Organoprotective effects of the α2-adrenoreceptor agonist dexmedetomidine (literature review)

Vitik A.A.1, Shen N.P.2

Tyumen State Medical University, Tyumen

2 The branch of the Tomsk national research medical center “Tyumen Cardiology Research Center”, Tyumen

For correspondence: Shen N.P. — MD, Professor, head of Department of Obstetrics, Gynecology and critical care medicine with a course of KDL of the Institute of Continuing Professional Development of Tyumen State Medical University, Tyumen; e-mail:

For citation: Vitik A.A., Shen N.P. Organoprotective effects of the α2-adrenoreceptor agonist dexmedetomidine (literature review). Alexander Saltanov Intensive Care Herald. 2018;4:74–79.

DOI: 10.21320/1818-474X-2018-4-74-79

Currently, in experimental and clinical studies of critical states, scientists attend to the issues of protecting and preserving the functions of vital organs and systems. The pharmacological aspects of organoprotection with various drugs are considered separately. In this question, α2-adrenoreceptor agonists are of the greatest interest. The study is devoted to the analysis of domestic and foreign literature covering the efficacy of using dexmedetomidine adrenergic mimetic, its mechanisms of action and organ-preventive properties in ECMO patients with organic and mental disorders. Formulated aspects need to study the use of this drug in order to prevent neurocognitive and organ dysfunction in surgical and therapeutic patients who are in intensive care units.

Keywords: organoprotection, dexmedetomidine, α2-adrenoreceptor agonists, multiple organ dysfunction, delirium

