The influence of anesthesia components on systemic inflammatory response during cardiac surgery with cardiopulmonary bypass. Article

R.R. Adzhigaliev1, А.E. Вautin2, V.V. Рasyuga1

1 FSBI “Federal Center for Cardiovascular Surgery” of the Ministry of Health of the Russian Federatio., Astrakhan, Russia

2 FSBI “Almazov National Medical Research Centre” of the Ministry of Health of the Russian Federation, St. Petersburg, Russia

For correspondence: Ruslan R. Adzhigaliev — anesthesiologist and emergency physician of anesthesiology and intensive care department, Astrakhan; e-mail: adgigaliev@gmail.com

For citation: Adzhigaliev RR, Вautin АE, Рasyuga VV. The influence of anesthesia components on systemic inflammatory response during cardiac surgery with cardiopulmonary bypass. Article. Annals of Critical Care. 2019;4:73–80.

DOI: 10.21320/1818-474X-2019-4-73-80


Abstract

Background. There are some experimental and clinical data indicating that propofol and morphine may to reduce systemic inflammatory response (SIR) after cardiopulmonary bypass (CPB).

Objectives. To study the impact of anesthetics and opioids on the SIR associated with cardiopulmonary bypass.

Materials and methods. The studies examined the dynamic concentration of tumor necrosis factor (TNF), interleukin-6 (IL-6) and interleukin-8 (IL-8) before CPB, 1, 3 and 24 hours after the end of CPB in 119 patients randomized in four groups. Patients of the first group received sevoflurane and fentanyl, patients of the second group received sevoflurane and morphine, patients of the third group received propofol and fentanyl, patients of the fourth group received propofol and morphine.

Results. There was found increase in cytokine level in 1 hour after CPB. In the fourth group concentration of markers was lower versus the other groups. Significant differences were found with group 1 (sevoflurane and fentanyl) in the concentration of IL-6 after 3 hours (p = 0.004) and after 24 hours (p = 0.018); IL-8 after 1 hour (p = 0.003); TNF after 1 hour (p = 0.001) and after 3 hours (p = 0.001). In the fourth group (propofol and morphine) compared with group 1 (sevoflurane and fentanyl) there was lower body temperature in 4 hours after surgery (p = 0.005) and a lower leukocyte count on the 3rd day – 8,2 (7–11,4) ×109/l versus 11,1 (9–12,6) ×109/l (p = 0,005), there was less length of the ICU stay — 24 (21–29) hours versus 44 (23–71) hours (p = 0.013) and the frequency of use of vasoactive medications is 13.3 % versus 46.7 % (p = 0.02).

Conclusion. Our results showed the ability of propofol and morphine to reduce the manifestations of a systemic inflammatory response throughout cardiac surgery with cardiopulmonary bypass.

Keywords: cardiac surgery, cardiopulmonary bypass, propofol, sevoflurane, morphine, fentanyl, systemic inflammatory response

