Treatment of delirium in early postoperative cardiosurgical patients. Article

V.E. Rubinchik, I.Yu. Kasherininov, A.E. Bautin

Almazov National Medical Research Centre, St. Petersburg, Russia

For correspondence: Vadim E. Rubinchik — M. D., associate professor, the chief of the ICU#2 of Almazov National Medical Research Centre, St. Petersburg; e-mail: verubinchik@gmail.com

For citation: Rubinchik VE, Kasherininov IYu, Bautin AE. Treatment of delirium in early postoperative cardiosurgical patients. Article. Annals of Critical Care. 2019;3:77–83. DOI: 10.21320/1818-474X-2019-3-77-83


Abstract

Background. Postoperative delirium is highly relevant in elderly patients who undergo cardiosurgical interventions with cardiopulmonary bypass (CPB), long stay in intensive care unit (ICU), suffering from widespread atherosclerosis and having a wide range of comorbidities.

In the world literature there is a lot of data on the successful use of dexmedetomidine for sedation, prevention and relief of delirium, including patients after open-heart interventions. Comparative evaluation of dexmedetomidine and neuroleptic sedation with “traditional” for Russian Federation management of cardiosurgical patients suffering from postoperative delirium seems to be a relevant clinical and research task.

Objectives. Comparative evaluation of the effectiveness of drug sedation with dexmedetomidine and propofol in cardiosurgical patients with postoperative delirium.

Material and Methods. An open prospective cohort study took place in 2017–2019 and included 42 patients who underwent open-heart intervention with CPB and had delirium in the postoperative period.

Exclusion criteria: severe brachiocephal artery atherosclerosis, acute period or consequences of stroke, signs of acute respiratory failure associated with the pathology of the respiratory system, severe cardiovascular failure, age over 80 years.

Detection and treatment of delirium were performed by an intensivist together with a psychiatrist. Haloperidol was used as the main antipsychotic. Depending on the drug used for medical sedation, the patients were divided into 2 groups: 22 patients underwent medical sedation with propofol, 20 with dexmedetomidine in the form of an extended infusion. According to the results of the study, the length of patients’ stay in the ICU and hospital, the need for vasopressor therapy, mechnical ventilation (MV), and the duration of delirium were analyzed.

Results. In patients of the dexmedetomidine group, compared with the propofol group, the following was observed: less need for vasopressors and the duration of their use, less frequent use of MV (27.2 % versus 10.0 % of cases, p < 0.05), shorter stay in ICU (4.4 ± 1.8 vs 7.2 ± 2.3 days, p < 0.05), and finally, more rapid relief of the delirium itself (34.7 ± 6.8 vs 52.6 ± 8.9 hours, p < 0.05). There was no statistically significant difference between the groups for the length of hospital stay.

Conclusions. In the early postoperative period of open-heart interventions, medical sedation using dexmedetomidine as a component of the delirium therapy seems to be preferable to propofol sedation. Using of dexmedetomidine during study was associated with more rapid relief of the delirium, more favorable hemodynamic profile, less need for MV and duration of MV, as well as shorter duration of stay in the ICU, compared with the use of propofol sedation, which allows us to recommend routine use of dexmedetomidine in the cardiosurgical ICU.

Keywords: cardiosurgery, postoperative period, delirium, sedation, dexmedetomidine.

Received: 26.03.2019

Accepted: 03.09.2019

Read in PDF


Послеоперационное ведение кардиохирургических пациентов представляет собой постоянно совершенствующуюся область интенсивной терапии. Наряду   с многообразием факторов риска развития сердечно-сосудистой и дыхательной недостаточности особое внимание в послеоперационном периоде вмешательств на открытом сердце уделяется органическим и функциональным расстройствам центральной нервной системы [1–3]. Делириозный синдром весьма актуален у пожилых пациентов, переносящих тяжелые операции с применением искусственного кровообращения и проводящих в отделении реанимации и интенсивной терапии (ОРИТ) достаточно длительное время, лиц, страдающих распространенным атеросклерозом и имеющих широкий спектр сопутствующей патологии [4–10].

Дексмедетомидин, высокоселективный агонист α-адренорецепторов центрального действия, является препаратом, недавно получившим широкое применение за рубежом и в ряде клиник РФ. Клинический эффект дексмедетомидина в виде обеспечения седации, анальгезии и купирования психомоторного возбуждения был подтвержден рядом крупных исследований [11–21]. В то же время описано и его побочное действие — брадикардия и гипотензия, что требует применения гемодинамического мониторинга во время его использования. Рядом авторов отмечаются такие благоприятные особенности седации дексмедетомидином, как возможность коммуникации с медицинским персоналом [11, 12], снижение выраженности болевого синдрома, тошноты, уменьшение необходимости применения других седативных и анальгетических препаратов, снижение длительности механической респираторной поддержки (МРП) и периода пребывания в ОРИТ [13–20]. В мировой и отечественной литературе встречаются доказательства успешного применения данного препарата у кардиохирургических пациентов [18, 21–26]. Учитывая вышеизложенное, сравнительная оценка медикаментозной седации дексмедетомидином в сочетании с применением умеренных доз нейролептиков и традиционных для РФ методик ведения кардиохирургических пациентов с послеоперационным делирием, включающих в себя использование высоких доз нейролептиков, а также таких гипнотиков, как пропофол и тиопентал натрия, является актуальной клинической и исследовательской задачей.

Цель исследования: сравнительная оценка эффективности медикаментозной седации дексмедетомидином и пропофолом у пациентов с делириозным синдромом в раннем послеоперационном периоде вмешательств на открытом сердце.

Материалы и методы

Выполнено ретроспективное описательное исследование случаев развития послеоперационного делириозного синдрома у пациентов, перенесших вмешательства на открытом сердце в ФГБУ «НМИЦ им. В.А. Алмазова» МЗ РФ в период 2017–2019 гг. Поскольку исследование имело описательный ретроспективный характер, для его проведения не требовалось разрешения локального этического комитета. В исследование были включены пациенты с наличием в раннем послеоперационном периоде делириозного синдрома, о чем судили на основании появления продуктивной симптоматики, психомоторного возбуждения, дезориентации, что подтверждалось консультативным заключением психиатра.

Критериями  исключения  послужили: наличие у пациентов атеросклероза брахиоцефальных артерий с формированием гемодинамически значимых стенозов; острый период или последствия острого нарушения мозгового кровообращения; признаки острой дыхательной недостаточности, связанной с патологией органов системы внешнего дыхания; тяжелая сердечно-сосудистая недостаточность (использование инотропов/вазопрессоров в дозах, превышающих умеренные: эпинефрин — > 0,05 мкг/кг/мин, норэпинефрин — > 0,5 мкг/кг/мин, дофамин и добутамин — > 5 мкг/кг/ мин); применение устройств вспомогательного кровообращения; возраст > 80 лет.