Received: 05.10.2018


  1. Wu L., Zhao H., Wang T., Pac-Soo C., Ma D. Cellular signaling pathways and molecular mechanisms involving inhalational anesthetics-induced. J. Anesth. 2014; 28(5): 740–758. DOI: 10.1007/s00540-014-1805-y.
  2. Belleville J.P., Ward D.S., Bloor C., Maze M. Effects of intravenous dexmedetomidin e in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology. 1992; 77: 1125–1133.
  3. Chen X., Hu J., Zhang C., et al. Effect and mechanism of dexmedetomidine on lungs in patients of sepsis complicated with acute respiratory distress syndrome. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018; 30(2): 151–155. DOI: 10.3760/cma.j.issn.2095-4352.2018.02.011.
  4. European Medicines Agency. European Public Assessment Report. 2016. Available from: 002268/WC500115631.pdf. Accessed 14 Nov 2016.
  5. Guo T.Z., Tinklenberg J., Oliker R., Maze M. Central alpha 1-adrenoceptor stimulation functionally antagonizes the hypnotic response to dexmedetomidine, an alpha 2-adrenoceptor agonist. Anesthesiology. 1991; 75: 252–256.
  6. Virtanen R., Savola J.M., Saano V., Nyman L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur. J. Pharmacol. 1988; 150: 9–14.
  7. Lobo F.A., Wagemakers M., Absalom A.R. Anaesthesia for awake craniotomy. Br. J. Anaesth. 2016; 116: 740–744.
  8. Riker R.R., Shehabi Y., Bokesch P.M., et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial (SEDCOM). JAMA. 2009; 301(5): 489–499.
  9. Bourenne J., Hraiech S., Roch A., et al. Sedation and neuromuscular blocking agents in acute respiratory distress syndrome. Ann. Transl. Med. 2017; 5(14): 291. DOI: 10.21037/atm.2017.07.19.
  10. Jakob S.M., Ruokonen E., Grounds R.M., et al. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012; 307(11): 1151–1160.
  11. Sulaiman S., Karthekeyan R.B., Vakamudi M., et al. The effects of dexmedetomidine on attenuation of stress response to endotracheal intubation in patients undergoing elective off-pump coronary artery bypass grafting. Ann. Card. Anaesth. 2012; 15: 39–43.
  12. Yildiz M., Tavlan A., Tuncer S., et al. Effect of dexmedetomidine on haemodynamic responses to laryngoscopy and intubation: perioperative haemodynamics and anaesthetic requirements. Drugs R.D. 2006; 7: 43–52.
  13. ЕременкоА.А., Чернова Е.В. Лечение делирия в раннем послеоперационном периоде у кардиохирургических пациентов. Анестезиология и реаниматология. 2014; 5: 30–34. [Yeremenko A.A., Chernova Ye.V. Lecheniye deliriya v rannem posleoperatsionnom iskusstve u kardiokhirurgicheskikh patsiyentov. Anesteziologiya i reanimatologiya. 2014; 5: 30–34. (In Russ)]
  14. ЕременкоА.А., Чернова Е.В. Применение дексмедетомидина для внутривенной седации и лечения делирия в раннем послеоперационном периоде у кардиохирургических пациентов. Анестезиология и реаниматология. 2013; 5: 4–7. [Yeremenko A.A., Chernova Ye.V. Primeneniye deksmedetomidina dlya vnutrivennogo sedatelʼstva i lecheniya v rannem posleoperatsionnom budushchem u kardiokhirurgicheskikh patsiyentov. Anesteziologiya i reanimatologiya. 2013; 5: 4–7. (In Russ)]
  15. Шевченко Ю.Л., Гороховатский Ю.И., Азизова О.А., Замятин М.Н. Системный воспалительный ответ при экстремальной хирургической агрессии. М.: РАЕН, 2009. [Shevchenko Yu.L., Gorokhovatskiy Yu.I., Azizova O.A., Zamyatin M.N. Sistemnyy vospalitelʼnyy otvet pri ekstremalʼnoy khirurgicheskoy agressii. Moscow: RAYEN, 2009. (In Russ)]
  16. Dahmani S., Paris A., Jannier V., et al. Dexmedetomidine increases hippocampal phosphorylated extracellular signal-regulated protein kinase 1 and 2 content by an alpha 2-adrenoceptor-independent mechanism: evidence for the involvement of imidazoline I1 receptors. Anesthesiology. 2008; 108(3): 457–466.
  17. Drummond J.C., Dao A. V., Roth D.M., et al. Effect of dexmedetomidine on cerebral blood flow velocity, cerebral metabolic rate, and carbon dioxide response in normal humans. Anesthesiology. 2008; 108(2): 225–232.
  18. Prielipp R.C., Wall M.H., Tobin J.R., et al. Dexmedetomidine-induced sedation in Volunteers decreases regional and global cerebral blood flow. Anesth. Analg. 2002; 95(4): 1052–1059.
  19. Talke P., Tong C., Lee H.W., et al. Effect of dexmedetomidine on lumbar cerebrospinal fluid pressure in humans. Anesth. Analg. 1997; 85(2): 358–364.
  20. Zhang Z., Ferretti V., Guntan I., et al. Neuronal ensembles sufficient for recovery sleep and the sedative actions of a2 adrenergic agonists. Nat. Neurosci. 2015; 18: 553–561.
  21. Virtanen R., Savola J.M., Saano V., Nyman L. Characterization of the selectivity, specificity and potency of medetomidine as an alpha 2-adrenoceptor agonist. Eur. J. Pharmacol. 1988; 150: 9–14.
  22. Abd-Ellatief R.B., Mohamed H.K., Kotb H.I. Reactive Astrogliosis in an Experimental Model of Fibromyalgia: Effect of Dexmedetomidine. Cells Tissues Organs. 2018; 205(2): 105–119. DOI: 10.1159/000488757.
  23. Reade M.C., O’Sullivan K., Bates S., et al. Dexmedetomidine vs. haloperidol in delirious, agitated, intubated patients: a randomised open-label trial. Crit. Care. 2009; 13(3): R75–R84.
  24. БершадскийФ.Ф., Улиткина О.Н., Скрипкин Ю.В., Лихванцев В.В. Седация дексмедетомидином сокращает сроки лечения делирия у пострадавших с тяжелой сочетанной травмой. Альманах клинической медицины. 2017; 45(8): 652–657. [Bershadskiy F.F., Ulitkina O.N., Skripkin Yu.V., Likhvantsev V.V. Sedatsiya deksmedetomidinom sokrashchayet sroki lecheniya s postradavshim s tyazheloy sochetannoy travmoy. Alʼmanakh klinicheskoy meditsiny. 2017; 45(8): 652–657. (In Russ)]
  25. Valitalo P.A., Ahtola-Satila T., Wighton A., et al. Population pharmacokinetics of dexmedetomidine in critically ill patients. Clin. Drug Invest. 2013; 33: 579–587.
  26. Lee S., Choi Y.S., Hong G.R., Oh Y.J. Echocardiographic evaluation of the effects of dexmedetomidine on cardiac function during total intravenous anaesthesia. Anaesthesia. 2015; 70: 1052–1059.
  27. КозловИ.А. Современные подходы к седации в отделениях реанимации и интенсивной терапии. Неотлож. Мед. 2013; 1: 22–32. [Kozlov I.A. Sovremennyye podkhody k sedatsii v otdeleniyakh reanimatsii i intensivnoy terapii. Neotlozh. Med. 2013; 1: 22–32. (In Russ)]
  28. Yoshikawa Y., Hirata N., Kawaguchi R., et al. Dexmedetomidine maintains its direct cardioprotective effect against ischemia/reperfusion injury in hypertensive hypertrophied myocardium. Anesth. Analg. 2017; 126(2): 443–452.
  29. Sun Y., Jiang C., Jiang J., et al. Dexmedetomidine protects mice against myocardium ischaemic/reperfusion injury by activating an A M PK/PI3K/Akt/eNO S pathway. Clin. Exp. Pharmacol. Physiol. 2017; 44(9): 946–953.
  30. Yang Y.F., Peng K., Liu H., et al. Dexmedetomidine preconditioning for myocardial protection in ischaemia-reperfusion injury in rats by down regulation of the high mobility group box 1-toll-like receptor 4-nuclear factor kB signalling pathway. Exp. Pharmacol. Physiol. 2017; 44(3): 353–361.
  31. Kunisawa T., Ueno M., Kurosawa A., et al. Dexmedetomidine can stabilize hemodynamics and spare anesthetics before cardiopulmonary bypass. J. Anesth. 2011; 25: 818–822.
  32. Maldonado J.R., Wysong A., van der Starre P.J.A., et al. Dexmedetomidine and the reduction of postoperative delirium after cardiac surgery. Psychosomatics. 2009; 50: 206–217.
  33. Geng J., Qian J., Cheng H., et al. The influence of perioperative dexmedetomidine on patients undergoing cardiac surgery: a meta-analysis. PLoS One. 2016; 11(4): e0152829.
  34. Kundra T.S., Nagaraja P.S., Singh N.G., et al. Effect of dexmedetomidine on diseased coronary vessel diameter and myocardial protection in percutaneous coronary interventional patients. Ann. Card. Anaesth. 2016; 19(3): 394–398.
  35. Ebert T.J., Hall J.E., Barney J.A., et al. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000; 93: 382–394.
  36. Rui S., Hong-Tao T. Dexmedetomidine as a promising prevention strategy for cardiac surgery-associated acute kidney injury: a meta-analysis. Crit. Care. 2017; 21: 198.
  37. Cozzolino M., Franci A., Peris A., et al. Weaning from extracorporeal membrane oxygenation: experience with dexmedetomidine in seven adult ARDS patients. Critical Care. 2015; 19(Suppl. 1): P485.
  38. Constantin J.M., Momon A., Mantz J., et al. Efficacy and safety of sedation with dexmedetomidine in critical care patients: a meta-analysis of randomized controlled trials. Anaesth. Crit. Care Pain Med. 2016; 35(1): 7–15.
  39. Fang X.Z., Gao J., Ge Y.L., et al. Network Meta-Analysis on the Efficacy of Dexmedetomidine, Midazolam, Ketamine, Propofol, and Fentanyl for the Prevention of Sevoflurane-Related Emergence Agitation in Children. Am. J. Ther. 2016; 23(4): e1032–e1042.
  40. Pasin L., Greco T., Feltracco P., et al. Dexmedetomidine as a Sedative Agent in Critically Ill Patients: A Meta-Analysis of Randomized Controlled Trials. PLoS One. 2013; 8(12): e82913.


