Discussing protein requirements of intensive care UNIT (ICU) patients

I.N. Leyderman1, A.I. Yaroshetskiy2

1 Ural State Medical University, Clinical Institute of Brain, Ekaterinburg

2 Russian National Research Medical University after N.I. Pirogov, Moscow

For correspondence: Leyderman Ilya Naumovich — Chair of Anesthesiology, Critical Care and Transfusiology, Ural State Medical University, Ekaterinburg; e-mail: inl230970@gmail.com

For citation: Leyderman IN, Yaroshetskiy AI. Discussing protein requirements of intensive care UNIT (ICU) patients. Alexander Saltanov Intensive Care Herald. 2018;3:59–66.

DOI: 10.21320/1818-474X-2018-3-59-66

Macro- and micronutrient requirements of intensive care units (ICU) critically ill patients have been actively discussed in recent years. Published in 2016 and 2017 clinical recommendations and reviews suggested significantly increase of protein provision in some populations of ICU patients to 2–2.5 grams/kg/day. However, a detailed analysis of the main sources of these recommendations (the “International Protein Summit” and Guidelines of the American Society for Critical Medicine and the American Society of Parenteral and Enteral Nutrition in 2016) revealed a number of serious contradictions and the absence of an obvious evidence base positions allowing to recommend high doses of protein. Thus, in most references by the supporters of high doses of protein in the ICU, we could not find any serious arguments to recommend the administration of the protein to the patient at a dosage more than 1.5 grams/kg /day. On the contrary, the corridor of optimal protein load, determined in the majority of studies devoted to the patientʼs protein and energy needs in ICU — is 1.2–1.5 grams/kg/day. Recommendations for the provision for ICU patients with morbid obesity hypocaloric and high protein diet, first, have a low level of evidence, and secondly, in real clinical practice simply is not feasible.

Keywords: critical illness, intensive care units, macronutrients needs, protein requirement

Received: 05.06.2018.