В исследование включили 29 мужчин и 13 женщин, средний возраст пациентов составил 62,4 ± 8,9 года. В 26 случаях (61,9 %) пациентам выполнялось изолированное коронарное шунтирование (КШ), в 11 случаях (26,2 %) — сочетание КШ с пластикой или протезированием клапанов сердца (аортального или митрального клапана), в 5 случаях (11,9 %) — протезирование или пластика клапанов сердца без КШ. Средний индекс массы тела пациентов составил 27,4 ± 3,8 кг/м2. По данным предоперационной эхокардиографии, пациенты имели сохранную или умеренно сниженную фракцию выброса левого желудочка > 40 %; среднее значение фракции выброса левого желудочка составило 56,8 ± 8,9 %.

Интраоперационную респираторную   поддержку, ингаляционную анестезию и мониторное наблюдение проводили с помощью системы Datex-Ohmeda ADU S/5 (GE Healthcare, США). Мониторинг со- ответствовал локальному  протоколу «НМИЦ им. В.А. Алмазова» и международным стандартам для кардиохирургических пациентов. У всех пациентов осуществляли регистрацию 6-канальной ЭКГ, контроль SpO2, инвазивный мониторинг гемодинамики, в том числе методом препульмональной термодилюции с  помощью катетера Swan-Ganz. Проводили общую внутривенную либо комбинированную анестезию в условиях искусственной вентиляции легких (ИВЛ) через эндотрахеальную трубку. Анальгезию обеспечивали фентанилом (6 мкг/кг/ч), гипнотический компонент — постоянной инфузией пропофола (6–8 мг/кг/ч) по целевому значению показателя монитора энтропии (RE < 50 %), миоплегию — пипекурония бромидом (суммарно 0,2–0,25 мг/кг). При использовании комбинированной анестезии на основе севофлурана ингаляционный анестетик подавали в концентрации (ETsev 1,5–2 %), достаточной для поддержания индекса энтропии < 50 %, анальгезию осуществляли непрерывной инфузией фентанила (5 мкг/кг × ч).

Искусственное кровообращение проводили с помощью аппарата Stokert S 3 (Германия): поддерживали среднее перфузионное давление на уровне 70 ± 5 мм рт. ст., объемную скорость перфузии — 2,4 л/мин × м2, нормокапнию. Методика кардиоплегии — изотермическая прерывистая кровяная анте- и ретроградная.

Искусственную вентиляцию легких в послеоперационном периоде проводили в режиме SIMV аппаратами Dräger Savina, Evita 4, Evita XL (Dräger, Германия). В течение первых 3 ч после операции пациенты находились в условиях медикаментозной седации пропофолом и остаточной миоплегии. Послеоперационный мониторинг проводили с применением системы Datex Ohmeda S/5 (GE Healthcare, Финляндия).

Выявление признаков делириозного синдрома производилось врачом анестезиологом-реаниматологом в ходе интенсивной терапии пациентов в условиях ОРИТ, диагноз ставился на основании консультации психиатра. Осмотр пациентов психиатром проводился как на фоне первичного выявления продуктивной симптоматики, так и после купирования делириозного синдрома. Терапия нейролептиками согласовывалась с психиатром на всех этапах ведения пациента. В качестве основного нейролептика использовался галоперидол в виде внутривенного 0,5% раствора: дробное введение 10–15 мг/сут на фоне медикаментозной седации.

В зависимости от препарата, используемого для медикаментозной седации, ретроспективно пациенты были разделены на 2 группы: 22 пациентам проводилась медикаментозная седация пропофолом (10 мг/ мл), 20 — дексмедетомидином в виде продленной инфузии. Дозировка пропофола подбиралась индивидуально: стартовая доза составляла 4 мг/кг/ч, в дальнейшем проводилось увеличение дозы до необходимой для обеспечения эффективной седации под контролем показателей гемодинамики, оксигенации, газового состава крови. Стартовая доза для дексмедетомидина составляла 0,7 мкг/кг/ч, в последующем производилась коррекция дозировки (в пределах 0,2–1,4 мкг/кг/ч) с целью обеспечения адекватной седации под контролем показателей гемодинамики, оксигенации, газового состава крови.

В течение каждых 12 ч седации инфузия пропофола/дексдора прерывалась с целью оценки уровня сознания и психического статуса пациента. При купировании продуктивной симптоматики, психомоторного возбуждения совместно с психиатром принималось решение о прекращении седации. В случаях сохранения активного делириозного синдрома инфузия препаратов продолжалась до его купирования. В случаях ухудшения параметров оксигенации, газового состава крови на фоне инфузии основного для данной группы препарата проводилась респираторная терапия: ингаляция бронходилататоров и муколитиков через лицевую маску, СРАР терапия при помощи аппаратов ИВЛ Dräger Evita XL. При неэффективности данных подходов и дальнейшем ухудшении показателей внешнего дыхания пациенты в условиях продолжающейся медикаментозной седации и миоплегии переводились на ИВЛ с продолжением выбранной стратегии лечения делириозного синдрома. По итогам проведенного исследования были проанализированы продолжительность пребывания пациентов в ОРИТ и стационаре, потребность в применении вазопрессоров, МРП, непосредственная продолжительность делириозного синдрома.

Математический анализ выполняли с помощью программы Excel пакета Microsoft Office (Microsoft, США), а также программы Statistica 7.0 (Statsoft Inc., США). Для оценки значимости различий, учитывая ненормальность распределения, применялся непараметрический критерий Вилкоксона. Сравнение качественных показателей проводили с помощью точного критерия Фишера. Изменения считали значимыми при р < 0,05. Данные представлены в виде медианы (25-й, 75-й процентили).

Результаты исследования

Исходные данные о пациентах, включенных в исследование, а также характеристика выполненных оперативных вмешательств представлены в табл. 1. Мы не обнаружили каких-либо различий между исследуемыми группами пациентов в приведенных показателях.

Таблица 1. Характеристика пациентов исследуемых групп (n = 42)

Показатель

Пропофол

Дексмедетомидин

Возраст, лет

61,8 ± 8,7

63,0 ± 9,5

Пол:

 

 

мужской, n (%)

15 (68,2 %)

14 (70,0 %)

женский, n (%)

7 (31,8 %)

6 (30,0 %)

Фракция выброса левого желудочка, %

57,1 ± 8,8

56,5 ± 9,0

Индекс массы тела, кг/м2

27,3 ± 3,6

27,5 ± 4,0

Площадь поверхности тела, м2

1,96 ± 0,17

1,95 ± 0,15

Масса тела, кг

78,9 ± 7,2

79,5 ± 7,5

Характер вмешательств:

 

 

КШ

14

12

КШ + протезирование/пластика МК

3

2

КШ + протезирование АК

3

3

Протезирование АК

2

3

АК — аортальный клапан; КШ — коронарное шунтирование; МК — митральный клапан.