Dexmedetomidine and Propofol Sedation in Carotid Endarterectomy Under Regional Anesthesia: What’s Better for the Patient? (Study of Patient Satisfaction)

D.I. Tomashchuk, D.V. Martynov, V.M. Zhenilo

Rostov State Medical University, Ministry of Healthcare of the Russian Federation, Rostov-on-Don

For correspondence: Dmitry Ivanovich Tomaschuk — Anesthesia and Intensive Care physician, Department of Anesthesiology and Intensive Care № 1, Rostov State Medical University, e-mail: 

For citation: Tomashchuk DI, Martynov DV, Zhenilo VM. Dexmedetomidine and Propofol Sedation in Carotid Endarterectomy Under Regional Anesthesia: What’s Better for the Patient? (Study of Patient Satisfaction). Intensive Care Herald. 2017;4:36–41.

Introduction. Carotid endarterectomy under regional anesthesia with sedation allows to realize dynamic neurologic monitoring. The main drawback of this approach is patient’s discomfort. Thus, qualitative sedation at the operation of carotid endarterectomy in case of regional anesthesia is necessary. The use of dexmedetomidine as a basic preparation for perioperative sedation is especially interesting as it has a unique effect on the central nervous system. Material and methods. 112 patients were involved and divided into two groups: group № 1 (propofol group) and group № 2 (dexmedetomidine group) in proportion 53 vs 59. There were no differences between the groups (p = 0.36). In the group № 1 after performing regional anesthesia we started the propofol infusion (TCI) up to the target level of 1.7 mg/ml in plasma. The patents from group № 2 began to receive dexmedetomidine at the rate from 0.2 mkg/kg/h to 0.9–1 mkg/kg/h by the end of regional anesthesia. Patient’s satisfaction with anesthesia was assessed according to their answers to the questionnaire on the next day after the operation. Results. Almost two thirds of patients, 38 people (64.40 %), from group № 2 expressed their satisfaction (13–15 points) with anesthesia they received, while in the group № 1 only 11 people (20.75 %) got 13–15 points (p < 0.0001); 37 people (69.81 %) from group № 1 got 10–12 points and 19 people (32.20 %) from group № 2 (p = 0.0001). Less than 10 points (“unsatisfied”) were given by 5 (9.43 %) patients from group № 1, and 2 (3.38 %) patients from group № 2, there are no significant differences between the groups (p = 0.3). It should be mentioned that all patients who considered their presence in the operating room to be uncomfortable (3 people) had also a low sum of points (< 10), which indicates the imperfection of the offered questionnaire. Conclusion. Though the patients who received dexmedetomidine as a sedative agent, had a less deep sedation and had more memories of DNM stage, in total showed comparative satisfaction with the group receiving propofol. Moreover, there were significantly more patients completely satisfied with anesthesia in the dexmedetomidine group.

