Organoprotective effects of the α2-adrenoreceptor agonist dexmedetomidine (literature review)

Vitik A.A.1, Shen N.P.2

Tyumen State Medical University, Tyumen

2 The branch of the Tomsk national research medical center “Tyumen Cardiology Research Center”, Tyumen

For correspondence: Shen N.P. — MD, Professor, head of Department of Obstetrics, Gynecology and critical care medicine with a course of KDL of the Institute of Continuing Professional Development of Tyumen State Medical University, Tyumen; e-mail:

For citation: Vitik A.A., Shen N.P. Organoprotective effects of the α2-adrenoreceptor agonist dexmedetomidine (literature review). Alexander Saltanov Intensive Care Herald. 2018;4:74–79.

DOI: 10.21320/1818-474X-2018-4-74-79

Currently, in experimental and clinical studies of critical states, scientists attend to the issues of protecting and preserving the functions of vital organs and systems. The pharmacological aspects of organoprotection with various drugs are considered separately. In this question, α2-adrenoreceptor agonists are of the greatest interest. The study is devoted to the analysis of domestic and foreign literature covering the efficacy of using dexmedetomidine adrenergic mimetic, its mechanisms of action and organ-preventive properties in ECMO patients with organic and mental disorders. Formulated aspects need to study the use of this drug in order to prevent neurocognitive and organ dysfunction in surgical and therapeutic patients who are in intensive care units.

Keywords: organoprotection, dexmedetomidine, α2-adrenoreceptor agonists, multiple organ dysfunction, delirium