Данные о клиническом течении послеоперационного периода для групп пациентов, у которых с целью медикаментозной седации  применялись  пропофол  и дексмедетомидин, представлены в табл. 2.

Таблица 2. Данные о клиническом течении послеоперационного периода у пациентов исследуемых групп (медиана [25–75-й процентили], n = 42)

Показатель

Пропофол (n = 22)

Дексмедетомидин (n = 20)

p

Продолжительность делириозного синдрома, ч

52,6 (47,3–58,4)

34,5 (31,3–36,7)

< 0,05

Длительность пребывания в ОРИТ, койко-дни

7,2 (5,7–8,8)

4,4 (3,1–5,8)

< 0,05

Длительность госпитализации, койко-дни

27,6 (24,2–30,9)

25,5 (22,2–29,0)

>           0,05

Частота переводов на ИВЛ

7 (31,8 %)

1 (5,0 %)

< 0,05

Длительность МРП, ч

58,7 (52,1–66,2)

34,5 (30,8–38,2)

< 0,05

Потребность в вазопрессорах

13 (59,1 %)

5 (25,0 %)

< 0,05

Длительность вазопрессорной поддержки, ч

44,7 (37,5–51,9)

28,6 (25,4–31,4)

< 0,05

Потребность в галоперидоле, мг/сут

11,8 ± 2,2

12,3 ± 2,6

>           0,05

Летальность

1 (4,5 %)

0

>           0,05

ИВЛ — искусственная вентиляция легких; МРП — механическая респираторная поддержка; ОРИТ — отделение реанимации и интенсивной терапии.

Данные, представленные в табл. 2, свидетельствуют о том, что у пациентов из группы дексмедетомидина по сравнению с группой пропофола наблюдались: меньшая потребность в вазопрессорах и длительность их применения, меньшая частота и длительность МРП, меньшая длительность пребывания в ОРИТ, и наконец, более быстрое купирование непосредственно делириозного синдрома. По длительности пребывания в стационаре статистически значимого различия между группами получено не было. Один летальный исход в группе пропофола был вызван двусторонней госпитальной пневмонией, сепсисом, острой дыхательной и сердечно-сосудистой недостаточностью.

Обсуждение

Результаты проведенного исследования соотносятся с мировыми трендами, иллюстрирующими высокую эффективность и безопасность медикаментозной седации дексмедетомидином в комбинации с нейролептиками для купирования послеоперационного делириозного синдрома. Помимо вышеописанных результатов следует отметить такие преимущества дексмедетомидина, как возможность более эффективного обеспечения энтерального питания (кормление пациентов без установки назогастрального зонда и необходимости парентерального питания), а также улучшение переносимости и увеличение безопасности респираторной терапии.

Использование пропофола у ряда кардиохирургических пациентов ассоциировано со значимым ухудшением гемодинамического профиля, снижением системного артериального давления за счет более выраженного, чем у дексмедетомидина, вазоплегического компонента, что подтвердилось более частым и длительным использованием вазопрессоров в группе пропофола.

Кроме того, пациенты после вмешательств на открытом сердце имеют широкий спектр факторов риска развития острой дыхательной недостаточности, что нередко требует проведения комплексной респираторной терапии. Угнетение сознания и дыхания на фоне инфузии пропофола в ряде случаев потребовало перевода пациентов на ИВЛ, интубации трахеи с целью защиты дыхательных путей, что увеличивало время пребывания пациентов в ОРИТ и могло способствовать увеличению риска развития госпитальных пневмоний. Применение дексмедетомидина было ассоциировано со значимо меньшей частотой использования продленной ИВЛ, позволяло сохранять респираторный драйв пациентов и эффективно проводить СРАР-терапию, высокопоточную интраназальную инсуффляцию увлажненного О2, ингаляции бронходилататоров и муколитиков.

В дальнейшем целесообразно проведение дополнительных исследований с оценкой степени тяжести делириозного синдрома, сравнением различных групп антипсихотиков и эффективности их сочетанного применения с дексмедетомидином.

Выводы

  1. В раннем послеоперационном периоде вмешательств на открытом сердце медикаментозная седация с применением дексмедетомидина в качестве компонента терапии делириозного синдрома предпочтительна перед седацией с использованием пропофола.
  2. Медикаментозная седация с применением дексмедетомидина у пациентов после операций на открытом сердце ассоциирована с более быстрым купированием делириозного синдрома, более благоприятным гемодинамическим профилем, меньшей потребностью в МРП и длительностью ИВЛ, а также меньшей длительностью пребывания  в  ОРИТ в сравнении с использованием медикаментозной седации с применением пропофола.
  3. Высокая эффективность и безопасность медикаментозной седации с применением дексмедетомидина у пациентов с делириозным синдромом в раннем послеоперационном периоде вмешательств на открытом сердце позволяют рекомендовать ее рутинное использование в ОРИТ кардиохирургического профиля.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Вклад авторов. Рубинчик В.Е. — разработка плана обзора, систематизация информации и анализ фактических данных, написание и редактирование текста статьи, проверка и утверждение текста статьи; Кашерининов И.Ю., Баутин А.Е., Мазурок В.А. — разработка концепции статьи, получение и анализ фактических данных, написание и редактирование текста статьи, проверка и утверждение текста статьи.