Received: 30.08.2019

Accepted: 05.11.2019


References

  1. Balk R.A. Systemic inflammatory response syndrome (SIRS): Where did it come from and is it still relevant today? Virulence. 2014; 5(1): 20–26. DOI: 10.4161/viru.27135
  2. Day J.R., Taylor K.M. The systemic inflammatory response syndrome and cardiopulmonary bypass. Int. J. Surg. 2005; 3: 129–140. DOI: 10.1016/j.ijsu.2005.04.002
  3. Shinji H. Systemic inflammatory response syndrome after cardiac surgery under cardiopulmonary bypass. Ann. Thorac. Cardiovasc. Surg. 2003; 9(6): 365–370.
  4. Murphy G.S., Szokol J.W., Marymont J.H., et al. The effects of morphine and fentanyl on the inflammatory response to cardiopulmonary bypass in patients undergoing elective coronary artery bypass graft surgery. Anesth. Analg. 2007; 104(6): 1334–1342. DOI: 10.1213/01.ane.0000264108.47280.f5
  5. Schneemilch C.E., Schilling T., Bank U. Effects of general anaesthesia on inflammation. Best. Pract. Res. Clin. Anaesthesiol. 2004; 18(3): 493–507. DOI: 10.1016/j.bpa.2004.01.002
  6. Stefano G.B., Scharrer B., Smith E.M., et al. Opioid and opiate immunoregulatory processes. Crit. Rev. Immunol. 1996; 16(2): 109–144.
  7. Dabbagh A., Rajaei S., Ayad Bahadori Monfared A.B., Keramatinia A.A. Cardiopulmonary bypass, inflammation and how to defy it: focus on pharmacological interventions. Iran. J. Pharm. Res. 2012; 11(3): 705–714.
  8. Samir A., Gandreti N., Madhere M., et al. Anti inflammatory effects of propofol during cardiopulmonary bypass: A pilot study. Ann. Card. Anaesth. 2015; 18(4): 495–501. DOI: 10.4103/0971-9784.166451
  9. Sayed S., Maghraby H., Momen S., et al. Effect of morphine and fentanyl on inflammatory biomarkers in rheumatic heart patients undergoing valve replacement surgery. Anesth. Clin. Res. 2014, 5(6): 412–420. DOI: 10.4172/2155-6148.1000412
  10. Аджигалиев Р., Баутин А., Илов Н. и др. Различное влияние наркотических анальгетиков на динамику активности цитокинов во время кардиохирургических вмешательств в условиях искусственного кровообращения. Вестн. анестезиол. и реаниматол. 2017; 14(5): 34–40. DOI: 10.21292/2078-5658-2017-14-5-34-40. [Аdzhigаliev R.R., Bаutin А.E, Ilov N.N., et al. Various effects of narcotic analgesics on the changes in cytokine activities during cardiac surgery with cardiopulmonary bypass Vestnik Anasteziol. i Reanimatol. 2017; 14(5): 34–40. (In Russ)]
  11. Claxton A.R., McGuire G., Chung F., Cruise C. Evaluation of morphine versus fentanyl for postoperative analgesia after ambulatory surgical procedures. Anesth. Analg. 1997; 84 (3): 509–514.
  12. Murphy G.S., Szokol J.W., Marymont J.H., et al. Morphine-based cardiac anesthesia provides superior early recovery compared with fentanyl in elective cardiac surgery patients. Anesth. Analg. 2009; 109(2): 311−319. DOI: 10.1213/ane.0b013e3181a90adc
  13. Musacchio E., Rizzoli V., Bianchi M., et al. Antioxidant action of propofol on liver microsomes, mitochondria and brain synaptosomes in the rat. Pharmacol. Toxicol. 1991; 69: 75–77.
  14. Corcoran T.B., Engel A., Sakamoto H., et al. The effects of propofol on lipid peroxidation and inflammatory response in elective coronary artery bypass grafting. J. Cardiothorac. Vasc. Anesth. 2004; 18: 592–604.