Received: 05.10.2018


  1. Wu L., Zhao H., Wang T., Pac-Soo C., Ma D. Cellular signaling pathways and molecular mechanisms involving inhalational anesthetics-induced. J. Anesth. 2014; 28(5): 740–758. DOI: 10.1007/s00540-014-1805-y.
  2. Belleville J.P., Ward D.S., Bloor C., Maze M. Effects of intravenous dexmedetomidin e in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology. 1992; 77: 1125–1133.
  3. Chen X., Hu J., Zhang C., et al. Effect and mechanism of dexmedetomidine on lungs in patients of sepsis complicated with acute respiratory distress syndrome. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018; 30(2): 151–155. DOI: 10.3760/cma.j.issn.2095-4352.2018.02.011.
  4. European Medicines Agency. European Public Assessment Report. 2016. Available from: 002268/WC500115631.pdf. Accessed 14 Nov 2016.
  5. Guo T.Z., Tinklenberg J., Oliker R., Maze M. Central alpha 1-adrenoceptor stimulation functionally antagonizes the hypnotic response to dexmedetomidine, an alpha 2-adrenoceptor agonist. Anesthesiology. 1991; 75: 252–256.
  6. Virtanen R., Savola J.M., Saano V., Nyman L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur. J. Pharmacol. 1988; 150: 9–14.
  7. Lobo F.A., Wagemakers M., Absalom A.R. Anaesthesia for awake craniotomy. Br. J. Anaesth. 2016; 116: 740–744.
  8. Riker R.R., Shehabi Y., Bokesch P.M., et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial (SEDCOM). JAMA. 2009; 301(5): 489–499.
  9. Bourenne J., Hraiech S., Roch A., et al. Sedation and neuromuscular blocking agents in acute respiratory distress syndrome. Ann. Transl. Med. 2017; 5(14): 291. DOI: 10.21037/atm.2017.07.19.
  10. Jakob S.M., Ruokonen E., Grounds R.M., et al. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012; 307(11): 1151–1160.
  11. Sulaiman S., Karthekeyan R.B., Vakamudi M., et al. The effects of dexmedetomidine on attenuation of stress response to endotracheal intubation in patients undergoing elective off-pump coronary artery bypass grafting. Ann. Card. Anaesth. 2012; 15: 39–43.
  12. Yildiz M., Tavlan A., Tuncer S., et al. Effect of dexmedetomidine on haemodynamic responses to laryngoscopy and intubation: perioperative haemodynamics and anaesthetic requirements. Drugs R.D. 2006; 7: 43–52.
  13. ЕременкоА.А., Чернова Е.В. Лечение делирия в раннем послеоперационном периоде у кардиохирургических пациентов. Анестезиология и реаниматология. 2014; 5: 30–34. [Yeremenko A.A., Chernova Ye.V. Lecheniye deliriya v rannem posleoperatsionnom iskusstve u kardiokhirurgicheskikh patsiyentov. Anesteziologiya i reanimatologiya. 2014; 5: 30–34. (In Russ)]
  14. ЕременкоА.А., Чернова Е.В. Применение дексмедетомидина для внутривенной седации и лечения делирия в раннем послеоперационном периоде у кардиохирургических пациентов. Анестезиология и реаниматология. 2013; 5: 4–7. [Yeremenko A.A., Chernova Ye.V. Primeneniye deksmedetomidina dlya vnutrivennogo sedatelʼstva i lecheniya v rannem posleoperatsionnom budushchem u kardiokhirurgicheskikh patsiyentov. Anesteziologiya i reanimatologiya. 2013; 5: 4–7. (In Russ)]
  15. Шевченко Ю.Л., Гороховатский Ю.И., Азизова О.А., Замятин М.Н. Системный воспалительный ответ при экстремальной хирургической агрессии. М.: РАЕН, 2009. [Shevchenko Yu.L., Gorokhovatskiy Yu.I., Azizova O.A., Zamyatin M.N. Sistemnyy vospalitelʼnyy otvet pri ekstremalʼnoy khirurgicheskoy agressii. Moscow: RAYEN, 2009. (In Russ)]
  16. Dahmani S., Paris A., Jannier V., et al. Dexmedetomidine increases hippocampal phosphorylated extracellular signal-regulated protein kinase 1 and 2 content by an alpha 2-adrenoceptor-independent mechanism: evidence for the involvement of imidazoline I1 receptors. Anesthesiology. 2008; 108(3): 457–466.
  17. Drummond J.C., Dao A. V., Roth D.M., et al. Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology. 2008; 108(2): 225–232.
  18. Prielipp R.C., Wall M.H., Tobin J.R., et al. Dexmedetomidine-induced sedation in Volunteers decreases regional and global cerebral blood flow. Anesth. Analg. 2002; 95(4): 1052–1059.
  19. Talke P., Tong C., Lee H.W., et al. Effect of dexmedetomidine on lumbar cerebrospinal fluid pressure in humans. Anesth. Analg. 1997; 85(2): 358–364.
  20. Zhang Z., Ferretti V., Guntan I., et al. Neuronal ensembles sufficient for recovery sleep and the sedative actions of a2 adrenergic agonists. Nat. Neurosci. 2015; 18: 553–561.