  1. Hurt R.T., McClave S.A., Martindale R.G., et al. Summary Points and Consensus Recommendations From the International Protein Summit. Nutrition in Clinical Practice. 2017; 32(Supp. 1): 142S–151S.
  2. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society of Parenteral and Enteral Nutrition (ASPEN). JPEN. 2016; 40(2): 159–211.
  3. Strack van Schijndel R.J., Weijs P.J., Koopmans R.H., et al. Optimal nutrition during the period of mechanical ventilation decreases mortality in critically ill, long-term acute female patients: a prospective observational cohort study. Crit. Care. 2009; 13(4): R132.
  4. Alberda C., Gramlich L., Jones N., et al. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. Intensive Care Med. 2009; 35(10): 1728–1737.
  5. Weijs P.J., Stapel S.N., de Groot S.D., et al. Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. JPEN J. Parenter. Enteral Nutr. 2012; 36(1): 60–68.
  6. Weijs P.J., Sauerwein H.P., Kondrup J. Protein recommendations in the ICU: G protein/kg body weight—which body weight for underweight and obese patients? Clin. Nutr. 2012; 31(5): 774–775.
  7. Allingstrup M.J., Esmailzadeh N., Wilkens Knudsen A. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin. Nutr. 2012; 31(4): 462–468.
  8. Clifton G.L., Robertson C.S., Contant C.F. Enteral hyperalimentation in head injury. J. Neurosurg. 1985; 62(2): 186–193.
  9. Scheinkestel C.D., Kar L., Marshall K. Prospective randomized trial to assess caloric and protein needs of critically ill, anuric, ventilated patients requiring continuous renal replacement therapy. Nutrition. 2003; 19(11–12): 909–916.
  10. Rennie M.J. Anabolic resistance in critically ill patients. Crit. Care Med. 2009; 37(Suppl. 10): S398–399.
  11. Rennie M.J. Anabolic resistance: the effects of aging, sexual dimorphism, and immobilization on human muscle protein turnover. Appl. Physiol. Nutr. Metab. 2009; 34(3): 377–381.
  12. Biolo G., Toigo G., Ciocchi B., et al. Metabolic response to injury and sepsis: changes in protein metabolism. Nutrition. 1997; 13(Suppl. 9): 52S–57S.
  13. Mansoor O., Breuille D., Bechereau F., et al. Effect of an enteral diet supplemented with a specific blend of amino acid on plasma and muscle protein synthesis in ICU patients. Clin. Nutr. 2007; 26(1): 30–40.
  14. Moore D.R., Churchward-Venne T.A., Witard O., et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J. Gerontol. A. Biol. Sci. Med. Sci. 2015; 70(1): 57–62.
  15. Wall B.T., Gorissen S.H., Pennings B., et al. Aging is accompanied by a blunted muscle protein synthetic response to protein ingestion. PLoS One. 2015; 10(11): e0140903.
  16. Dickerson R.N., Maish G.O., Croce M.A., et al. Influence of aging on nitrogen accretion during critical illness. JPEN J. Parenter. Enteral Nutr. 2015; 39(3): 282–290.
  17. Monk D.N., Plank L.D., Franch-Arcas G., et al. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann. Surg. 1996; 223(4): 395–405.
  18. Scheinkestel C.D., Kar L., Marshall K., et al. Prospective randomized trial to assess caloric and protein needs of critically ill, anuric, ventilated patients requiring continuous renal replacement therapy. Nutrition. 2003; 19(11–12): 909–916.
  19. Shaw J.H., Wildbore M., Wolfe R.R. Whole body protein kinetics in severely septic patients: the response to glucose infusion and total parenteral nutrition. Ann. Surg. 1987; 205(3): 288–294.
  20. Larsson J., Lennmarken C., Mårtensson J., et al. Nitrogen requirements in severely injured patients. Br. J. Surg. 1990; 77(4): 413–416.
  21. Ishibashi N., Plank L.D., Sando K., Hill G.L. Optimal protein requirements during the first 2 weeks after the onset of critical illness. Crit. Care Med. 1998; 26(9): 1529–1535.
  22. Liebau F., Sundström M., van Loon L.J., et al. Short-term amino acid infusion improves protein balance in critically ill patients. Crit. Care. 2015; 19:106.
  23. Rudman D., DiFulco T.J., Galambos J.T., et al. Maximal rates of excretion and synthesis of urea in normal and cirrhotic subjects. J. Clin. Invest. 1973; 52(9): 2241–2249.
  24. Pearl R.H., Clowes G.H. Jr., Hirsch E.F., et al. Prognosis and survival as determined by visceral amino acid clearance in severe trauma. J. Trauma. 1985; 25(8): 777–783.
  25. Cerra F.B., Siegel J.H., Coleman B., et al. Septic autocannibalism: a failure of exogenous nutritional support. Ann. Surg. 1980; 192(4): 570–580.
  26. Pittiruti M., Siegel J.H., Sganga G., et al. Determinants of urea nitrogen production in sepsis: muscle catabolism, total parenteral nutrition, and hepatic clearance of amino acids. Arch. Surg. 1989; 124(3): 362–372
  27. Sprung C.L., Cerra F.B., Freund H.R., et al. Amino acid alterations and encephalopathy in the sepsis syndrome. Crit. Care Med. 1991; 19(6): 753–757.
  28. Lamiell J.J., Ducey J.P., Freese-Kepczyk B.J., et al. Essential amino acid-induced adult hyperammonemic encephalopathy and hypophosphatemia. Crit. Care Med. 1990; 18(4): 451–452.
  29. Perez-Barcena J. et al. A randomized trial of intravenous glutamine supplementation in trauma ICU patients. Intensive Care Med. 2014; 40(4): 539–547.
  30. Andrews P.J.D. et al. for the SIGNET trials group. Randomized trial of glutamine, selenium, or both, to supplemental parenteral nutrition for critically ill patients. BMJ. 2011; 342: d1542.
  31. Heyland D.K. et al. A RCT of glutamine and antioxidants in critically ill pts. N. Engl. J. Med. 2013; 368(16): 1489–1497.
  32. Hoffer L.J. How much protein do parenteral amino acid mixtures provide? Am. J. Clin. Nutr. 2011; 94(6): 1396–1398.
  33. Dickerson R.N. Assessing nitrogen balance in older patients. JPEN J. Parenter. Enteral Nutr. 2015; 39(7): 759–760.
  34. Dickerson R.N., Maish G.O. III, Croce M.A., et al. Influence of aging on nitrogen accretion during critical illness. JPEN J. Parenter. Enteral Nutr. 2015; 39(3): 282–290.
  35. Arends J., Bachmann P., Baracos V., et al. ESPEN guidelines on nutrition in cancer patients. Clinical Nutrition. 2017; 36(1): 11–48.
  36. Morley J.E., Argiles J.M., Evans W.J., et al. Nutritional recommendations for the management of sarcopenia. J. Am. Med. Dir. Assoc. 2010; 11(6): 391–396.
  37. Choban P.S., Dickerson R.N. Morbid obesity and nutrition support: is bigger different? Nutr. Clin. Pract. 2005; 20(4): 480–487.
  38. Dickerson R.N., Medling T.L., Smith A.C., et al. Hypocaloric, high-protein nutrition therapy in older vs younger critically ill patients with obesity. JPEN J. Parenter. Enteral Nutr. 2013; 37(3): 342–351.
  39. Rugeles S., Villarraga-Angulo L.G., Ariza-Gutierrez A., et al. High-protein hypocaloric vs normocaloric enteral nutrition in critically ill patients: a randomized clinical trial. J. Crit. Care. 2016; 35:110–114.
  40. Rugeles S.J., Rueda J.D., Diaz C.E., Rosselli D. Hyperproteic hypocaloric enteral nutrition in the critically ill patient: a randomized controlled clinical trial. Indian J. Crit. Care Med. 2013; 17(6): 343–349.
  41. Arends J., Bodoky G., Bozzetti F., et al. ESPEN guidelines on enteral nutrition: non-surgical oncology. Clin. Nutr. 2006; 25(2): 245–259.
  42. Herndon D.N., Tompkins R.G. Support of the metabolic response to burn injury. Lancet. 2004; 363(9424): 1895–1902.