Keywords: dexmedetomidine, carotid endarterectomy, regional anesthesia with sedation, patient satisfaction

Received: 08.11.2017


  1. Куликов А.С., Шмигельский А.В., Лубнин А.Ю. Седация дексмедетомидином при проведении каротидной эндартерэктомии в сознании. Регионарная анестезия и лечение острой боли. Т. 2013; 4: 30–34. [Kulikov A.S., Shmigel’skiy A.V., Lubnin A.Yu. Dexmedetomidine sedation for awake carotid endarterectomy. Vol. VII. 2013; 4: 30–34. (In Russ)]
  2. Licker M. Regional or general anaesthesia for carotid endarter Does it matter? European Journal of Anaesthesiology. 2016; 33: 241–243. doi: 10.1097/EJA.0000000000000376.
  3. Stoneham M.D., Stamou D., Mason J. Regional anaesthesia for carotid British Journal of Anaesthesia. 2015; 114(3): 372–383. doi: 10.1093/bja/aeu304.
  4. Wilke H.J., Ellis J.E., McKinsey J.F. Carotid endarterectomy: intraoperative anaesthesia and Journal Cardiothoracic Vascular Anaesthesia. 1996; 10: 928–949. doi: 10.1016/ s1053-0770(96)80060-7.
  5. Quigley T.M., Ryan W.R., Morgan S. Patient satisfaction after carotid endarterectomy using a selective policy of local anaesthesia. American Journal of Surgery. 2000; 179(5): 382–385. doi: 1016/s0002-9610(00)00371-8.
  6. McCarthy J., Trigg R., John C., Gough M.J., Horrocks M. Patient satisfaction for carotid endarterectomy performed under local anaesthesia. European Journal Vascular Endovascular Surgery. 2004; 27(6): 654–659. doi: 10.1016/j.ejvs.2004.03.010.
  7. Attigah N., Kutter J., Demirel S., Hakimi M., Hinz U. et al. Assessment of patients satisfaction in carotid surgery under local anaesthesia by psychometrical testing. A prospective cohort study. European Journal Vascular Endovascular Surgery. 2011; 41(1): 76–82. doi: 1016/j.ejvs.2010.08.020.
  8. Marcucci G., Siani A., Accrocca F., Gabrielli R., Giorda- no A. et al. Preserved consciousness in general anesthesia during carotid endarterectomy: a six-year experience. Interactive Cardiovascular Thoracic Surgery Journal [Internet]. 2011; 13(6): 601–605. doi: 1510/icvts.2011.280321.
  9. Martin E., Ramsay G., Mantz J., Sum-Ping S.T. The role of the a2-adrenoceptor agonist dexmedetomidine in postsurgical sedation in the intensive care unit. Journal Intensive Care Med. 2003; 18: 29–41. doi: 1177/0885066602239122.
  10. Venn R.M., Grounds R.N. Comparison between dexmedetomidine and propofol for sedation in the intensive care unit: Patient and clinician perceptions. British Journal of Anesthesia. 2001; 87: 684–690. doi: 1093/bja/87.5.684.
  11. Ebert T.J., Hall J.E., Barney J.A., Uhrich T.D., Colinco M.D. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000; 93: 382–394. doi: 1097/00000542-200008000-00016.
  12. Hall J.E., Uhrich T.D., Barney J.A., Arain S.R., Ebert T.J. Sedative, amnestic, and analgesic properties of small-dose dexmedetomidine Anesthesia Analgesia. 2000; 90: 699–705. doi: 10.1097/00000539-200003000-00035.
  13. Ji F., Li Z., Nguyen H., Young N., Shi P., Fleming N. et al. Perioperative dexmedetomidine improves outcomes of cardiac surgery. 2013; 128: e339–e340. doi: 10.1161/CIR- CULATIONAHA.113.005450.
  14. Benggon M., Chen H., Applegate R., Martin R., Zhang J.H. Effect of dexmedetomidine on brain edema and neurological outcomes in surgical brain injury in rats. Anesthesia Analgesia. 2012; 115: 154–159. doi: 1213/ANE.0b013e31824e2b86.
  15. Zhu Y.M., Wang C.C., Chen L., Qian L.B., Ma L.L .et a Both PI3K/Akt and ERK1/2 pathways participate in the protection by dexmedetomidine against transient focal cerebral ischemia/reperfusion injury in rats. Brain. Res. 2013; 1494: 1–8. doi: 10.1016/j.brainres.2012.11.047.