  21. Virtanen R., Savola J.M., Saano V., Nyman L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur. J. Pharmacol. 1988; 150: 9–14.
  22. Abd-Ellatief R.B., Mohamed H.K., Kotb H.I. Reactive Astrogliosis in an Experimental Model of Fibromyalgia: Effect of Dexmedetomidine. Cells Tissues Organs. 2018; 205(2): 105–119. DOI: 10.1159/000488757.
  23. Reade M.C., O’Sullivan K., Bates S., et al. Dexmedetomidine vs. haloperidol in delirious, agitated, intubated patients: a randomised open-label trial. Crit. Care. 2009; 13(3): R75–R84.
  24. БершадскийФ.Ф., Улиткина О.Н., Скрипкин Ю.В., Лихванцев В.В. Седация дексмедетомидином сокращает сроки лечения делирия у пострадавших с тяжелой сочетанной травмой. Альманах клинической медицины. 2017; 45(8): 652–657. [Bershadskiy F.F., Ulitkina O.N., Skripkin Yu.V., Likhvantsev V.V. Sedatsiya deksmedetomidinom sokrashchayet sroki lecheniya s postradavshim s tyazheloy sochetannoy travmoy. Alʼmanakh klinicheskoy meditsiny. 2017; 45(8): 652–657. (In Russ)]
  25. Valitalo P.A., Ahtola-Satila T., Wighton A., et al. Population pharmacokinetics of dexmedetomidine in critically ill patients. Clin. Drug Invest. 2013; 33: 579–587.
  26. Lee S., Choi Y.S., Hong G.R., Oh Y.J. Echocardiographic evaluation of the effects of dexmedetomidine on cardiac function during total intravenous anaesthesia. Anaesthesia. 2015; 70: 1052–1059.
  27. КозловИ.А. Современные подходы к седации в отделениях реанимации и интенсивной терапии. Неотлож. Мед. 2013; 1: 22–32. [Kozlov I.A. Sovremennyye podkhody k sedatsii v otdeleniyakh reanimatsii i intensivnoy terapii. Neotlozh. Med. 2013; 1: 22–32. (In Russ)]
  28. Yoshikawa Y., Hirata N., Kawaguchi R., et al. Dexmedetomidine maintains its direct cardioprotective effect against ischemia/reperfusion injury in hypertensive hypertrophied myocardium. Anesth. Analg. 2017; 126(2): 443–452.
  29. Sun Y., Jiang C., Jiang J., et al. Dexmedetomidine protects mice against myocardium ischaemic/reperfusion injury by activating an A M PK/PI3K/Akt/eNO S pathway. Clin. Exp. Pharmacol. Physiol. 2017; 44(9): 946–953.
  30. Yang Y.F., Peng K., Liu H., et al. Dexmedetomidine preconditioning for myocardial protection in ischaemia-reperfusion injury in rats by down regulation of the high mobility group box 1-toll-like receptor 4-nuclear factor kB signalling pathway. Exp. Pharmacol. Physiol. 2017; 44(3): 353–361.
  31. Kunisawa T., Ueno M., Kurosawa A., et al. Dexmedetomidine can stabilize hemodynamics and spare anesthetics before cardiopulmonary bypass. J. Anesth. 2011; 25: 818–822.
  32. Maldonado J.R., Wysong A., van der Starre P.J.A., et al. Dexmedetomidine and the reduction of postoperative delirium after cardiac surgery. Psychosomatics. 2009; 50: 206–217.
  33. Geng J., Qian J., Cheng H., et al. The influence of perioperative dexmedetomidine on patients undergoing cardiac surgery: a meta-analysis. PLoS One. 2016; 11(4): e0152829.
  34. Kundra T.S., Nagaraja P.S., Singh N.G., et al. Effect of dexmedetomidine on diseased coronary vessel diameter and myocardial protection in percutaneous coronary interventional patients. Ann. Card. Anaesth. 2016; 19(3): 394–398.
  35. Ebert T.J., Hall J.E., Barney J.A., et al. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000; 93: 382–394.
  36. Rui S., Hong-Tao T. Dexmedetomidine as a promising prevention strategy for cardiac surgery-associated acute kidney injury: a meta-analysis. Crit. Care. 2017; 21: 198.
  37. Cozzolino M., Franci A., Peris A., et al. Weaning from extracorporeal membrane oxygenation: experience with dexmedetomidine in seven adult ARDS patients. Critical Care. 2015; 19(Suppl. 1): P485.
  38. Constantin J.M., Momon A., Mantz J., et al. Efficacy and safety of sedation with dexmedetomidine in critical care patients: a meta-analysis of randomized controlled trials. Anaesth. Crit. Care Pain Med. 2016; 35(1): 7–15.
  39. Fang X.Z., Gao J., Ge Y.L., et al. Network Meta-Analysis on the Efficacy of Dexmedetomidine, Midazolam, Ketamine, Propofol, and Fentanyl for the Prevention of Sevoflurane-Related Emergence Agitation in Children. Am. J. Ther. 2016; 23(4): e1032–e1042.
  40. Pasin L., Greco T., Feltracco P., et al. Dexmedetomidine as a Sedative Agent in Critically Ill Patients: A Meta-Analysis of Randomized Controlled Trials. PLoS One. 2013; 8(12): e82913.