Chronical Pain Syndromes as a Critical Condition Consequence: Clinical Physiology, Diagnosis, Treatment

A.P. Spasova, V.V. Maltsev

Medical Institution of Petrozavodsk State University, Petrozavodsk

For correspondence: Spasova Arina Pavlovna — Candidate of Medical Science, Assistant Professor of Chair of X-Ray diagnostic and X-Ray treatment with course of Critical and Respiratory Medicine of Medical Institution of Petrozavodsk State University, Petrozavodsk; e-mail: arina22@mail.ru

For citation: Spasova AP, Maltsev VV. Chronical Pain Syndromes as a Critical Condition Consequence: Clinical Physiology, Diagnosis, Treatment. Intensive Care Herald. 2017;4:19–28.

The review analyzes the prevalence of chronic pain syndromes in patients who have suffered a critical condition. The features of nociception processes and developing a sense of pain, the factors are analyzed to facilitate the transition of acute pain to chronic and possibility of their correction. Clinical and instrumental methods for the full evaluation of chronic pain syndrome, taking into account its specificity, as well as the basic principles of therapy, are considered.

Keywords: chronic pain, Post Intensive Care Syndrome, critical illness

Received: 25.10.2017


  1. Wunsch H., Angus D.C., Harrison D.A. et al. Variation in critical care services across North America and Western Europe. Care Med. 2008; 36: 2787–2793, e1. doi: 10.1097/ CCM.0b013e318186aec8.
  2. Zimmerman J.E., Kramer A.A., Knaus W.A. Changes in hospital mortality for United States intensive care unit admissions from 1988 to 2012. Crit. Care. 2013; 17: R81. doi: 1186/ cc12695.
  3. Brinkman S., Bakhshi-Raiez F., Abu-Hanna A. et al. Determinants of mortality after hospital discharge in ICU patients: Literature review and Dutch cohort Crit. Care Med. 2013; 41: 1237– 1251. doi: 10.1097/CCM.0b013e31827ca4f9.
  4. Dowdy D.W., Eid M.P., Sedrakyan A. et al. Quality of life in adult survivors of critical illness: A systematic review of the literature. Intensive Care Med. 2005; 31: 611–620. doi: 10/1007/s00134- 005-2592-6.
  5. Rosendahl J., Brunkhorst F.M., Jaenichen D. et al. Physical and mental health in patients and spouses after intensive care of severe sepsis: A dyadic perspective on long-term sequelae testing the Actor-Partner Interdependence Model. Care Med. 2013; 41: 69–75. doi: 10.1097/CCM.0b013e31826766b0.
  6. Needham D.M., Davidson J., Cohen H. et al. Improving long-term outcomes after discharge from intensive care unit: Report from a stakeholders’ Crit. Care Med. 2012; 40: 502– 509. doi: 10.1097/CCM.0b013e318232da75.
  7. Davydow D.S., Katon W.J., Zatzick D.F. Psychiatric morbidity and functional impairments in survivors of burns, traumatic injuries, and ICU stays for other critical illnesses: A review of the literature. Int. Psychiatry. 2009; 21: 531–538. doi: 10.3109/09540260903343877.
  8. Iwashyna T.J., Ely E.W., Smith D.M. et al. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010; 304: 1787–1794. doi: 10.1001/ jama.2010.1553.
  9. Wolters A.E., Slooter A.J., van der Kooi A.W. et al. Cognitive impairment after intensive care unit admission: A systematic review. Care Med. 2013; 39: 376–386. doi: 10.1007/s00134- 012-2784-9.
  10. Herridge M.S., Tansey C.M., Matté A. et al. Canadian Critical Care Trials Group: Functional disability 5 years after acute respiratory distress N. Engl. J. Med. 2011; 364: 1293–1304. doi: 10.1056/NEJMoa1011802.
  11. Erstad B.L., Puntillo K., Gilbert H.C., Grap M.J., Li D., Medi- na J. et al. Pain management principles in the critically Chest. 2009, 135: 1075–1086. doi: 10.1378/chest.08-2264.
  12. Stanik-Hutt J.A., Soeken K.L., Belcher A.E. et al. Pain experiences of traumatically injured patients in a critical care setting. Am. J. Crit. Care. 2001; 10: 252–259.