Modern Possibilities of Safe Use of Dexmedetomidine in Premedication for Endoscopic Cholecystectomy

I.Z. Kitiashvili1,2, V.Yu. Kireev1,2, S.V. Сhukarev1, D.I. Kitiashvili1, A.A. Salo1, I.I. Timirbulatov1

1 Astrakhan State Medical University Russian Ministry of Health, Astrakhan

2 Occupational Health Facility, Astrakhan 

For correspondence: I.Z. Kitiashvili — MD, professor, head of Department of Anesthesiology and Intensive Care of State Budget Educational Institution of Higher Professional Education “The Astrakhan State Medical University”, Astrakhan; e-mail:

For citation: Kitiashvili IZ, Kireev VYu, Сhukarev SV, Kitiashvili DI, Salo AA, Timirbulatov II. Modern Possibilities of Safe Use of Dexmedetomidine in Premedication for Endoscopic Cholecystectomy. Intensive Care Herald. 2017;3:42–47. 

Study objective. To assess the clinical efficacy of dexmedetomidine as part of a premedication protocol for elective laparoscopic surgery. Study design. This was a prospective, comparative, randomized study. Materials and methods. Patients undergoing elective laparoscopic cholecystectomy (n = 70) were divided into two groups. In Group I (n = 32) patients were given dexmedetomidine as a 1-hour intravenous infusion (4.0 μg/mL; 1.0 μg/kg/h) before anesthesia induction. In Group II (n = 38) patients received diazepam (10 mg) as an intramuscular injection 30 minutes before anesthesia induction. The following clinical and laboratory parameters were monitored during the perioperative period: peripheral hemodynamics, respiratory rate, saturation levels, arterial blood gases and acid-base status, serum glucose and cortisol. Time to post-anesthesia recovery was also evaluated. Study results. Monitoring of the parameters of peripheral hemodynamics, saturation levels, glycemia, arterial blood gases and acid-base status did not reveal any significant differences between the groups. In Group I, the following parameters differed from those in Group II with a significance level p < 0.05: time to full emergence (4.1 ± 1.1 vs. 12.2 ± 1.2 min), frequency of nausea and vomiting (2.6 % vs. 37.5 %), and frequency of chills and shivering (5.3 % vs. 46.9 %). Conclusion. Premedication with infusion of dexmedetomidine has no effect on hemodynamics or gas exchange, pro- vides good protection from stress, and ensures earlier emergence than conventional premedication with diazepam.

Keywords: premedication, dexmedetomidine, diazepam

Received: 28.02.2017


  1. Заболотских И.Б., Малышев Ю.П. На пути к индивидуальной премедикации. Петрозаводск: ИнтелТек; [Zabo- lotskih I.B., Malyshev Ju.P. On the way to personalized premedication. Petrozavodsk: IntelTek, 2006. (In Russ)].
  2. Finley G.A., Stewart S.H., Buffett-Jerrott S. et al. High levels of impulsivity may contraindicate midazolam premedication in children. Can. J. Anesth. 2006; 53(1): 73–78.
  3. Pekcan M., Celebioglu B., Demir B. et al. The effect of premedication on preoperative Middle East J. Anaesthesiol. 2005; 18(2): 421–433.
  4. Китиашвили И.З., Власов А.С., Парфенов Л.Л. и др. Влияние различных методов анестезии на эндокринно-метаболическое звено хирургического стресс-ответа при гистерэктомии. Регионар. анестезия и лечение острой боли. 2010; 4(3): 18–26. [Kitiashvili I.Z., Vlasov A.S., Parfenov L.L. et al. Effect of different methods of anesthesia on the endocrine-metabolic link of the surgical stress response by cystectomy. Regional anesthesia and treatment of acute pain. 2010; 4(3): 18–26. (In Russ)].
  5. Баланин В.В., Горобец Е.С. Первый опыт безопиоидной анестезии/анальгезии и седации на основе дексмедетомидина при онкологических операциях на голове и шее у больных с «трудными» дыхательными путями. Вестник анестезиологии и реаниматологии. 2013; 5: 9–12. [Balanin V., Gorobets E.S. The first experience nonopioid anesthesia/analgesia and sedation with dexmedetomidine-based oncological operations on the head and neck in patients with ‘difficult’ airways. Vestnik anesteziologii i reanimatologii. 2013; 5: 9–12. (In Russ)].
  6. Гурьянов В.А., Чурадзе Б.Т., Севалкин С.А. и др. Перспективы использования дексмедетомидина с позиции концепции “fast track surgery”. Вестник анестезиологии и реаниматологии. 2014; 4: 51–8. [Gur’yanov A., Churadze B.T., Sevalkin S.A. et al. Prospects for the use of dexmedetomidine from the perspective of the concept of “fast track surgery”. Vestnik anesteziologii i reanimatologii. 2014; 4: 51–58. (In Russ)].
  7. Huupponen E., Maksimow A., Lapinlampi et al. Electroencephalogram spindle activity during dexmedetomidine sedation and physiological sleep. Acta Anaesthesiol. Scand. 2008; 52(2): 289–294.
  8. Nelson L.E., Lu J., Guo et al. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology. 2003; 98(2): 428–436.
  9. Jakob S.M., Ruokonen E., Grounds R. M. et al.; Dexmedetomidine for Long-Term Sedation Investigators. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA. 2012; 307(11): 1151–1160.
  10. Ruokonen E., Parviainen I., Jakob S.M. et al. “Dexmedetomidine for Continuous Sedation” Investigators. Dexmedetomidine versus propofol/midazolam for long-term sedation during me- chanical ventilation. Intensive Care Med. 2009; 35(2): 282–290.
  11. Ebert , Maze M. Dexmedetomidine: another arrow for the clinician’s quiver. Anesthesiology. 2004; 101(3): 568–570.
  12. Shehabi , Ruettimann U., Adamson H. et al. Dexmedetomidine infusion for more than 24 hours in critically ill patients: sedative and cardiovascular effects. Intensive Care Med. 2004; 30(12): 2188–2196.
  13. Talke , Richardson C.A., Scheinin M., Fisher D.M. Postoperative pharmacokinetics and sympatholytic effects of dexmedetomidine. Anesth. Analg. 1997; 85(5): 1136–1142.
  14. Ebert J., Hall J.E., Barney J.A. et al. The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology. 2000; 93(2): 382–394.
  15. Venn M., Karol M.D., Grounds R.M. Pharmacokinetics of dexmedetomidine infusions for sedation of postoperative patients requiring intensive care. Br. J. Anaesth. 2002; 88(5): 669–675.