  15. Lisowska B., Szymańska M., Nowacka E., Olszewska M. Anesthesiology and the cytokine network. Postepy. Hig. Med. Dosw. (Online). 2013; 67: 769–769.
  16. Mathy-Hartert M., Deby-Dupont G., Hans P., et al. Protective activity of propofol, diprivan and intralipid against active oxygen species. Mediators Inflamm. 1998; 7: 327–333.
  17. Heine J., Jaeger K., Osthaus A., et al. Anaesthesia with propofol decreases FMLP-induced neutrophil respiratory burst but not phagocytosis compared with isoflurane. Br. J. Anaesth. 2000; 85 (3): 424–430.
  18. Inada T., Yamanouchi Y., Jomura S., et al. Effect of propofol and isoflurane anaesthesia on the immune response to surgery. Anaesthesia. 2004; 59(10): 954–959. DOI: 10.1111/j.1365-2044.2004.03837.x
  19. Petros A.J., Bogle R.G., Pearson J.D. Propofol stimulates nitric oxide release from cultured porcine aortic endothelial cells. Br. J. Pharmacol. 1993; 109: 6–7.
  20. Mathy Hartert M., Mouithys Mickalad A., Kohnen S., et al. Effects of propofol on endothelial cells subjected to a peroxynitrite donor (SIN-1). Anaesthesia. 2000; 55: 1066–1071. DOI: 10.1046/j.1365-2044.2000.01606.x
  21. Mikawa K., Akamatsu H., Nishina K., et al. Propofol inhibits human neutrophil functions. Anesth. Analg. 1998; 87: 695–700.
  22. Day J.R., Taylor K.M. The systemic inflammatory response syndrome and cardiopulmonary bypass. Int. J. Surg. 2005; 3: 129–140. DOI: 10.1016/j.ijsu.2005.04.002.
  23. Punjabi P.P., Taylor K.M. The science and practice of cardiopulmonary bypass: From cross circulation to ECMO and SIRS. Glob. Cardiol. Sci. Pract. 2013; 3: 249–260. DOI: 10.5339/gcsp.2013.32
  24. Paparella D., Yau T.M., Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur. J. Cardiothorac. Surg. 2002; 21(2): 232–244. DOI: 10.1016/s1010-7940(01)01099-5
  25. Chen R.M., Wu CH, Chang H.C., et al. Propofol suppresses macrophage functions and modulates mitochondrial membrane potential and cellular adenosine triphosphate synthesis. Anesthesiology. 2003; 98: 1178–1185. DOI: 10.1097/00000542-200305000-00021
  26. Chang H., Tsai S.Y., Chang Y., et al. Therapeutic concentrations of propofol protects mouse macrophages from nitric oxide-induced cell death and apoptosis. Can. J. Anaesth. 2002; 49: 477–80.
  27. De La Cruz J.P., Sedeño G., Carmona J.A., Sánchez de la Cuesta F. The in vitro effects of propofol on tissular oxidative stress in the rat. Anesth. Analg. 1998; 87: 1141–1146.
  28. Mouithys-Mickalad A., Hans P., Deby-Dupont G. Propofol reacts with peroxynitrite to form a phenoxyl radical: Demonstration by electron spin resonance. Biochem. Biophys. Res. Commun. 1998; 249 (3): 833–837. DOI: 10.1006/bbrc.1998.9235
  29. Hess M.L., Okabe E., Kontos H.A. Proton and free oxygen radical interaction with the calcium transport system of cardiac sarcoplasmic reticulum. J. Mol. Cell. Cardiol. 1981; 13: 767–772.
  30. Welters I.D., Menzebach A., Goumon Y., et al. Morphine suppresses complement receptor expression, phagocytosis, and respiratory burst in neutrophils by a nitric oxide and μ3 opiate receptor−dependant mechanism. J. Neuroimmunol. 2000; 111 (1–2): 139–145. DOI: 10.1016/s0165-5728(00)00401-x