  13. Nelson J.E., Meier D.E., Oei E.J., Nierman D.M., Sen- zel R.S. et al. Self-reported symptom experience of critically ill cancer patients receiving intensive care. Crit. Care. Med. 2001; 29: 277–282. doi: 1097/00003246-200102000-00010.
  14. Овечкин А.М. Хронический послеоперационный болевой синдром — подводный камень современной хирургии. Регионарная анестезия и лечение острой боли. 2016; 10(1): 5–18. [Ovechkin A.M. Chronic postoperative pain syndrome — “a pit- fall” of modern surgery. Regionarnaya anesteziya i lechenie ostroj 2016; 10(1): 5–18. (in Russ)]. doi: 10.18821/19936508-2016-10-1-5-18.
  15. Овечкин А.М., Политов М.Е., Панов Н.В. Острый и хронический болевой синдром у пациентов, перенесших тотальное протезирование суставов нижних конечностей. Анестезиология и реаниматология. 2017; 62(3): 224–230. [Ovechkin A.M., Politov M.E., Panov N.V. Acute and chronic pain syndrome after total hip and knee Anesteziologiya i reanimatologi- ya, 2017, 62(3): 224–230. (in Russ)]. doi: 10.18821/0201-7563- 2017-62-3-224-230.
  16. Chanques G., Sebbane M., Barbotte E., Viel E., Eledjam J.J., Jaber S. A prospective study of pain at rest: Incidence and characteristics of an unrecognized symptom in surgical and trauma versus medical intensive care unit Anesthesiology. 2007; 107: 858–860. doi: 10.1097/01.anes.0000287211.98642.51.
  17. Gelinas C., Fillion L., Puntillo K.A., Viens C., Fortier M. Validation of the critical care pain observation tool in adult patients. Am. J. Crit. Care. 2006; 15: 420–427.
  18. Payen J.F., Bru O., Bosson J.L., Lagrasta A., Novel E., Deschaux I. et al. Assessing pain in critically ill sedated patients by using a behavioral pain scale. Care Med. 2001; 29: 2258–2263. doi: 10.1097/00003246-200112000-00004.
  19. Gelinas C. Management of pain in cardiac surgery ICU patients: Have we improved over time? Intensive Crit. Care Nurs. 2007; 23: 298–303. doi: 1016/j.iccn.2007.03.002.
  20. Jones J., Hoggart B., Withey J. et al. What the patients say: a study of reactions to an intensive care unit. Intensive Care Med. 1979; 5: 89–92.
  21. Schelling G., Richter M., Roozendaal B. et al. Exposure to high stress in the intensive care unit may have negative effects on health-related quality-of-life outcomes after cardiac sur Crit. Care Med. 2003; 31: 1971–1980. doi: 10.1097/01. CCM.0000069512.10544.40.
  22. Dowdy D.W., Eid M.P., Dennison C.R., Mendez-Tellez P.A., Herridge M.S. et al. Quality of life after acute respiratory distress syndrome: a meta-analysis. Intensive Care 2006, 32: 1115–1124. doi: 10.1007/s00134-006-0217-3.
  23. Der Schaaf M., Beelen A., Dongelmans D., Vroom M., Nollet F. Poor functional recovery after critical A longitudinal study. J. Rehab. Med. 2009; 41: 1041–1048. doi: 10.2340/16501977- 0443.
  24. Pavoni V., Gianesello L., Paparella L., Buoninsegni L.T., Barboni E. Outcome predictors and quality of life of severe burn patients admitted to intensive care unit. Scand. J. Trauma Resusc. Emerg. Med. 2010; 18: 24–32. doi: 10.1186/1757-7241- 18-24.
  25. Cuthbertson B.H., Roughton S., Jenkinson D., MacLennan G., Vale L. Quality of life in the five years after intensive care: a cohort study. Crit. Care. 2010; 14: R6. doi: 1186/cc8848.
  26. Timmers T.K., Verhofstad M.H., Moons K.H. et al. Long-term quality of life after surgical intensive care Arch. Surg. 2011; 146: 412–418. doi: 10.1001/archsurg.2010.279.
  27. Zimmer A., Rothaug J., Mescha S., Reinhart K., Meissner W., Marx G. Chronic pain after surviving sepsis. Care. 2006; 10(Suppl 1): P421. doi: 10.1186/cc4768.
  28. Jose G.M. H., Spronk P.E., van Stel H.F., Schrijvers G.J.P., Rommes J.H., Jan Bakker J. The impact of critical illness on perceived health-related quality of life during ICU treatment, hospital stay, and after hospital discharge: a long-term follow-up study. Chest. 2008; 133: 377–385. doi: 1378/chest.07-1217.