Syndrome of Postnarcosis Excitation and its Prophylaxis in Anesthesia with Sevoflurane in Pediatric Oncology

S.V. Tumanyan, E.Yu. Semiletkina, D.A. Rozenko

Rostov Research Oncology Institute, Russian Federation Ministry of Healthcare of the Russian Federation, Rostov-on-Don

For correspondence: Tumanyan Sergey Vartanovich — MD, professor, head of the Department of Anesthesiology and Reanimatology of the Rostov Research Oncology Institute, Federal Ministry of Health, Rostov-on-Don; e-mail:

For citation: Tumanyan SV, Semiletkina EYu, Rozenko DA. Syndrome of Postnarcosis Excitation and Its Prophylaxis in Anesthesia with Sevoflurane in Pediatric Oncology. Intensive Care Herald. 2017;2:31–36.

Sevoflurane is the «gold standard» in pediatric anesthesia, because Does not irritate the upper respiratory tract, has a cardioprotec- tive effect, is easily controlled. Along with this, sevoflurane also has side effects, of which the most interesting is the syndrome of post- narcotic excitement, expressed by expressed anxiety, motor excitement, negativism. For its prevention, dexmedetomidine can be used. The goal is to select the optimal method of prevention of post-nasal exacerbation syndrome (SPNV) in young children with oncological pathology with sevoflurane inhalation anesthesia. Materials and methods. 90 children with oncological pathology aged from 1 year to 4 years, body weight from 9 to 18 kg, physical status according to ASA II–III were examined. Depending on the method of prevention of SPNV, children were divided into three groups: 1st group of children who had undergone sevoflurane inhalation anesthesia; 2nd group of children who, after anesthesia with sevoflurane, received propofol, 3rd group — children who, prior to anesthesia with sevoflurane, intranasally injected dexmedetomidine. Conclusions. Administration of propofol at the end of inhalation with sevoflurane prevents the development of SPNV in children in 82.8% of cases, prolongs the phase of medicamentous sedation, reduces hypersympathicoto- nia. Short-term depression of respiration in response to the administration of propofol requires 100 % oxygen inhalation. Intranasal administration of dexmedetomidine 30 minutes prior to the onset of anesthesia prevents the development of SPNV in children after inhalation anesthesia with sevoflurane in 90% of cases.

