorov D.B., Isaev N.K., Plotnikov E.Yu. The mitochondria as Janus has many faces. Biohimiya. 2007; 72: 1371–1384. (In Russ)]
  18. Fleury C., Mignotte B., Vayssiere J. Mitochondrial reactive oxygen species in cell death signaling. Biochimie. 2002; 84(2–3): 131–141. doi: 10.1016/s0300-9084(02)01369-x.
  19. Yadav U., Ramana K. Regulation of NF-B-Induced Inflammatory Signaling by Lipid Peroxidation-Derived Aldehydes. Oxidative Medicine and Cellular Longevity. 2013; 2013: 1– doi: 10.1155/2013/690545.
  20. Padgett C., Whorton A. Cellular Responses to Nitric Oxide: Role of Protein S-Thiolation/Dethiolation. Archives of Biochemistry and Biophysics. 1998; 358(2): 232–242. doi: 10.1006/abbi.1998.0859.
  21. Barrett W., DeGnore J., Keng Y. et al. Roles of Superoxide Radical Anion in Signal Transduction Mediated by Reversible Regulation of Protein-tyrosine Phosphatase 1B. Journal of Biological Chemistry. 1999; 274(49): 34543–34546. doi: 10.1074/jbc.274.49.34543.
  22. Murry C., Jennings R., Reimer K. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986; 74(5): 1124–11 doi: 10.1161/01.cir.74.5.1124..
  23. Juhaszova M., Zorov D., Kim S. et al. Glycogen synthase kinase-3b mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. Journal of Clinical Investigation. 2004; 113(11): 1535–1549. doi: 10.1172/jci19906.
  24. Stambolic V., Ruel L., Woodgett J. Lithium inhibits glycogen synthase kinase-3 activity and mimics Wingless signalling in intact cells. Current Biology. 1996; 6(12): 1664–1669. doi: 10.1016/s0960-9822(02)70790-2.
  25. Мороз В.В., Силачев Д.Н., Плотников Е.Ю. и др. Механизмы повреждения и защиты клетки при ишемии-реперфузии и экспериментальное обоснование применения препаратов на основе лития в анестезиологии. Общая реаниматология. 2013; 9(1): 63–72. [Moroz V.V., Silachev D.N., Plotnikov E.Yu. et al. Mechanisms of damage and protect cells during ischemia-reperfusion and experimental rationale for the use of drugs based on lithium in anesthesiology. Obshhaya reanimatologiya. 2013; 9(1): 63–72. (In Russ)]
  26. Лихванцев В.В., Гребенчиков О.А., Плотников Е.Ю. и др. Механизмы фармакологического прекондиционирования мозга и сравнительная эффективность препаратов — ингибиторов гликоген-синтетазы 3-бета прямого и непрямого действия (экспериментальное исследование). Общая реаниматология. 2012; 8(6): 37–42. [Lihvancev V.V., Grebenchikov O.A., Plotnikov E.Yu. et al. The mechanisms of pharmacological preconditioning of the brain and comparative effectiveness of drugs — inhibitors of glycogen synthetase 3-beta direct and indirect action (pilot study). Obshhaya reanimatologiya. 2012; 8(6): 37–42. (In Russ)]
  27. Cason B., Gamperl A., Slocum R., Hickey R. Anesthetic-induced Preconditioning. Anesthesiology. 1997; 87(5): 1182–1190. doi: 10.1097/00000542-199711000-00023.
  28. Лихванцев В.В., Гребенчиков О.А., Шмелева Е.А. и др. Анестетическое прекондиционирование: Почему данные, полученные в эксперименте, не всегда подтверждаются в клинике? Вестник анестезиологии и реаниматологии. 2013; 10(4): 9–14. [Lihvancev V.V., Grebenchikov O.A., Shmeljova E.A. et al. Anesthetic preconditioning: Why is the data obtained in the experiment, not always confirmed in the clinic? Vestnik Anesteziologii i Reanimatologii. 2013; 10(4): 9–14. (In Russ)]
  29. Недоспасов А.А. Биогенный NO в конкурентных отношениях. Биохимия. 1998; 63(7): 881–904. [Nedospasov A.A. Biogenic NO in competitive relations. Biohimiya. 1998; 63(7): 881–904]
  30. Reiter C., Teng R., Beckman J. Superoxide Reacts with Nitric Oxide to Nitrate Tyrosine at Physiological pH via Peroxynitrite. Journal of Biological Chemistry. 2000; 275(42): 32460–32466. doi: 10.1074/jbc.m910433199.