  29. McMahon S.B., Bennett D.L.H., Bevan S. Inflammatory mediators and modulators of pain. In Wall and Melzackʼs Textbook of Pain. Eds.: S.B McMahon, M. Koltzenburg. Philadelphia: Elsevier, 2008: 49–72.
  30. Ritner H.L., Machelska H., Stein C. Immune system pain and analgesia. In Science of Pain. Eds.: A.I. Bausbaum, M. Oxford, England: Academic Press, 2009: 407–427. doi:10.1186/2110-5820-2-36.
  31. Lindenlaub T., Teuteberg P., Hartung T., Sommer C. Effects of neutralizing antibodies to TNF-alpha on pain-related be- havior and nerve regeneration in mice with chronic constriction injury. Brain Res. 2000; 866: 15–22. doi: 10.1016/S0006-8993(00)02190-9.
  32. Twining C.M., Sloane E.M., Milligan E.D., Chacur M., Mar- tin D. et al. Peri-sciatic proinflammatory cytokines, reactive oxygen species, and complement induce mirror-image neuropathic pain in Pain. 2004; 110: 299–309. doi: 10.1016/j.pain.2004.04.008.
  33. Cui J.G., Holmin S., Mathiesen T., Meyerson B.A., Linderoth B. Possible role of inflammatory mediators in tactile hypersensitivity in rat models of mononeuropathy. Pain. 2000; 88: 239–248. doi: 1016/S0304-3959(00)00331-6.
  34. Liu T., van Rooijen N., Tracey D.J. Depletion of macrophages reduces axonal degeneration and hyperalgesia following nerve Pain. 2000; 86: 25–32. doi: 10.1016/S0304- 3959(99)00306-1.
  35. Hynninen M.S., Cheng D.C., Hossain I., Carroll J., Aumbhaga- van S.S., Yue R. et al. Non-steroidal anti-inflammatory drugs in treatment of postoperative pain after cardiac surgery. Can. J. Anaesth. 2000; 47: 1182–1187. doi: 1007/BF03019866.
  36. Woolf C.J. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011; 152(3 Suppl): S2–S15. doi: 1016/j.pain.2010.09.030.
  37. Watkins L.R., Maier S.F. Beyond neurons: Evidence that immune and glial cells contribute to pathological pain Physiol. Rev. 2002; 82: 981–1011. doi: 10.1152/physrev.00011.2002.
  38. Hu P., McLachlan E.M. Macrophage and lymphocyte invasion of dorsal root ganglia after peripheral nerve lesions in the rat. 2002; 112: 23–38. doi: 10.1016/S0306– 4522(02)00065–9.
  39. Morioka N., Inoue A., Hanada T., Kumagai K., Takeda K., Ikoma K. et al. Nitric oxide synergistically potentiates interleukin-1 beta-induced increase of cyclooxygenase-2 mRNA levels, resulting in the facilitation of substance P release from primary afferent neurons: involvement of cGMP independent mechanisms. Neuropharmacology. 2002; 43: 868–876. doi: 10.1016/ S0028-3908(02)00143-0.
  40. Hou L., Li W., Wang X. Mechanism of interleukin-1 beta-induced calcitonin gene-related peptide production from dorsal root ganglion neurons of neonatal rats. J. Neurosci. Res. 2003; 73: 188–197. doi: 1002/jnr.10651.
  41. Latremoliere A., Woolf C.J. Central sensitization: A generator of pain hypersensitivity by central neural J. Pain. 2009; 10: 895–926. doi: 10.1016/j.jpain.2009.06.012.
  42. Pandey C.K., Bose N., Garg G., Singh N., Baronia A., Agar- wal A. et al. Gabapentin for the treatment of pain in Guillain-Barré syndrome: a double-blinded, placebo-controlled, crossover study. Anesth. Analg. 2002; 95: 1719–1723. doi: 1097/00000539-200212000-00046.
  43. Pandey C.K., Raza M., Tripathi M., Navkar D.V., Kumar A., Singh U.K. The comparative evaluation of gabapentin and carbamazepine for pain management in Guillain-Barré syndrome patients in the intensive care Anesth. Analg. 2005; 101: 220–225. doi: 10.1213/01.ANE.0000152186.89020.36.
  44. Joly V., Richebe R., Guignard B., Fletcher D., Maurette P., Sessler D.I. et al. Remifentanil-induced postoperative hyperalgesia and its prevention with small-dose ketamine. 2005; 103: 147–155. doi: 10.1097/00000542- 200507000-00022.