Intraoperative hypotension

E.A. Leonova, G.B. Moroz, V.A. Shmyrev, V.V. Lomivorotov

E. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk

For correspondence: Vladimir Vladimirovich Lomivorotov — MD, PhD, Deputy Director for Research of E. Meshalkin National Medical Research Center; e-mail:

For citation: Leonova EA, Moroz GB, Shmyrev VA, Lomivorotov VV. Intraoperative hypotension. Alexander Saltanov Intensive Care Herald. 2018;3:87–96.

DOI: 10.21320/1818-474X-2018-3-87-96

The main objective of anesthesiologist is maintenance of patientʼs homeostasis during surgery. Among all the physiological parameters, only arterial pressure has such significant amplitude of oscillations, still the association between postoperative complications and blood pressure fluctuations is often unobvious. Furthermore, blood pressure is a modifiable parameter and can be easily regulated by fluids, vasopressor and inotropic agents in most cases.

Intraoperative decrease of blood pressure may occur due to the action of anesthetics, hypotensive drugs, nonphysiological positioning of the patient on the operating table, artificial ventilation, surgical procedures, cardiopulmonary bypass, hypovolemia, acid-base and electrolyte disorders, acute heart failure, arrhythmias, anaphylaxis and others factors.

The lack of consensus about the definition of hypotension makes difficulties in evaluation of its effect on human organism. More than 140 different absolute and relative values are used as hypotension thresholds. Nevertheless, the data accumulated over the past few years lead us to the conclusion that intraoperative decrease of blood pressure is associated with the development of various nervous, cardiovascular and renal complications, what ultimately leads to increased morbidity and mortality. Severity of adverse effects is a function of range and duration of blood pressure fall.

Every patient has an individual set of genetic, physiological and pathophysiological features that determine the optimal blood pressure level. Thus, another promising direction may be development of the strategy for individualized blood pressure management.

Keywords: blood pressure, hypotension, stroke, delirium, myocardial infarction, acute kidney injury