About efficiency of the pharmacological scores as a predictors of outcomes after cardiac surgery

A.E. Bautin, A.V. Ksendikova, S.S. Belolipetskiy, N.R. Abutalimova, A.O. Marichev, A.V. Naimushin, V.L. Etin, A.M. Radovskiy, L.I. Karpova, V.K. Grebennik, M.L. Gordeev

Almazov National Medical Research Centre, St. Petersburg

For correspondence: Andrei E. Bautin, MD. PhD, Head of research division in anesthesiology and intensive care, Almazov National Medical Research Centre, St. Petersburg; e-mail: abautin@mail.ru, tel. +79217539110

For citation: Bautin AE, Ksendikova AV, Belolipetskiy SS, Abutalimova NR, Marichev AO, Naimushin AV, Etin VL, Radovskiy AM, Karpova LI, Grebennik VK, Gordeev ML. About efficiency of the pharmacological scores as a predictors of outcomes after cardiac surgery. Alexander Saltanov Intensive Care Herald. 2019;2:66–74.

DOI: 10.21320/1818-474X-2019-2-66-74


Abstract

Pharmacological scores, such as inotropic score (IS) and vasoactive-inotropic score (VIS) were created to quantify doses of vasoactive and inotropic drugs. The number of studies where IS and VIS were used for evaluation of postoperative period of adult patients after cardiac surgery is small.

Objective: to estimate IS and VIS as an approach for monitoring of the hemodynamic profile and clinical outcomes in the early postoperative period of cardiac surgery.

Methods. The study involved 144 patients older than 18 years who underwent cardiac surgery under cardiopulmonary bypass (CPB). In perioperative period we measured cardiac output using a Swan-Ganz catheter with the calculation of central hemodynamic parameters, and also VIS and IS wcre calculated. We evaluated the prognostic value of these pharmacological scores in the development of complications of the early postoperative period, as well as their correlation with the duration of respiratory support, the length of stay in the ICU, and total hospital time.

Results. IS ≥ 10 significantly associated with prolonged respiratory support, a long stay in the ICU and with a mortality rate of 28.6 %. Patients with IS ≥ 10 are characterized by a violation of tissue perfusion, main cause of which may be a low cardiac output syndrome. IS ≥ 10 can be used as criteria for the low cardiac output syndrome with impaired organ perfusion. The use of this pharmacological score as a predictor of adverse clinical outcomes and increased mortality is justified. The hemodynamic profile of patients with VIS ≥ 10 is characterized by the absence of signs of cardiac output decrease and normal organ perfusion. It has low prognostic significance for the adverse postoperative clinical outcomes and should not be used as perioperative criteria for low cardiac output. In addition, VIS ≥ 10 requires careful use as a predictor of adverse postoperative outcomes and mortality.

Keywords: Vasoactive-inotropic score, inotropic score, cardiac surgery, cardiopulmonary bypass, low cardiac output syndrome, vasoplegia syndrome, perioperative period, cardiac anesthesiology

Received: 11.03.2019