  45. Goshgarian H. Anatomy and function of the spinal cord. In: Spinal Cord Medicine: Principles and Eds.: W.L. Vernon, D.D. Cardenas, N.C. Cutter, F.S. Frost, M.C. Hammond, L.B. Lindblom, I. Perkash, R. Waters, R.M. Woolsey. New York: Demos Medical Publishing, 2003: 15–35.
  46. Sandkuhler J. Models and mechanisms of hyperalgesia and allodynia. Physiol. 2009; 89: 707–758. doi: 10.1152/ physrev.00025.2008.
  47. Lee J.W., Siegel S.M., Oaklander A.L. Effects of distal nerve injuries on dorsal-horn neurons and glia: Relationships between lesion size and mechanical hyperalgesia. 2009; 158: 904–914. doi: 10.1016/j.neuroscience.2008.10.010.
  48. Millan M.J. Descending control of pain. Neurobiol. 2002; 66: 355–474. doi: 10.1016/S0301-0082(02)00009-6.
  49. Neumann S., Doubell T.P., Leslie T., Woolf C.J. Inflammatory pain hypersensitivity mediated by phenotypic switch in myelinated primary sensory neurons. Nature. 1996; 384: 360–364. doi: 1038/384360a0.
  50. Cherubini E., Conti F. Generating diversity at GABAergic synapses. Trends Neurosci. 2001; 24: 155–162. doi: 10.1016/ S0166-2236(00)01724-0.
  51. Luo C., Seeburg P.H., Sprengel R., Kuner R. Activity-dependent potentiation of calcium signals in spinal sensory networks in inflammatory pain states. 2008; 140: 358–367. doi: 10.1016/j.pain.2008.09.008.
  52. Porreca F., Ossipov M.H., Gebhart G.F. Chronic pain and medullary descending facilitation. Trends Neurosci. 2002; 25: 319–325. doi: 1016/S0166-2236(02)02157-4.
  53. Urban M.O., Gebhart G.F. Supraspinal contributions to hyperalgesia. Proc. Acad. Sci USA. 1999; 96: 7687– 7692. doi: 10.1073/pnas.96.14.7687.
  54. Watkins L.R., Maier S.F. Implications of immune-to-brain communication for sickness and Proc. Natl. Acad. Sci USA. 1999; 96: 7710–7713. doi: 10.1073/pnas.96.14.7710.
  55. Marcuzzi A., Wrigley P.J., Dean C.M, Adams R., Hush J.M. The long-term reliability of static and dynamic quantitative sensory testing in healthy individuals. 2017; 158: 1217– 1223. doi: 10.1097/j.pain.0000000000000901.
  56. Mattia C., Savoia G., Paoletti F., Piazza O., Albanese D., Amantea B. et al. SIAARTI recommendations for analgo- sedation in intensive care unit. Minerva Anestesiol. 2006; 72: 769–805.
  57. Chanques G., Sebbane M., Constantin J.M., Ramillon N., Jung B., Cisse M., Lefrant J.Y., Jader S. Analgesic efficacy and haemodynamic effects of nefopam in critically ill patients. J. Anaesth. 2011; 106: 336–343. doi: 10.1093/bja/aeq375.
  58. Fields H.L., Heinricher M.M. Anatomy and physiology of a nociceptive modulatory system. Philos. Trans. R. Soc. Lond B. Biol. Sci. 1985; 308: 361–374. doi: 10.1098/ rstb.1985.0037.
  59. Porreca F., Burgess S.E., Gardell L.R., Vanderah T.W., Malan T.P.Jr., Ossipov M.H. et al. Inhibition of neuropathic pain by selective ablation of brainstem medullary cells expressing the mu-opioid receptor. Neurosci. 2001; 21: 5281–5288.
  60. Milligan E.D., Twining C., Chacur M., Biedenkapp J., OʼConnor K., Poole S. et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. Neurosci. 2003; 23: 1026–1040.
  61. Watkins L.R., Wiertelak E.P., Furness L.E., Maier S.F. Illness- induced hyperalgesia is mediated by spinal neuropeptides and excitatory amino acids. Brain. Res. 1994; 664: 17–24. doi: 1016/0006-8993(94)91948-8.
  62. Watkins L.R., Maier S.F. Glia: a novel drug discovery target for clinical pain. Nat. Drug. Discov. 2003; 2: 973–985. doi: 10.1038/nrd1251.
  63. Ren K., Dubner R. Neuron-glia crosstalk gets serious: role in pain hypersensitivity. Opin. Anaesthesiol. 2008; 21: 570–579. doi: 10.1097/ACO.0b013e32830edbdf.
  64. Quan N., Herkenham M. Connecting cytokines and brain: a review of current issues. Histol. Histopathol. 2002; 17: 273– 288.
  65. Romeo H.E., Tio D.L., Rahman S.U., Chiappelli F., Taylor A.N. The glossopharyngeal nerve as a novel pathway in immune-to- brain communication: Relevance to neuroimmune surveillance of the oral cavity. Neuroimmunol. 2001; 115: 91–100. doi: 10.1016/S0165-5728(01)00270-3.