Received: 24.07.2018


  1. Bellomo R., Hilton A. The ATHOS-3 trial, angiotensin II and The Three Musketeers. Crit. Care Resusc. 2017; 19(1): 3–4.
  2. Lonjaret L., Lairez O., Minville V., Geeraerts T. Optimal perioperative management of arterial blood pressure. Integr. Blood Press. Control. 2014; 7: 49–59.
  3. Bijker J.B., van Klei W.A., Kappen T.H., et al. Incidence of Intraoperative Hypotension as a Function of the Chosen Definition. Anesthesiology. 2007; 107(2): 213–220.
  4. Dahlgren G., Irestedt L. The definition of hypotension affects its incidence. Acta Anaesthesiol. Scand. 2010; 54(8): 907–908.
  5. Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell. Mol. Biol. 2012; 298: 229–317.
  6. Drummond J.C. The lower limit of autoregulation: time to revise our thinking? Anesthesiology. 1997; 86(6): 1431–1433.
  7. Strandgaard S. Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circulation. 1976; 53(4): 720–727.
  8. Waldemar G., Paulson O.B. Angiotensin converting enzyme inhibition and cerebral circulation — a review. Br. J. Clin. Pharmacol. 1989; 28(Suppl. 2): 177S–182S.
  9. Larsen F.S., Olsen K.S., Hansen B.A., et al. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation. Stroke. 1994; 25(10): 1985–1988.
  10. Olsen K.S., Svendsen L.B., Larsen F.S., Paulson O.B. Effect of labetalol on cerebral blood flow, oxygen metabolism and autoregulation in healthy humans. Br. J. Anaesth. 1995; 75(1): 51–54.
  11. Olsen K.S., Svendsen L.B., Larsen F.S. Validation of transcranial near-infrared spectroscopy for evaluation of cerebral blood flow autoregulation. J. Neurosurg. Anesthesiol. 1996; 8(4): 280–285.
  12. Joshi B., Ono M., Brown C., et al. Predicting the Limits of Cerebral Autoregulation During Cardiopulmonary Bypass. Anesth. Analg. 2012; 114(3): 503–510.
  13. Ramanathan T., Skinner H. Coronary blood flow. Contin. Educ. Anaesth. Crit. Care Pain. 2005; 5(2): 61–64.
  14. Carlström M., Wilcox C.S., Arendshorst W.J. Renal Autoregulation in Health and Disease. Physiol. Rev. 2015; 95(2): 405–511.
  15. Selim M. Perioperative Stroke. N. Engl. J. Med. 2007; 356(7): 706–713.
  16. Bateman B.T., Schumacher H.C., Wang S., et al. Perioperative Acute Ischemic Stroke in Noncardiac and Nonvascular Surgery. Anesthesiology. 2009; 110(2): 231–238.
  17. Sun L.Y., Chung A.M., Farkouh M.E., et al. Defining an Intraoperative Hypotension Threshold in Association with Stroke in Cardiac Surgery. Anesthesiology. 2018; 129(3): 440–447.
  18. Gottesman R.F., Sherman P.M., Grega M.A., et al. Watershed Strokes After Cardiac Surgery: Diagnosis, Etiology, and Outcome. Stroke. 2006; 37(9): 2306–2311.
  19. Gold J.P., Charlson M.E., Williams-Russo P., et al. Improvement of outcomes after coronary artery bypass: A randomized trial comparing intraoperative high versus low mean arterial pressure. J. Thorac. Cardiovasc. Surg. 1995; 110(5): 1302–1314.
  20. Gardner T.J., Horneffer P.J., Manolio T.A., et al. Stroke following coronary artery bypass grafting: a ten-year study. Ann. Thorac. Surg. 1985; 40(6): 574–581.
  21. Singh A.K., Bert A.A., Feng W.C., Rotenberg F.A. Stroke during coronary artery bypass grafting using hypothermic versus normothermic perfusion. Ann. Thorac. Surg. 1995; 59(1): 84–89.
  22. Bijker J.B., Persoon S., Peelen L.M., et al. Intraoperative Hypotension and Perioperative Ischemic Stroke after General Surgery. Anesthesiology. 2012; 116(3): 658–664.
  23. POISE Study Group, Devereaux P.J., Yang H., et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet. 2008; 371(9627): 1839–1847.
  24. Vedel A.G., Holmgaard F., Rasmussen L.S., et al. High-Target vs Low-Target Blood Pressure Management During Cardiopulmonary Bypass to Prevent Cerebral Injury in Cardiac Surgery Patients: A Randomized Controlled Trial. Circulation. 2018; 137(17): 1770–1780.