ORCID авторов

Рубинчик В.Е. — 0000-0003-4501-6420

Кашерининов И.Ю. — 0000-0002-8029-3215

Баутин А.Е. — 0000-0001-5031-7637

Мазурок В.А. — 0000-0003-3917-0771


References

  1. McKhann G.M., Grega M.A., Borowicz L.M.Jr., et al. Stroke and encephalopathy after cardiac surgery: an update. Stroke. 2006; 37: 562–571. DOI: 10.1161/01.STR.0000199032.78782.6c
  2. Newman M.F., Grocott H.P., Mathew J.P., et al. Report of the substudy assessing the impact of neurocognitive function on quality of life 5 years after cardiac surgery. Stroke. 2001; 32: 2874–2881.
  3. Selnes O.A., Goldsborough M.A., Borowicz L.M.Jr., et al. Determinants of cognitive change after coronary artery bypass surgery: a multifactorial problem. Ann. Thorac. Surg. 1999; 67: 1669–1676.
  4. Maagaard M., Barbateskovic M., Perner A., et al. Dexmedetomidine for the prevention of delirium in critically ill patients — a protocol for a systematic review. Acta Anaesthesiol. Scand. 2019; 63(4): 540–548. DOI: 10.1111/aas.13313
  5. Collet M.O., Caballero J., Sonneville R., et al. Prevalence and risk factors related to haloperidol use for delirium in adult intensive care patients: the multinational AID-ICU inception cohort study. Intensive Care Med. 2018; 44(7): 1081–1089. DOI: 10.1007/s00134-018-5204-y
  6. Allen J., Alexander E. Prevention, recognition, and management of delirium in the intensive care unit. AACN Adv. Crit. Care. 2012; 23(1): 5–11; quiz 2–3. DOI: 10.1097/NCI.0b013e31822c3633
  7. Zaal I.J., Slooter A.J. Delirium in critically ill patients: epidemiology, pathophysiology, diagnosis and management. Drugs. 2012; 72(11): 1457–1471. DOI: 10.2165/11635520-000000000-00000
  8. Kalabalik J., Brunetti L., El-Srougy R. Intensive care unit delirium: a review of the literature. J. Pharm. Pract. 2014; 27(2): 195–207. DOI: 10.1177/ 0897190013513804
  9. Jackson P., Khan A. Delirium in critically ill patients. Crit. Care Clin. 2015; 31(3): 589–603. DOI: 10.1016/j.ccc.2015.03.011
  10. Pandharipande P., Cotton B.A., Shintani A., et al. Prevalence and risk factors for development of delirium in surgical and trauma intensive care unit patients. J. Trauma. 2008; 65(1): 34–41. DOI: 10.1097/TA.0b013e31814b2c4d
  11. Mantz J., Josserand J., Hamada S. Dexmedetomidine: new insights. Eur. J. Anaesthesiol. 2011; 28(1): 3–6. DOI: 10.1097/EJA.0b013e32833e266d
  12. Gerlach A.T., Dasta J.F. Dexmedetomidine: an updated review. Ann. Pharmacother. 2007; 41: 245–254. DOI: 10.1345/aph.1H314
  13. Honey B.L., Benefield R.J., Miller J.L., Johnson P.N. a2-receptor agonists for treatment and prevention of iatrogenic opioid abstinence syndrome in critically ill patients. Ann Pharmacother. 2009; 43: 1506–1511. DOI: 10.1345/aph.1M161
  14. Anger K.E. Dexmedetomidine: a review of its use for the management of pain, agitation, and delirium in the intensive care unit. Curr. Pharm. Des. 2013; 19: 4003–4013. DOI: 10.2174/1381612811319220009
  15. Gerlach A.T., Murphy C.V., Dasta J.F. An updated focused review of dexmedetomidine in adults. Ann. Pharmacother. 2009; 43(12): 2064–2074. DOI: 10.1345/aph.1M310
  16. Keating G.M. Dexmedetomidine: a review of its use for sedation in the intensive care setting. Drugs. 2015; 75(10): 1119–1130. DOI: 10.1007/s40265-015-0419-5
  17. Man Y., Guo Z., Cao J., Mi W. Efficacy of perioperative dexmedetomidine in postoperative neurocognitive function: a meta-analysis. Clin. Exp. Pharmacol. Physiol. 2015; 42(8): 837–842. DOI: 10.1111/1440–1681.12432
  18. Nguyen J., Nacpil N. Effectiveness of dexmedetomidine versus propofol on extubation times, length of stay and mortality rates in adult cardiac surgery patients: a systematic review and meta-analysis. JBI Database System. Rev. Implement. Rep. 2018; 16(5): 1220–1239. DOI: 10.11124/JBISRIR-2017-003488
  19. Peng K., Zhang J., Meng X.W., et al. Optimization of postoperative intravenous patient-controlled analgesia with opioid-dexmedetomidine combinations: an updated meta-analysis with trial sequential analysis of randomized controlled trials. Pain Physician. 2017; 20(7): 569–596.
  20. Zhou C., Zhu Y., Liu Z., Ruan L. Effect of dexmedetomidine on postoperative cognitive dysfunction in elderly patients after general anaesthesia: a meta-analysis. J. Int. Med. Res. 2016; 44(6): 1182–1190. DOI: 10.1177/ 0300060516671623
  21. Liu X., Xie G., Zhang K., et al. Dexmedetomidine vs propofol sedation reduces delirium in patients after cardiac surgery: a meta-analysis with trial sequential analysis of randomized controlled trials. J. Crit. Care. 2017; 38: 190–196. DOI: 10.1016/j.jcrc.2016.10.026
  22. Еременко А.А., Чернова Е.В. Применение дексмедетомидина для внутривенной седации и лечения делирия в раннем послеоперационном периоде у кардиохирургических больных. Анестезиология и реаниматология. 2013; 5: 4–8. [Eremenko A.A., Chernova E.V. Dexomedetomidine use for intravenous sedation and delirium treatment during early postoperative period in cardio-surgical patients. Anesteziologia i reanimatologia. 2013; 5: 4–8. (In Russ)]
  23. Еременко А.А., Чернова Е.В. Лечение делирия в раннем послеоперационном периоде у кардиохирургических пациентов. Анестезиология и реаниматология. 2014; 3: 30–34. [Eremenko A.A., Chernova E.V. Treatment of delirium in cardio-surgical patients in early postoperative period. Anesteziologia i reanimatologia. 2014; 3: 30–34. (In Russ)]
  24. Еременко А.А., Чернова Е.В. Сравнение дексмедетомидина и пропофола при внутривенной седации в раннем послеоперационном периоде у кардиохирургических пациентов. Анестезиология и реаниматология. 2014; 2: 37–41. [Eremenko A.A., Chernova E.V. Comparison of dexmedetomidine and propofol for short-term sedation in early postoperative period after cardiac surgery. Anesteziologia i reanimatologia. 2014; 2: 37–41. (In Russ)]
  25. Никода В., Грицан А., Еременко А., et al. Эффективность и безопасность применения дексмедетомидина для седации больных при проведении продленной ИВЛ в отделениях реанимации и интенсивной терапии (результаты российского многоуровневого исследования). Анестезиология и реаниматология. 2015; 60(5): 47–53.[Nikoda V.V., Gritsan A.I., Eremenko A.A., et al. The efficacy and safety of dexmedetomidine for sedation of patients during prolonged mechanical ventilation in intensive care units (Russian multicenter study results). Anesteziologia i reanimatologia. 2015; 60(5): 47–53. (In Russ)]
  26. Линев Д.В., Ярошецкий А.И., Проценко Д.Н., Гельфанд Б.Р. Эффективность и безопасность дексмедетомидина, галоперидола и диазепама в лечении делирия: сравнительное исследование. Анестезиология и реаниматология. 2017; 62(6): 442–448. DOI: 10.18821/0201-7563-2017-62-6-442-448. [Linev D.V., Yaroshetskiy A.I., Protsenko D.N., Gel’fand B.R. The efficacy and the safety of dexmedetomidine, haloperidol and diazepam for treatment of delirium: a comparative study. Anesteziologiya i reanimatologiya (Russian Journal of Anaesthesiology and Reanimatology). 2017; 62(6): 442–448. (In Russ)]

Organoprotective effects of the α2-adrenoreceptor agonist dexmedetomidine (literature review)

Vitik A.A.1, Shen N.P.2

Tyumen State Medical University, Tyumen

2 The branch of the Tomsk national research medical center “Tyumen Cardiology Research Center”, Tyumen

For correspondence: Shen N.P. — MD, Professor, head of Department of Obstetrics, Gynecology and critical care medicine with a course of KDL of the Institute of Continuing Professional Development of Tyumen State Medical University, Tyumen; e-mail: nataliashen@rambler.ru

For citation: Vitik A.A., Shen N.P. Organoprotective effects of the α2-adrenoreceptor agonist dexmedetomidine (literature review). Alexander Saltanov Intensive Care Herald. 2018;4:74–79.