  66. Watkins L.R., Maier S.F., Goehler L.E. Cytokine-to-brain communication: a review and analysis of alternative mechanisms. Life 1995; 57: 1011–1026. doi: 10.1016/0024- 3205(95)02047-M.
  67. Constandil L., Hernandez A., Pelissier T., Arriagada O., Espinoza K., Burgos H. et al. Effect of interleukin-1beta on spinal cord nociceptive transmission of normal and monoarthritic rats after disruption of glial function. Res. Ther. 2009; 11: R105. doi: 10.1186/ar2756.
  68. Reeve A.J., Patel S., Fox A., Walker K., Urban L. Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. J. Pain (London, Engl.). 2000; 4: 247–257. doi: 10.1053/eujp.2000.0177.
  69. Watkins L.R., Martin D., Ulrich P., Tracey K.J., Maier S.F. Evidence for the involvement of spinal cord glia in subcutaneous formalin induced hyperalgesia in the rat. 1997; 71: 225– 235. doi: 10.1016/S0304-3959(97)03369-1.
  70. de Goeij M., van Eijk L.T., Vanelderen P. et al. Systemic inflammation decreases pain threshold in humans in vivo. PLoS One. 2013; 8: e84159. doi.org/10.1371/journal. pone.0084159.
  71. Price D.D. Psychological and neural mechanisms of the affective dimension of pain. Science (New York). 2000; 288: 1769–1772.
  72. Craig A.D. Interoception: The sense of the physiological condition of the Curr. Opin. Neurobiol. 2003; 13: 500–505. https://doi.org/10.1016/S0959-4388(03)00090-4.
  73. Apkarian A.V., Bushnell M.C., Treede R.D., Zubieta J.K. Human brain mechanisms of pain perception and regulation in health and disease. J. Pain (London, Engl.). 2005; 9: 463–484. doi: 10.1016/j.ejpain.2004.11.001.
  74. Zhang L., Zhang Y., Zhao Z.Q. Anterior cingulate cortex contributes to the descending facilitatory modulation of pain via dorsal reticular nucleus. J. Neurosci. 2005; 22: 1141– 1148. doi: 10.1111/j.1460-9568.2005.04302.x.
  75. Jacodic H.K., Jakodic K., Podbregar M. Long-term outcome and quality of life of patients treated in a surgical intensive care: a comparison between sepsis and trauma. Care. 2006; 10: R134. doi: 10.1186/cc5047.
  76. Tanji J., Hoshi E. Behavioral planning in the prefrontal cortex. Opin. Neurobiol. 2001; 11: 164–170. doi: 10.1016/S0959- 4388(00)00192-6.
  77. Daw N.D., OʼDoherty J.P., Dayan P., Seymour B., Dolan R.J. Cortical substrates for exploratory decisions in Nature. 2006; 441: 876–879. doi: 10.1038/nature04766.
  78. Apkarian A.V. Pain perception in relation to emotional learning. Opin. Neurobiol. 2008; 18: 464–468. doi: 10.1016/j. conb.2008.09.012.
  79. Brosschot J.F., Gerin W., Thayer J.F. The perseverative cognition hypothesis: a review of worry, prolonged stress-related physiological activation, and health. J. Psychosom. Res. 2006; 60: 113–124. doi: 1016/j.jpsychores.2005.06.074.
  80. Siffleet J., Young J., Nikoletti S., Shaw T. Patientsʼ self-report of procedural pain in the intensive care J. Clin. Nurs. 2007; 16: 2142–2148. doi: 10.1111/j.1365-2702.2006.01840.x.
  81. Young J., Siffleet J., Nikoletti S., Shaw T. Use of a behavioural pain scale to assess pain in ventilated, unconscious and/or sedated patients. Intensive Crit. Care. Nurs. 2006; 22: 32–39. doi: 1016/j.iccn.2005.04.004.
  82. Neugebauer V., Li W., Bird G.C., Han J.S. The amygdala and persistent pain. Neuroscientist. 2004; 10: 221–234. doi: 1177/1073858403261077.
  83. Zhuo M. A synaptic model for pain: long-term potentiation in the anterior cingulate cortex. Mol. Cells. 2007; 23: 259–271.
  84. Izard C.E. Emotion theory and research: highlights, unanswered questions, and emerging Annual Rev. Psychol. 2009; 60: 1–25. doi: 10.1146/annurev.psych.60.110707.163539.
  85. Bruce J., Quinlan J. Chronic post-surgical pain. J. Pain. 2011; 5: 23–29. doi: 10.1177/204946371100500306.