  25. Hsieh J.K., Dalton J.E., Yang D., et al. The Association Between Mild Intraoperative Hypotension and Stroke in General Surgery Patients. Anesth. Analg. 2016; 123(4): 933–939.
  26. Bekker A.Y., Weeks E.J. Cognitive function after anaesthesia in the elderly. Best Pract. Res. Clin. Anaesthesiol. 2003; 17(2): 259–272.
  27. Bitsch M., Foss N., Kristensen B., Kehlet H. Pathogenesis of and management strategies for postoperative delirium after hip fracture: A review. Acta Orthop. Scand. 2004; 75(4): 378–389.
  28. Siepe M., Pfeiffer T., Gieringer A., et al. Increased systemic perfusion pressure during cardiopulmonary bypass is associated with less early postoperative cognitive dysfunction and delirium. Eur. J. Cardio-Thoracic Surg. 2011; 40(1): 200–207.
  29. Marcantonio E.R., Goldman L., Orav E.J., et al. The association of intraoperative factors with the development of postoperative delirium. Am. J. Med. 1998; 105(5): 380–384.
  30. Hori D., Brown C., Ono M., et al. Arterial pressure above the upper cerebral autoregulation limit during cardiopulmonary bypass is associated with postoperative delirium. Br. J. Anaesth. 2014; 113(6): 1009–1017.
  31. Wesselink E.M., Kappen T.H., van Klei W.A., et al. Intraoperative hypotension and delirium after on-pump cardiac surgery. Br. J. Anaesth. 2015; 115(3): 427–433.
  32. Mangano D.T. Perioperative cardiac morbidity. Anesthesiology. 1990; 72(1): 153–184.
  33. Landesberg G., Beattie W.S., Mosseri M., et al. Perioperative Myocardial Infarction. Circulation. 2009; 119(22): 2936–2944.
  34. Anderson J.L., Morrow D.A. Acute Myocardial Infarction. Campion E.W, ed. N. Engl. J. Med. 2017; 376(21): 2053–2064.
  35. Botto F., Alonso-Coello P., Chan M.T.V., et al. Myocardial Injury after Noncardiac Surgery. Anesthesiology. 2014; 120(3): 564–578.
  36. Sessler D.I., Meyhoff C.S., Zimmerman N.M., et al. Period-dependent Associations between Hypotension during and for Four Days after Noncardiac Surgery and a Composite of Myocardial Infarction and Death. Anesthesiology. 2018; 128(2): 317–327.
  37. Kheterpal S., O’Reilly M., Englesbe M.J., et al. Preoperative and Intraoperative Predictors of Cardiac Adverse Events after General, Vascular, and Urological Surgery. Anesthesiology. 2009; 110(1): 58–66.
  38. Hallqvist L., Mårtensson J., Granath F., et al. Intraoperative hypotension is associated with myocardial damage in noncardiac surgery. Eur. J. Anaesthesiol. 2016; 33(6): 450–456.
  39. Abbott T.E.F., Pearse R.M., Archbold R.A., et al. A Prospective International Multicentre Cohort Study of Intraoperative Heart Rate and Systolic Blood Pressure and Myocardial Injury After Noncardiac Surgery. Anesth. Analg. 2018; 126(6): 1936–1945.
  40. Salmasi V., Maheshwari K., Yang D., et al. Relationship between Intraoperative Hypotension, Defined by Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury after Noncardiac Surgery. Anesthesiology. 2017; 126(1): 47–65.
  41. Kotvitskaya Z.T., Kolotova G.B., Rudnov V.A., Вagin V.A. Intraoperative Risk Factors of Myocardial Infarction in Non-Cardiac Surgeries. Messenger Anesthesiol. Resusc. 2018; 15(2): 32–37.
  42. van Waes J.A.R., van Klei W.A., Wijeysundera D.N., et al. Association between Intraoperative Hypotension and Myocardial Injury after Vascular Surgery. Anesthesiology. 2016; 124(1): 35–44.
  43. Abelha F., Botelho M., Fernandes V., Barros H. Determinants of postoperative acute kidney injury. Crit. Care. 2009; 13(3): R79.
  44. Machado M.N., Nakazone M.A., Maia L.N. Prognostic Value of Acute Kidney Injury after Cardiac Surgery according to Kidney Disease: Improving Global Outcomes Definition and Staging (KDIGO) Criteria. Landoni G., ed. PLoS One. 2014; 9(5): e98028.