Keywords: postnarcosis excitation syndrome, children, dexmedetomidine, sevoflurane, oncology

Received: 10.03.2017


  1. Сидоров В.А., Цыпин Л.Е., Гребенников В.А. Ингаляционная анестезия в педиатрии. М.: Медицинское информационное агентство, 2010: 65–68. [Sidorov A., Tsypin L.E., Grebennikov V.A. Ingalatsionnaya anesteziya v pediatrii. Moscow: MIA, 2010: 65–68. (In Russ)]
  2. Лазарев В.В., Цыпин Л.Е. Синдром постнаркозного возбуждения при ингаляционной анестезии севофлураном у детей. Анестезиология и реаниматология. 2010; 1: 62–66. [Lazarev V.V., Tsypin L.E. Sindrom postnarkoznogo vozbuzhdeniya pri ingalyztsionnoi anestezii sevofluranom u detei. Anest. i reanimat. 2010; 1: 62–66. (In Russ)]
  3. Сабинина Т.С., Губайдуллин Р.Р., Пасечник И.Н. и др. Методы профилактики постнаркозного возбуждения после анестезии севофлураном. Современное состояние проблемы. В сб.: Х науч.-практ. конф. «Безопасность больного в анестезиологии и реаниматологии». М., 2012. [Sabinina S., Gubaydullin R.R., Pasechnik I.N. et al. Metody profilaktiki postnarkosnogo vozbuzhdeniya posle anestezii sevofluranom. Sovremennoe sostoyanie problemy. In: Х nauch-prakt. conf. «Bezopasnost’ bol’nogo v anesteziologii i reanimatologii». Mos- cow, 2012. (In Russ)]
  4. Cravero P., Beach M., Dodgt C.P., Whalen K. Emergence characteristics of sevoflurane compared to halothane in pediatric patients undergoing bilateral pressure equalization tube insertion. J. Clin. Anaesth. 2000; 12(5): 397–401.
  5. Цыпин Л.Е., Лазарев В.В., Корсунский А.А. и др. Ингаляционный наркоз севораном (севофлураном) у детей (Медицинская технология): методич. пособие. М.: Изд-во РГМУ, [Tsypin L.E., Lazarev V.V., Korsunskiy A.A. et al. Ingalyatsionvyi narkoz sevoranom (sevofluranom) u detei (Meditsinskaya tehnologiya): metodich. posobie. Moscow: RGMU, 2008. (In Russ)]
  6. Игнатенко Д.Ю., Уткин С.И. Профилактика синдрома возбуждения при анестезии севофлураном в детской офтальмохирургии. В сб.: Федоровские чтения — VIII Всероссийская науч.-практ. конф. с международным участием. Сб. тезисов по материалам конф.: под ред. Х.П. Тахчиди. М., 2009. [Ignatenko D.Yu., Utkin S.I. Profilaktika sindroma vozbu- zhdeniya pri anestezii sevofluranom v detskoi oftal’mohirurgii. In: Fedorovskie chteniya — 2009. VIII Vserossiiskaya nauch.-pract. conf. s mezhdunarodnym uchastiem. Sb. tezisov po materialam conf.: ed.: Kh.P. Takhchidi. Moscow, 2009. (In Russ)]
  7. Bakhamees H.S., Mercan A., El-Halafawy M. Combination effect of low dose fentanyl and propofol on emergence agitation in children following sevoflurane anesthesia. Saudi Med. J. 2009; 30(4): 500–503. doi: 10.1097/MEG.0000000000000751.
  8. Abu-Shahwan I., Chowdary K. Ketamine is effective in decreasing the incidence of emergence agitation in children undergoing dental repair under sevoflurane general anesthesia. Paediatr. Anaesth. 2007; 17(9): 846–850. doi: 1111/j.1460- 9592.2007.02298.x.
  9. Shibata S., Shigeomi S., Sato W., Enzan K. Nitrous oxide administration during washout of sevoflurane improves postanesthetic agitation in J. Anesth. 2005; 19(2): 160–163. doi: 10.4097/kjae.2014.66.1.34.
  10. Kulka J., Bressem M., Tryba M. Clonidine Prevents Sevoflurane-Induced Agitation in children. Anesth. Analg. 2001; 93(2): 335–338. doi: 10.1038/srep36553.
  11. Ibacache M.E., Muzon H.R., Brandes Single-dose dexmedetomidine reduces agitation after sevoflurane anesthesia in children. Anest. Analg. 2004; 98: 60–3.
  12. Цейтлин А.М. Применение пропофола в нейроанестезиологии. Российский журнал анестезиологии и интенсивной терапии. 1999; 1: 21–22. [Tseytlin A.M. Primenenie propofola v Rossiiskii zhurnal anesteziologii i intensivnoi terapii. 1999; 1: 21–22. (In Russ)]
  13. Шпанер Р.Я., Баялиева А.Ж. Влияние ингаляционного анестетика (севофлурана) и пропофола на внутричерепное давление при нейрохирургических вмешательствах. Российская нейрохирургия. 2009; 1: [Shpaner R.Ya., Bayalieva A. Zh. Vliyanie ingalatsionogo anestetika (sevoflurana) i propofola na vnutricherepnoe davlenie pri neirohirurgicheskih vmeshatel’stvah. Rossiiskaya neirohirurgiya. 2009; 1: 94. (In Russ)]
  14. Isik B., Arslan M., Tunga D. et al. Dexmedetomidine decreases emergence agitation in pediatric patients after sevoflurane anesthesia without surgery. Paediatr. Anaesth. 2006; 16: 748– 753. doi: 10.1111/j.1460-9592.2006.01845.x.
  15. Meng T., Xia Z.Y., Luo T. et al. Dexmedetomidine reduces emergence agitation after tonsillectomy in children by sevoflurane anesthesia: a case-control study. Int. J. Paediatr. Otorhinolaryngol. 2012; 76: 1036–1041. doi: 10.1016/j.ijporl.2012.03.028.
  16. Дексдор (Дексмедетомидин): монография по препарату. М.: Orion Pharma, 2015: 13–14. [Deksdor (Deksmedetomidin): monografiya po Moscow: Orion Pharm, 2015: 13–14. (In Russ)]
  17. Afonso J., Reis F. Dexmedetomidine: current role in anesthesia and intensive Rev. Bras. Anestesol. 2012; 62(1): 118–133. doi: 10.1016/S0034-7094(12)70110-1.
  18. Neema K. Dexmedetomidine in pediatric cardiac anesthesia. Ann. Card. Anaesth. 2012; 15(3): 177–179. doi: 10.4103/0971- 9784.97972.
  19. Talke , Tayefeh F., Sessler D.I. et al. Dexmedetomidine does not alter the sweating threshold, but comparably and linearly decreases the vasoconstriction and shivering thresholds. Anesthesiology. 1997; 87(4): 835–841.
  20. Cheung C.W., Ng F., Lui J. et al. Analgesic and sedative effects of intranasal dexmedetomidine in third molar surgery under local anaesthesia. Br. J. Anaesth. 2011; 107: 430–437. doi: 10.1093/bja/aer164.
  21. Tobias D., Gupta P., Naguib A., Yates A.R. Dexmedetomidine: applications for the pediatric patient with congenital heart disease. Pediatr. Cardiol. 2011; 32(8): 1075–1087. doi: 10.1007/ s00246-011-0092-8.
  22. Sacurai , Obata T., Odaca A. et al. Buccal administration of dexmedetomidine as a preanesthetic in children. J. Anesth. 2010; 24: 49–53. doi: 10.1007/s00540-009-0863-z.
  23. Гуревич К.Г. Разработка систем интраназальной доставки лекарственных средств. Качественная клиническая практика. 2002; 1: 2–5. [Gurevich K.G. Razrabotka sistem intra- nazal’noi dostavki lekarstvennyh sredstv. Kachestvennaya klinicheskaya praktika. 2002; 1: 2–5. (In Russ)]