  86. Baumbach P., Gotz T., Gunther A., Weiss T., Meissner W. Prevalence and characteristics of chronic intensive care-related pain: the role of severe sepsis and septic Crit. Care. Med. 2016; 44: 1129–1137. doi: 10.1097/CCM.0000000000001635.
  87. Puntillo K., Naidu R. Chronic pain disorders after critical illness and ICU-acquired opioid dependence: two clinical conun- dra. Opin. Crit. Care. 2016; 22: 506–512. doi: 10.1097/ MCC.0000000000000343.
  88. Fletcher D., Stamer U.M., Pogatzki-Zahn E., Zaslansky R., Ta- nase N.V. et al.; euCPSP group for the Clinical Trial Network group of the European Society of Chronic post- surgical pain in Europe: an observational study. Eur. J. Anaesthe- siol. 2015; 32: 725–734. doi: 10.1097/EJA.0000000000000319.
  89. Puntillo K.A., Max A., Timsit J.F. et al. Determinants of procedural pain intensity in the intensive care The Europain(R) study. Am. J. Respir Crit. Care. Med. 2014; 189: 39–47. doi: 10.1164/ rccm.201306-1174OC.
  90. Salanova M., Gelfi C., Moriggi M., Vasso M., Viganò A., Minafra L. et al. Disuse deterioration of human skeletal muscle challenged by resistive exercise superimposed with vibration: evidence from structural and proteomic analysis. FASEB J. 2014; 28(11): 4748–4763. doi: 1096/fj.14-252825.
  91. Clavet H., Hébert P.C., Fergusson D., Doucette S., Trudel G. Joint contracture following prolonged stay in the intensive care unit. 2008; 178(6): 691–697. doi: 10.1503/cmaj.071056.
  92. Bekkering G.E., Bala M.M., Reid K., Kellen E., Harker J., Riems- ma R., Huygen F.J., Kleijnen J. Epidemiology of chronic pain and its treatment in the Netherlands. J Med. 2011; 69: 141–153.
  93. Badcock L.J., Lewis M., Hay E.M., McCarney R., Croft P.R. Chronic shoulder pain in the community: a syndrome of disability or distress? Rheum. Dis. 2002; 61: 128–131. doi: 10.1136/ ard.61.2.128.
  94. Breivik H., Collett B., Ventafridda V., Cohen R., Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life and treatment. J. Pain. 2006; 10: 287–333. doi: 10.1016/j. ejpain.2005.06.009.
  95. Gustafson O. The incidence of shoulder dysfunction in ICU sur- vivors [Abstract]. doi: 1186/cc12746.
  96. Labriola J.E., Lee T.Q., Debski R.E., McMahon P.J. Stability and instability of the glenohumeral joint: the role of shoulder J. Shoulder. Elbow. Surg. 2005, 14: 32–38. doi: 10.1016/j.jse.2004.09.014.
  97. Devine H., MacTavish P., McPeake J., Quasim T., Kinsella J., Daniel M. Musculoskeletal problems in intensive care unit (ICU) patients post-discharge. Care. 2016; 20(Suppl 2): P414.
  98. Latronico N., Filosto M., Fagoni N. et al. Small nerve fiber pathology in critical illness. PLoS One. 2013; 8: e75696. doi. org/10.1371/journal.pone.0075696.
  99. Skorna M., Kopacik R., Vlckova E. et al. Small-nerve-fiber pathology in critical illness documented by serial skin biopsies. Muscle Nerve. 2015; 52: 28–33. doi: 1002/mus.24489.
  100. Backonja M.M., Attal N., Baron R. et al. Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. 2013; 154: 1807–1819. doi: 10.1016/j. pain.2013.05.047.
  101. Lin M.T., Lee L.J., Chao C.C. et al. Quality of life in polyneuropathy: Association with biomarkers of small fiber impairment. Health Qual Life 2015; 13: 169. doi: 10.1186/s12955- 015-0363-9.
  102. Royal College of Physicians, British Geriatrics Society and British Pain The assessment of pain in older people: nation- al guidelines: concise guidance to good practice series. № 8. London: RCP, 2007.
  103. Connolly B., Salisbury L., O’Neill B. et al. Exercise rehabilitation following intensive care unit discharge for recovery from critical illness. Cochrane Database Syst. 2015; 6: CD008632. doi: 10.1002/14651858.CD008632.pub2.
  104. National Institute for Clinical Excellence: CG83: Critical Illness Rehabilitation: Guideline. URL: http://www.nice.org.uk/nicemedia/live/ 12137/58250/58250.pdf.