DOI: 10.21320/1818-474X-2018-4-74-79


Currently, in experimental and clinical studies of critical states, scientists attend to the issues of protecting and preserving the functions of vital organs and systems. The pharmacological aspects of organoprotection with various drugs are considered separately. In this question, α2-adrenoreceptor agonists are of the greatest interest. The study is devoted to the analysis of domestic and foreign literature covering the efficacy of using dexmedetomidine adrenergic mimetic, its mechanisms of action and organ-preventive properties in ECMO patients with organic and mental disorders. Formulated aspects need to study the use of this drug in order to prevent neurocognitive and organ dysfunction in surgical and therapeutic patients who are in intensive care units.

Keywords: organoprotection, dexmedetomidine, α2-adrenoreceptor agonists, multiple organ dysfunction, delirium

Received: 05.10.2018


References

  1. Wu L., Zhao H., Wang T., Pac-Soo C., Ma D. Cellular signaling pathways and molecular mechanisms involving inhalational anesthetics-induced. J. Anesth. 2014; 28(5): 740–758. DOI: 10.1007/s00540-014-1805-y.
  2. Belleville J.P., Ward D.S., Bloor C., Maze M. Effects of intravenous dexmedetomidin e in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology. 1992; 77: 1125–1133.
  3. Chen X., Hu J., Zhang C., et al. Effect and mechanism of dexmedetomidine on lungs in patients of sepsis complicated with acute respiratory distress syndrome. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018; 30(2): 151–155. DOI: 10.3760/cma.j.issn.2095-4352.2018.02.011.
  4. European Medicines Agency. European Public Assessment Report. 2016. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/ 002268/WC500115631.pdf. Accessed 14 Nov 2016.
  5. Guo T.Z., Tinklenberg J., Oliker R., Maze M. Central alpha 1-adrenoceptor stimulation functionally antagonizes the hypnotic response to dexmedetomidine, an alpha 2-adrenoceptor agonist. Anesthesiology. 1991; 75: 252–256.
  6. Virtanen R., Savola J.M., Saano V., Nyman L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur. J. Pharmacol. 1988; 150: 9–14.
  7. Lobo F.A., Wagemakers M., Absalom A.R. Anaesthesia for awake craniotomy. Br. J. Anaesth. 2016; 116: 740–744.
  8. Riker R.R., Shehabi Y., Bokesch P.M., et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial (SEDCOM). JAMA. 2009; 301(5): 489–499.
  9. Bourenne J., Hraiech S., Roch A., et al. Sedation and neuromuscular blocking agents in acute respiratory distress syndrome. Ann. Transl. Med. 2017; 5(14): 291. DOI: 10.21037/atm.2017.07.19.
  10. Jakob S.M., Ruokonen E., Grounds R.M., et al. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012; 307(11): 1151–1160.
  11. Sulaiman S., Karthekeyan R.B., Vakamudi M., et al. The effects of dexmedetomidine on attenuation of stress response to endotracheal intubation in patients undergoing elective off-pump coronary artery bypass grafting. Ann. Card. Anaesth. 2012; 15: 39–43.
  12. Yildiz M., Tavlan A., Tuncer S., et al. Effect of dexmedetomidine on haemodynamic responses to laryngoscopy and intubation: perioperative haemodynamics and anaesthetic requirements. Drugs R.D. 2006; 7: 43–52.
  13. ЕременкоА.А., Чернова Е.В. Лечение делирия в раннем послеоперационном периоде у кардиохирургических пациентов. Анестезиология и реаниматология. 2014; 5: 30–34. [Yeremenko A.A., Chernova Ye.V. Lecheniye deliriya v rannem posleoperatsionnom iskusstve u kardiokhirurgicheskikh patsiyentov. Anesteziologiya i reanimatologiya. 2014; 5: 30–34. (In Russ)]
  14. ЕременкоА.А., Чернова Е.В. Применение дексмедетомидина для внутривенной седации и лечения делирия в раннем послеоперационном периоде у кардиохирургических пациентов. Анестезиология и реаниматология. 2013; 5: 4–7. [Yeremenko A.A., Chernova Ye.V. Primeneniye deksmedetomidina dlya vnutrivennogo sedatelʼstva i lecheniya v rannem posleoperatsionnom budushchem u kardiokhirurgicheskikh patsiyentov. Anesteziologiya i reanimatologiya. 2013; 5: 4–7. (In Russ)]
  15. Шевченко Ю.Л., Гороховатский Ю.И., Азизова О.А., Замятин М.Н. Системный воспалительный ответ при экстремальной хирургической агрессии. М.: РАЕН, 2009. [Shevchenko Yu.L., Gorokhovatskiy Yu.I., Azizova O.A., Zamyatin M.N. Sistemnyy vospalitelʼnyy otvet pri ekstremalʼnoy khirurgicheskoy agressii. Moscow: RAYEN, 2009. (In Russ)]
  16. Dahmani S., Paris A., Jannier V., et al. Dexmedetomidine increases hippocampal phosphorylated extracellular signal-regulated protein kinase 1 and 2 content by an alpha 2-adrenoceptor-independent mechanism: evidence for the involvement of imidazoline I1 receptors. Anesthesiology. 2008; 108(3): 457–466.
  17. Drummond J.C., Dao A. V., Roth D.M., et al. Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology. 2008; 108(2): 225–232.
  18. Prielipp R.C., Wall M.H., Tobin J.R., et al. Dexmedetomidine-induced sedation in Volunteers decreases regional and global cerebral blood flow. Anesth. Analg. 2002; 95(4): 1052–1059.
  19. Talke P., Tong C., Lee H.W., et al. Effect of dexmedetomidine on lumbar cerebrospinal fluid pressure in humans. Anesth. Analg. 1997; 85(2): 358–364.
  20. Zhang Z., Ferretti V., Guntan I., et al. Neuronal ensembles sufficient for recovery sleep and the sedative actions of a2 adrenergic agonists. Nat. Neurosci. 2015; 18: 553–561.
  21. Virtanen R., Savola J.M., Saano V., Nyman L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur. J. Pharmacol. 1988; 150: 9–14.
  22. Abd-Ellatief R.B., Mohamed H.K., Kotb H.I. Reactive Astrogliosis in an Experimental Model of Fibromyalgia: Effect of Dexmedetomidine. Cells Tissues Organs. 2018; 205(2): 105–119. DOI: 10.1159/000488757.
  23. Reade M.C., O’Sullivan K., Bates S., et al. Dexmedetomidine vs. haloperidol in delirious, agitated, intubated patients: a randomised open-label trial. Crit. Care. 2009; 13(3): R75–R84.