Accepted: 26.03.2019


References

  1. Wernovsky G., Wypij D., Jonas R.A., et al. Postoperative course and hemodynamic profile after the arterial switch operation in neonates and infants: A comparison of low flow cardiopulmonary bypass and circulatory arrest. Circulation. 1995; 92: 2226–2235.
  2. Maarslet L., Moler M.B., Dall R., et al. Lactate levels predict mortality and need for peritoneal dialysis in children undergoing congenital heart surgery. Acta Anesthesiol. Scand. 2012; 56: 459–64. DOI: 10.1111/j.1399-6576.2011.02588.x
  3. Salvin J.W., Scheurer M.A., Laussen P.C., et al. Factors associated with prolonged recovery after the fontan operation. Circulation. 2008; 118: 171–176. DOI: 10.1161/circulationaha.107.750596
  4. Basaran M., Sever K., Kafali E., et al. Serum lactate level has prognostic significance after pediatric cardiac surgery. Journal of Cardiothoracic and Vascular Anesthesia. 2006; 20(1): 43–44. DOI: 10.1097/01.sa.0000255130.25317.6f
  5. Kulik T.J., Moler F.W., Palmisano J.M., et al. Outcome associated factors in pediatric patients treated with extracorporeal membrane oxygenator after cardiac surgery. Circulation. 1996; 94: II63–II68.
  6. Gaies M.G., Surney J.G., Yen A.H., et al. Vasoactive-inotropic score as a predictor of morbidity and mortality in infants after cardiopulmonary bypass. Pediatric Critical Care Medicine 2010; 11(2): 234–238. DOI: 10.1097/pcc.0b013e3181b806fc
  7. Davidson J., Tong S., Hancock H., et al. Prospective validation of the vasoactive-inotropic score and correlation to short-term outcomes in neonates and infants after cardiothoracic surgery. Intensive Care Med. 2012; 38(7): 1184–1190. DOI: 10.1007/s00134-012-2544-x
  8. Butts R.J., Scheurer M.A., Altz A.M., et al. Comparison of maximum vasoactive inotropic score and low cardiac output syndrome as markers of early postoperative outcomes after neonatal cardiac surgery. Pediatr. Cardiol. 2012; 33(4): 633–638. DOI: 10.1007/s00246-012-0193-z
  9. Sanil Y., Aggarwal S. Vasoactive-inotropic score after pediatric heart transplant: A marker of adverse outcome. Pediatr. Transplant. 2013; 17(6): 567–572. DOI: 10.1111/petr.12112
  10. Nguyen H.V., Havalad V., Aponte-Patel L., et al. Temporary biventricular pacing decreases the vasoactive-inotropic score after cardiac surgery: a substudy of a randomized clinical trial. J. Thorac. Cardiovasc. Surg. 2013; 146(2): 296–301. DOI: 10.1016/j.jtcvs.2012.07.020
  11. Landoni G., Lomivorotov V.V., Alvaro G., et al. Levosimendan for Hemodynamic Support after Cardiac Surgery. The New England Journal of Medicine. 2017; 376(21): 2021–2031. DOI: 10.1056/NEJMoa1616325
  12. Козлов И.А., Кричевский Л.А. Оценка эффективности левосимендана в кардиохирургии. Вестник анестезиологии и реаниматологии. 2017; 14(4): 81–82. DOI: 10.21292/2078-5658-2017-14-4-81-82. [Kozlov I.A., Krichevskiy L.A. Evaluation of levosimedan efficiency in cardiac surgery. Messenger of anethesiology and resuscitation. 2017; 14(4): 81–82. DOI: 10.21292/2078-5658-2017-14-4-81-82. (In Russ)]