  31. Albina J., Reichner J. Journal search results — Cite This For Me. Cancer and Metastasis Reviews. 1998; 17(1): 39–53. doi: 10.1023/a:1005904704618.
  32. Nedospasov A., Rafikov R., Beda N., Nudler E. An autocatalytic mechanism of protein nitrosylation. Proceedings of the National Academy of Sciences. 2000; 97(25): 13543–13548. doi: 10.1073/pnas.250398197.
  33. Zhang Y., Jin C., Jang J., Wang Y. Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophysiology. J. Physiol. 2014; 592(15): 3189–3200. doi: 10.1113/jphysiol.2013.270306.
  34. Hu Q. Critical Role of NADPH Oxidase-derived Reactive Oxygen Species in Generating Ca2+ Oscillations in Human Aortic Endothelial Cells Stimulated by Histamine. Journal of Biological Chemistry. 2002; 277(36): 32546– doi: 10.1074/jbc.m201550200.
  35. Zorov D., Filburn C., Klotz L., Zweier J., Sollott S. Reactive Oxygen Species (Ros-Induced) Ros Release. The Journal of Experimental Medicine. 2000; 192(7): 1001–1014. doi: 10.1084/jem.192.7.1001.
  36. Murphy M., Smith R. Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations. Ann. Rev. Pharmacol. Toxicol. 2007; 47(1): 629–656. doi: 10.1146/annurev.pharmtox.47.120505.105110.
  37. Smith R., Hartley R., Murphy M. Mitochondria-Targeted Small Molecule Therapeutics and Probes. Antioxidants & Redox Signaling. 2011; 15(12): 3021–3038. doi: 10.1089/ars.2011.3969.
  38. Smith R., Murphy M. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Annals of the New York Academy of Sciences. 2010; 1201(1): 96–103. doi: 10.1111/j.1749-6632.2010.05627.x.
  39. Skulachev V. A biochemical approach to the problem of aging: «Megaproject» on membrane-penetratingions. The first results and prospects. Biochemistry Moscow. 2007; 72(12): 1385–1396. doi: 10.1134/s0006297907120139.
  40. Skulachev V. Mitochondria in the Programmed Death Phenomena; A Principle of Biology: «It Is Better to Die than to be Wrong». IUBMB Life (International Union of Biochemistry and Molecular Biology: Life). 2000; 49(5): 365– doi: 10.1080/152165400410209.
  41. Zorov D., Juhaszova M., Yaniv Y. et al. Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovascular Research. 2009; 83(2): 213–225. doi: 10.1093/cvr/cvp151.
  42. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 1999; 341(2): 233–249. doi: 10.1042/bj3410233.
  43. Crompton M. Mitochondrial intermembrane junctional complexes and their role in cell death. The Journal of Physiology. 2000; 529(1): 11– doi: 10.1111/j.1469-7793.2000.00011.x.
  44. Zhang Y., Jin C., Jang J., Wang Y. Molecular mechanisms of neuronal nitric oxide synthase in cardiac function and pathophysiology. J. Physiol. 2014; 592(15): 3189–200. doi: 10.1113/jphysiol.2013.270306.
  45. Kroemer G., Dallaporta B., Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annual Review of Physiology. 1998; 60(1): 619– doi: 10.1146/annurev.physiol.60.1.619.
  46. Skulachev V. How proapoptotic proteins can escape from mitochondria? Free Radical Biology and Medicine. 2000; 29(10): 1056– doi: 10.1016/s0891-5849(00)00291-4.
  47. Hausenloy D. Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovascular Research. 2002; 55(3): 534– doi: 10.1016/s0008-6363(02)00455-8.
  48. Matsuda T., Zhai P., Maejima Y. et al. Distinct roles of GSK-3 and GSK-3 phosphorylation in the heart under pressure overload. Proceedings of the National Academy of Sciences. 2008; 105(52): 20900–20905. doi: 10.1073/pnas.0808315106.