  24. БершадскийФ.Ф., Улиткина О.Н., Скрипкин Ю.В., Лихванцев В.В. Седация дексмедетомидином сокращает сроки лечения делирия у пострадавших с тяжелой сочетанной травмой. Альманах клинической медицины. 2017; 45(8): 652–657. [Bershadskiy F.F., Ulitkina O.N., Skripkin Yu.V., Likhvantsev V.V. Sedatsiya deksmedetomidinom sokrashchayet sroki lecheniya s postradavshim s tyazheloy sochetannoy travmoy. Alʼmanakh klinicheskoy meditsiny. 2017; 45(8): 652–657. (In Russ)]
  25. Valitalo P.A., Ahtola-Satila T., Wighton A., et al. Population pharmacokinetics of dexmedetomidine in critically ill patients. Clin. Drug Invest. 2013; 33: 579–587.
  26. Lee S., Choi Y.S., Hong G.R., Oh Y.J. Echocardiographic evaluation of the effects of dexmedetomidine on cardiac function during total intravenous anaesthesia. Anaesthesia. 2015; 70: 1052–1059.
  27. КозловИ.А. Современные подходы к седации в отделениях реанимации и интенсивной терапии. Неотлож. Мед. 2013; 1: 22–32. [Kozlov I.A. Sovremennyye podkhody k sedatsii v otdeleniyakh reanimatsii i intensivnoy terapii. Neotlozh. Med. 2013; 1: 22–32. (In Russ)]
  28. Yoshikawa Y., Hirata N., Kawaguchi R., et al. Dexmedetomidine maintains its direct cardioprotective effect against ischemia/reperfusion injury in hypertensive hypertrophied myocardium. Anesth. Analg. 2017; 126(2): 443–452.
  29. Sun Y., Jiang C., Jiang J., et al. Dexmedetomidine protects mice against myocardium ischaemic/reperfusion injury by activating an A M PK/PI3K/Akt/eNO S pathway. Clin. Exp. Pharmacol. Physiol. 2017; 44(9): 946–953.
  30. Yang Y.F., Peng K., Liu H., et al. Dexmedetomidine preconditioning for myocardial protection in ischaemia-reperfusion injury in rats by down regulation of the high mobility group box 1-toll-like receptor 4-nuclear factor kB signalling pathway. Exp. Pharmacol. Physiol. 2017; 44(3): 353–361.
  31. Kunisawa T., Ueno M., Kurosawa A., et al. Dexmedetomidine can stabilize hemodynamics and spare anesthetics before cardiopulmonary bypass. J. Anesth. 2011; 25: 818–822.
  32. Maldonado J.R., Wysong A., van der Starre P.J.A., et al. Dexmedetomidine and the reduction of postoperative delirium after cardiac surgery. Psychosomatics. 2009; 50: 206–217.
  33. Geng J., Qian J., Cheng H., et al. The influence of perioperative dexmedetomidine on patients undergoing cardiac surgery: a meta-analysis. PLoS One. 2016; 11(4): e0152829.
  34. Kundra T.S., Nagaraja P.S., Singh N.G., et al. Effect of dexmedetomidine on diseased coronary vessel diameter and myocardial protection in percutaneous coronary interventional patients. Ann. Card. Anaesth. 2016; 19(3): 394–398.
  35. Ebert T.J., Hall J.E., Barney J.A., et al. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000; 93: 382–394.
  36. Rui S., Hong-Tao T. Dexmedetomidine as a promising prevention strategy for cardiac surgery-associated acute kidney injury: a meta-analysis. Crit. Care. 2017; 21: 198.
  37. Cozzolino M., Franci A., Peris A., et al. Weaning from extracorporeal membrane oxygenation: experience with dexmedetomidine in seven adult ARDS patients. Critical Care. 2015; 19(Suppl. 1): P485.
  38. Constantin J.M., Momon A., Mantz J., et al. Efficacy and safety of sedation with dexmedetomidine in critical care patients: a meta-analysis of randomized controlled trials. Anaesth. Crit. Care Pain Med. 2016; 35(1): 7–15.
  39. Fang X.Z., Gao J., Ge Y.L., et al. Network Meta-Analysis on the Efficacy of Dexmedetomidine, Midazolam, Ketamine, Propofol, and Fentanyl for the Prevention of Sevoflurane-Related Emergence Agitation in Children. Am. J. Ther. 2016; 23(4): e1032–e1042.
  40. Pasin L., Greco T., Feltracco P., et al. Dexmedetomidine as a Sedative Agent in Critically Ill Patients: A Meta-Analysis of Randomized Controlled Trials. PLoS One. 2013; 8(12): e82913.

 

Intraoperative hypotension

E.A. Leonova, G.B. Moroz, V.A. Shmyrev, V.V. Lomivorotov

E. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk

For correspondence: Vladimir Vladimirovich Lomivorotov — MD, PhD, Deputy Director for Research of E. Meshalkin National Medical Research Center; e-mail: vvlom@mail.ru

For citation: Leonova EA, Moroz GB, Shmyrev VA, Lomivorotov VV. Intraoperative hypotension. Alexander Saltanov Intensive Care Herald. 2018;3:87–96.

DOI: 10.21320/1818-474X-2018-3-87-96


The main objective of anesthesiologist is maintenance of patientʼs homeostasis during surgery. Among all the physiological parameters, only arterial pressure has such significant amplitude of oscillations, still the association between postoperative complications and blood pressure fluctuations is often unobvious. Furthermore, blood pressure is a modifiable parameter and can be easily regulated by fluids, vasopressor and inotropic agents in most cases.

Intraoperative decrease of blood pressure may occur due to the action of anesthetics, hypotensive drugs, nonphysiological positioning of the patient on the operating table, artificial ventilation, surgical procedures, cardiopulmonary bypass, hypovolemia, acid-base and electrolyte disorders, acute heart failure, arrhythmias, anaphylaxis and others factors.

The lack of consensus about the definition of hypotension makes difficulties in evaluation of its effect on human organism. More than 140 different absolute and relative values are used as hypotension thresholds. Nevertheless, the data accumulated over the past few years lead us to the conclusion that intraoperative decrease of blood pressure is associated with the development of various nervous, cardiovascular and renal complications, what ultimately leads to increased morbidity and mortality. Severity of adverse effects is a function of range and duration of blood pressure fall.