Continuous Monitoring of Venous Lactate and Glucose Using Intravascular Microdialysis During Perioperative Period in High-risk Cardiac Surgery

P.I. Lenkin1, 2, A.A. Ushakov1, M.Y. Kirov1, 2

1Department of Anesthesiology and Intensive Care Medicine, Northern State Medical University, Arkhangelsk

2Department of Anesthesiology and Intensive Care Medicine, City Hospital 1 of Arkhangelsk

For correspondence: Lenkin Pavel I. — Department of Anesthesiology and Intensive Care Medicine, Northern State Medical University, Arkhangelsk; e-mail: bruber@mail.ru

For citation: Lenkin PI, Ushakov AA, Kirov MY. Continuous Monitoring of Venous Lactate and Glucose Using Intravascular Microdialysis During Perioperative Period in High-risk Cardiac Surgery. Intensive Care Herald. 2016;4:72–77.


We present two clinical cases of the successful application of a novel technique for continuous lactate and glucose monitoring using intravascular microdialysis during perioperative period in high-risk cardiac surgery.

Keywords: lactate, intravascular microdialysis, monitoring, cardiac surgery

Received: 06.12.2016


References

  1. Pretre R., Turina M.I. Valve diseases: Cardiac valve surgery in octogenarian. Heart. 2000; 83: 116–21. doi: 10.1136/heart.83.1.116.
  2. Hirai S. Systemic inflammatory response syndrome after cardiac surgery under cardiopulmonary bypass. Thorac. Cardiovasc. Surg. 2003; 9: 365–370.
  3. Holmes J.H., Connolly N.C., Paull D.L. et al. Magnitude of the inflammatory response to cardiopulmonary bypass and its relation to adverse clinical outcomes. Inflamm. Res. 2002; 51: 579–586. doi: 10.1007/PL00012432.
  4. Goepfert M.S., Reuter D.A., Akyol D. et al. Goal-directed fluid management reduces vasopressor and catecholamine use in cardiac surgery patients. Care Med. 2007; 33: 96–103.
  5. Goepfert M.S., Richter H.P., Zu Eulenburg C. et al. Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial. Anesthesiology. 2013; 119: 824–836. doi: 10.1097/ALN.0b013e31829bd770.
  6. Lenkin A.I., Kirov M.Y., Kuzkov V.V. et al. Comparison of goal-directed hemodynamic optimization using pulmonary artery catheter and transpulmonary thermodilution in combined valve repair: a randomized clinical trial. Care Res. Pract. 2012; article ID 821218. doi: 10.1155/2012/821218.
  7. Bakker J., Nijsten M.W.N., Jansen T.C. Clinical use of lactate monitoring in critically ill patients. Ann. Intens. Care. 2013; 3: 12. doi: 10.1186/2110-5820-3-12.
  8. Schierenbeck F., Nijsten M.W.N., Franco-Cereceda A. et al. Introducing intravascular microdialysis for continuous lactate monitoring in patients undergoing cardiac surgery: a prospective observational study. Care. 2014; 18: 56. doi: 10.1186/cc13808.
  9. Schierenbeck F., Nijsten M.W.N., Franco-Cereceda A. et al. Evaluation of a continuous blood glucose monitoring system using central venous microdialysis. J. Diabetes. Sci. Tehnol. 2012; 6: 1366–1371. doi: 10.1177/193229681200600615.
  10. Lenkin P.I., Smetkin A.A., Hussain A. et al. Continuous monitoring of lactate using intravascular microdialysis in high-risk cardiac surgery: a prospective observational study. J. Cardiothorac. Vasc. Anesth. 2016. doi: http://dx.doi.org/10.1053/j.jvca.2016.04.013.
  11. O’Connor E.D., Fraser J.F. Hyperlactatemia in critical illness and cardiacsurgery. Crit. Care. 2010; 14: 421. doi: 10.1186/cc9017.
  12. Ranucci M., De Tofol B., Isgro G. et al. Hyperlactatemia during cardiopulmonary bypass: determinants and impact on postoperative outcome. Crit. Care. 2006; 10(6): R167.
  13. Maillet J.M., Le Besnerais P., Cantoni M. et al. Frequency, risk factors, and outcome of hyperlactatemia after cardiac surgery. Chest. 2003; 123: 1361–1366. doi: http://dx.doi.org/10.1378/chest.123.5.1361.
  14. Joudi M., Fathi M., Soltani G. et al. Factors affecting on serum lactate after cardiac surgery. Anesth. Pain Med. 2014; 4: e18514. doi: 10.5812/aapm.18514.
  15. Nguyen H.B., Rivers E.P., Knoblich B.P. et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Care Med. 2004; 32: 1637–1642. doi: 10.1097/01.CCM.0000132904.35713.A7.
  16. Hernandez G., Regueira T., Bruhn A. et al. Relationship of systemic, hepatosplanchnic, and microcirculatory perfusion parameters with 6-hour lactate clearance in hyperdynamic septic shock patients: an acute, clinical-physiological, pilot study. Annals of Intensive Care. 2012; 2: 44. doi: 10.1186/2110-5820-2-44.
  17. Van den Berghe G. How does blood glucose control with insulin save lives in intensive care? Clin. Invest. 2004; 114(9): 1187–1195. doi: 10.1172/JCI23506.
  18. Gandhi G.Y., Nuttall G.A., Abel M.D. et al. Intra-operative hyperglycemia and perioperative outcomes in cardiac surgery patients. Clin. Proc. 2005; 80: 862–866.
  19. Kalmovich B., Bar-Dayan Y., Boaz M., Wainstein J. Continuous glucose monitoring in patients undergoing cardiac surgery. Diabetes technology & therapeutics. 2012; 14(3): 232–238. doi: 10.1089/dia.2011.0154.
  20. Critchell C.D., Savarese V., Callahan A. et al. Accuracy of bedside capillary blood glucose measurements in critically ill patients. Care Med. 2007; 33: 2079–2084. doi: 10.1007/s00134-007-0835-4.
  21. Krinsley J.S. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit. Care Med. 2008; 36(11): 3008–3013. doi: 10.1097/CCM.0b013e31818b38d2.
  22. Mechanick J.I., Handelsman Y., Bloomgarden Z.T. Hypoglycemia in the intensive care unit. Opin. Clin. Nutr. Metab. Care. 2007; 10(2): 193–196. doi: 10.1097/MCO.0b013e32802b7016.