  45. Lagny M-G., Jouret F., Koch J-N., et al. Incidence and outcomes of acute kidney injury after cardiac surgery using either criteria of the RIFLE classification. BMC Nephrol. 2015; 16(1): 76.
  46. Evans R.G., Ince C., Joles J.A., et al. Haemodynamic influences on kidney oxygenation: Clinical implications of integrative physiology. Clin. Exp. Pharmacol. Physiol. 2013; 40(2): 106–122.
  47. Gomez H., Ince C., De Backer D., et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014; 41(1): 3–11.
  48. Sun L.Y., Wijeysundera D.N., Tait G.A., Beattie W.S. Association of Intraoperative Hypotension with Acute Kidney Injury after Elective Noncardiac Surgery. Anesthesiology. 2015; 123(3): 515–523.
  49. Wu X., Jiang Z., Ying J., et al. Optimal blood pressure decreases acute kidney injury after gastrointestinal surgery in elderly hypertensive patients: A randomized study. J. Clin. Anesth. 2017; 43: 77–83.
  50. Hallqvist L., Granath F., Huldt E., Bell M. Intraoperative hypotension is associated with acute kidney injury in noncardiac surgery. Eur. J. Anaesthesiol. 2017; 35(4): 1.
  51. Walsh M., Devereaux P.J., Garg A.X., et al. Relationship between Intraoperative Mean Arterial Pressure and Clinical Outcomes after Noncardiac Surgery. Anesthesiology. 2013; 119(3): 507–515.
  52. Ono M., Arnaoutakis G.J., Fine D.M., et al. Blood Pressure Excursions Below the Cerebral Autoregulation Threshold During Cardiac Surgery are Associated With Acute Kidney Injury. Crit. Care Med. 2013; 41(2): 464–471.
  53. Haase M., Bellomo R., Story D., et al. Effect of mean arterial pressure, haemoglobin and blood transfusion during cardiopulmonary bypass on post-operative acute kidney injury. Nephrol. Dial. Transplant. 2012; 27(1): 153–160.
  54. Azau A., Markowicz P., Corbeau J., et al. Increasing mean arterial pressure during cardiac surgery does not reduce the rate of postoperative acute kidney injury. Perfusion. 2014; 29(6): 496–504.
  55. Sessler D.I., Sigl J.C., Kelley S.D., et al. Hospital Stay and Mortality Are Increased in Patients Having a “Triple Low” of Low Blood Pressure, Low Bispectral Index, and Low Minimum Alveolar Concentration of Volatile Anesthesia. Anesthesiology. 2012; 116(6): 1195–1203.
  56. Willingham M.D., Karren E., Shanks A.M., et al. Concurrence of Intraoperative Hypotension, Low Minimum Alveolar Concentration, and Low Bispectral Index Is Associated with Postoperative Death. Anesthesiology. 2015; 123(4): 775–785.
  57. Kertai M.D., White W.D., Gan T.J. Cumulative Duration of “Triple Low” State of Low Blood Pressure, Low Bispectral Index, and Low Minimum Alveolar Concentration of Volatile Anesthesia Is Not Associated with Increased Mortality. Anesthesiology. 2014; 121(1): 18–28.
  58. Monk T.G., Bronsert M.R., Henderson W.G., et al. Association between Intraoperative Hypotension and Hypertension and 30-day Postoperative Mortality in Noncardiac Surgery. Anesthesiology. 2015; 123(2): 307–319.
  59. Bijker J.B., van Klei W.A., Vergouwe Y., et al. Intraoperative Hypotension and 1-Year Mortality after Noncardiac Surgery. Anesthesiology. 2009; 111(6): 1217–1226.
  60. Tassoudis V., Vretzakis G., Petsiti A., et al. Impact of intraoperative hypotension on hospital stay in major abdominal surgery. J. Anesth. 2011; 25(4): 492–499.
  61. Futier E., Lefrant J.Y., Guinot P.G., et al. Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery. JAMA. 2017; 318(14): 1346.
  62. Gu W.J., Hou B.L., Kwong J.S.W., et al. Association between intraoperative hypotension and 30-day mortality, major adverse cardiac events, and acute kidney injury after non-cardiac surgery: A meta-analysis of cohort studies. Int. J. Cardiol. 2018; 258: 68–73.