Every patient has an individual set of genetic, physiological and pathophysiological features that determine the optimal blood pressure level. Thus, another promising direction may be development of the strategy for individualized blood pressure management.

Keywords: blood pressure, hypotension, stroke, delirium, myocardial infarction, acute kidney injury

Received: 24.07.2018


References

  1. Bellomo R., Hilton A. The ATHOS-3 trial, angiotensin II and The Three Musketeers. Crit. Care Resusc. 2017; 19(1): 3–4.
  2. Lonjaret L., Lairez O., Minville V., Geeraerts T. Optimal perioperative management of arterial blood pressure. Integr. Blood Press. Control. 2014; 7: 49–59.
  3. Bijker J.B., van Klei W.A., Kappen T.H., et al. Incidence of Intraoperative Hypotension as a Function of the Chosen Definition. Anesthesiology. 2007; 107(2): 213–220.
  4. Dahlgren G., Irestedt L. The definition of hypotension affects its incidence. Acta Anaesthesiol. Scand. 2010; 54(8): 907–908.
  5. Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell. Mol. Biol. 2012; 298: 229–317.
  6. Drummond J.C. The lower limit of autoregulation: time to revise our thinking? Anesthesiology. 1997; 86(6): 1431–1433.
  7. Strandgaard S. Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circulation. 1976; 53(4): 720–727.
  8. Waldemar G., Paulson O.B. Angiotensin converting enzyme inhibition and cerebral circulation — a review. Br. J. Clin. Pharmacol. 1989; 28(Suppl. 2): 177S–182S.
  9. Larsen F.S., Olsen K.S., Hansen B.A., et al. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation. Stroke. 1994; 25(10): 1985–1988.
  10. Olsen K.S., Svendsen L.B., Larsen F.S., Paulson O.B. Effect of labetalol on cerebral blood flow, oxygen metabolism and autoregulation in healthy humans. Br. J. Anaesth. 1995; 75(1): 51–54.
  11. Olsen K.S., Svendsen L.B., Larsen F.S. Validation of transcranial near-infrared spectroscopy for evaluation of cerebral blood flow autoregulation. J. Neurosurg. Anesthesiol. 1996; 8(4): 280–285.
  12. Joshi B., Ono M., Brown C., et al. Predicting the Limits of Cerebral Autoregulation During Cardiopulmonary Bypass. Anesth. Analg. 2012; 114(3): 503–510.
  13. Ramanathan T., Skinner H. Coronary blood flow. Contin. Educ. Anaesth. Crit. Care Pain. 2005; 5(2): 61–64.
  14. Carlström M., Wilcox C.S., Arendshorst W.J. Renal Autoregulation in Health and Disease. Physiol. Rev. 2015; 95(2): 405–511.
  15. Selim M. Perioperative Stroke. N. Engl. J. Med. 2007; 356(7): 706–713.
  16. Bateman B.T., Schumacher H.C., Wang S., et al. Perioperative Acute Ischemic Stroke in Noncardiac and Nonvascular Surgery. Anesthesiology. 2009; 110(2): 231–238.
  17. Sun L.Y., Chung A.M., Farkouh M.E., et al. Defining an Intraoperative Hypotension Threshold in Association with Stroke in Cardiac Surgery. Anesthesiology. 2018; 129(3): 440–447.
  18. Gottesman R.F., Sherman P.M., Grega M.A., et al. Watershed Strokes After Cardiac Surgery: Diagnosis, Etiology, and Outcome. Stroke. 2006; 37(9): 2306–2311.
  19. Gold J.P., Charlson M.E., Williams-Russo P., et al. Improvement of outcomes after coronary artery bypass: A randomized trial comparing intraoperative high versus low mean arterial pressure. J. Thorac. Cardiovasc. Surg. 1995; 110(5): 1302–1314.
  20. Gardner T.J., Horneffer P.J., Manolio T.A., et al. Stroke following coronary artery bypass grafting: a ten-year study. Ann. Thorac. Surg. 1985; 40(6): 574–581.
  21. Singh A.K., Bert A.A., Feng W.C., Rotenberg F.A. Stroke during coronary artery bypass grafting using hypothermic versus normothermic perfusion. Ann. Thorac. Surg. 1995; 59(1): 84–89.
  22. Bijker J.B., Persoon S., Peelen L.M., et al. Intraoperative Hypotension and Perioperative Ischemic Stroke after General Surgery. Anesthesiology. 2012; 116(3): 658–664.
  23. POISE Study Group, Devereaux P.J., Yang H., et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet. 2008; 371(9627): 1839–1847.
  24. Vedel A.G., Holmgaard F., Rasmussen L.S., et al. High-Target vs Low-Target Blood Pressure Management During Cardiopulmonary Bypass to Prevent Cerebral Injury in Cardiac Surgery Patients: A Randomized Controlled Trial. Circulation. 2018; 137(17): 1770–1780.
  25. Hsieh J.K., Dalton J.E., Yang D., et al. The Association Between Mild Intraoperative Hypotension and Stroke in General Surgery Patients. Anesth. Analg. 2016; 123(4): 933–939.
  26. Bekker A.Y., Weeks E.J. Cognitive function after anaesthesia in the elderly. Best Pract. Res. Clin. Anaesthesiol. 2003; 17(2): 259–272.
  27. Bitsch M., Foss N., Kristensen B., Kehlet H. Pathogenesis of and management strategies for postoperative delirium after hip fracture: A review. Acta Orthop. Scand. 2004; 75(4): 378–389.
  28. Siepe M., Pfeiffer T., Gieringer A., et al. Increased systemic perfusion pressure during cardiopulmonary bypass is associated with less early postoperative cognitive dysfunction and delirium. Eur. J. Cardio-Thoracic Surg. 2011; 40(1): 200–207.
  29. Marcantonio E.R., Goldman L., Orav E.J., et al. The association of intraoperative factors with the development of postoperative delirium. Am. J. Med. 1998; 105(5): 380–384.
  30. Hori D., Brown C., Ono M., et al. Arterial pressure above the upper cerebral autoregulation limit during cardiopulmonary bypass is associated with postoperative delirium. Br. J. Anaesth. 2014; 113(6): 1009–1017.
  31. Wesselink E.M., Kappen T.H., van Klei W.A., et al. Intraoperative hypotension and delirium after on-pump cardiac surgery. Br. J. Anaesth. 2015; 115(3): 427–433.
  32. Mangano D.T. Perioperative cardiac morbidity. Anesthesiology. 1990; 72(1): 153–184.
  33. Landesberg G., Beattie W.S., Mosseri M., et al. Perioperative Myocardial Infarction. Circulation. 2009; 119(22): 2936–2944.
  34. Anderson J.L., Morrow D.A. Acute Myocardial Infarction. Campion E.W, ed. N. Engl. J. Med. 2017; 376(21): 2053–2064.
  35. Botto F., Alonso-Coello P., Chan M.T.V., et al. Myocardial Injury after Noncardiac Surgery. Anesthesiology. 2014; 120(3): 564–578.
  36. Sessler D.I., Meyhoff C.S., Zimmerman N.M., et al. Period-dependent Associations between Hypotension during and for Four Days after Noncardiac Surgery and a Composite of Myocardial Infarction and Death. Anesthesiology. 2018; 128(2): 317–327.
  37. Kheterpal S., O’Reilly M., Englesbe M.J., et al. Preoperative and Intraoperative Predictors of Cardiac Adverse Events after General, Vascular, and Urological Surgery. Anesthesiology. 2009; 110(1): 58–66.
  38. Hallqvist L., Mårtensson J., Granath F., et al. Intraoperative hypotension is associated with myocardial damage in noncardiac surgery. Eur. J. Anaesthesiol. 2016; 33(6): 450–456.
  39. Abbott T.E.F., Pearse R.M., Archbold R.A., et al. A Prospective International Multicentre Cohort Study of Intraoperative Heart Rate and Systolic Blood Pressure and Myocardial Injury After Noncardiac Surgery. Anesth. Analg. 2018; 126(6): 1936–1945.
  40. Salmasi V., Maheshwari K., Yang D., et al. Relationship between Intraoperative Hypotension, Defined by Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury after Noncardiac Surgery. Anesthesiology. 2017; 126(1): 47–65.
  41. Kotvitskaya Z.T., Kolotova G.B., Rudnov V.A., Вagin V.A. Intraoperative Risk Factors of Myocardial Infarction in Non-Cardiac Surgeries. Messenger Anesthesiol. Resusc. 2018; 15(2): 32–37.
  42. van Waes J.A.R., van Klei W.A., Wijeysundera D.N., et al. Association between Intraoperative Hypotension and Myocardial Injury after Vascular Surgery. Anesthesiology. 2016; 124(1): 35–44.
  43. Abelha F., Botelho M., Fernandes V., Barros H. Determinants of postoperative acute kidney injury. Crit. Care. 2009; 13(3): R79.
  44. Machado M.N., Nakazone M.A., Maia L.N. Prognostic Value of Acute Kidney Injury after Cardiac Surgery according to Kidney Disease: Improving Global Outcomes Definition and Staging (KDIGO) Criteria. Landoni G., ed. PLoS One. 2014; 9(5): e98028.
  45. Lagny M-G., Jouret F., Koch J-N., et al. Incidence and outcomes of acute kidney injury after cardiac surgery using either criteria of the RIFLE classification. BMC Nephrol. 2015; 16(1): 76.
  46. Evans R.G., Ince C., Joles J.A., et al. Haemodynamic influences on kidney oxygenation: Clinical implications of integrative physiology. Clin. Exp. Pharmacol. Physiol. 2013; 40(2): 106–122.
  47. Gomez H., Ince C., De Backer D., et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014; 41(1): 3–11.
  48. Sun L.Y., Wijeysundera D.N., Tait G.A., Beattie W.S. Association of Intraoperative Hypotension with Acute Kidney Injury after Elective Noncardiac Surgery. Anesthesiology. 2015; 123(3): 515–523.
  49. Wu X., Jiang Z., Ying J., et al. Optimal blood pressure decreases acute kidney injury after gastrointestinal surgery in elderly hypertensive patients: A randomized study. J. Clin. Anesth. 2017; 43: 77–83.
  50. Hallqvist L., Granath F., Huldt E., Bell M. Intraoperative hypotension is associated with acute kidney injury in noncardiac surgery. Eur. J. Anaesthesiol. 2017; 35(4): 1.
  51. Walsh M., Devereaux P.J., Garg A.X., et al. Relationship between Intraoperative Mean Arterial Pressure and Clinical Outcomes after Noncardiac Surgery. Anesthesiology. 2013; 119(3): 507–515.
  52. Ono M., Arnaoutakis G.J., Fine D.M., et al. Blood Pressure Excursions Below the Cerebral Autoregulation Threshold During Cardiac Surgery are Associated With Acute Kidney Injury. Crit. Care Med. 2013; 41(2): 464–471.
  53. Haase M., Bellomo R., Story D., et al. Effect of mean arterial pressure, haemoglobin and blood transfusion during cardiopulmonary bypass on post-operative acute kidney injury. Nephrol. Dial. Transplant. 2012; 27(1): 153–160.
  54. Azau A., Markowicz P., Corbeau J., et al. Increasing mean arterial pressure during cardiac surgery does not reduce the rate of postoperative acute kidney injury. Perfusion. 2014; 29(6): 496–504.
  55. Sessler D.I., Sigl J.C., Kelley S.D., et al. Hospital Stay and Mortality Are Increased in Patients Having a “Triple Low” of Low Blood Pressure, Low Bispectral Index, and Low Minimum Alveolar Concentration of Volatile Anesthesia. Anesthesiology. 2012; 116(6): 1195–1203.
  56. Willingham M.D., Karren E., Shanks A.M., et al. Concurrence of Intraoperative Hypotension, Low Minimum Alveolar Concentration, and Low Bispectral Index Is Associated with Postoperative Death. Anesthesiology. 2015; 123(4): 775–785.
  57. Kertai M.D., White W.D., Gan T.J. Cumulative Duration of “Triple Low” State of Low Blood Pressure, Low Bispectral Index, and Low Minimum Alveolar Concentration of Volatile Anesthesia Is Not Associated with Increased Mortality. Anesthesiology. 2014; 121(1): 18–28.
  58. Monk T.G., Bronsert M.R., Henderson W.G., et al. Association between Intraoperative Hypotension and Hypertension and 30-day Postoperative Mortality in Noncardiac Surgery. Anesthesiology. 2015; 123(2): 307–319.
  59. Bijker J.B., van Klei W.A., Vergouwe Y., et al. Intraoperative Hypotension and 1-Year Mortality after Noncardiac Surgery. Anesthesiology. 2009; 111(6): 1217–1226.
  60. Tassoudis V., Vretzakis G., Petsiti A., et al. Impact of intraoperative hypotension on hospital stay in major abdominal surgery. J. Anesth. 2011; 25(4): 492–499.
  61. Futier E., Lefrant J.Y., Guinot P.G., et al. Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery. JAMA. 2017; 318(14): 1346.
  62. Gu W.J., Hou B.L., Kwong J.S.W., et al. Association between intraoperative hypotension and 30-day mortality, major adverse cardiac events, and acute kidney injury after non-cardiac surgery: A meta-analysis of cohort studies. Int. J. Cardiol. 2018; 258: 68–73.