Varied Anesthesia Depending on Autonomic Tone During Laparoscopic Surgery

P.A. Volkov1,2, V.A. Guryanov1

1 Chair of Anesthesiology and Critical Care, State Federal-Funded Educational Institution of Higher Professional Training, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow

2 Closed Joint Stock Company Medical Rehabilitation Unit «Clinic K+31», Moscow

For correspondence: Pavel Aleksandrovich Volkov — anesthesiologist-resuscitator of Department of anesthesiology and reanimatology, JSC Inter Regional Center «Klinka K+31», Moscow; e-mail:

For citation: Volkov PA, Guryanov VA. Varied Anesthesia Depending on Autonomic Tone During Laparoscopic Surgery. Intensive Care Herald. 2017;2:26–30.

Adequacy of nonspecific perioperative adaptive reactions of the adaptation syndrome, in the first place, depends on the initial state and interaction of the autonomic nervous system. The satisfactory state of the regulation of physiological system, based on the principles of functional synergy and the relative antagonism of its sympathetic and parasympathetic components, can easily be disrupted by unbalanced pharmacological effects during anesthesia. As a result of autonomic dysfunction, regardless of the cause of its development, the initial or iatrogenic, adaptation failure may occur with the development of hemodynamic changes and postoperative complications. Recently, the number of publications by domestic and foreign authors that demonstrate the advantages of intraoperative use of a new selective alpha2-adrenoagonist drug, dexmedetomidine, has significantly increased. Nevertheless, the appointment of a drag with such pronounced effect on the autonomic nervous system, without regard to the initial vegetative status, can lead to catastrophic consequences. We conducted a comparative analysis of the relationship between changes in hemodynamic parameters and vegetative status during balanced anesthesia, where dexmedetomidine was used as part of the analgesia component. It has been shown that cholinolytic premedication and a decrease in the rate of dexmedetomidine administration in patients with parasympatotonia not only allow to avoid a decrease in the cardiac index during the operation, but also are accompanied by a physiologically more beneficial redistribution of blood circulation determinants. In addition, the results of the work indicate an unchanged quality of analgesia in the case of a decrease in the dose of dexmedetomidine in patients with parasympatotonia.

Keywords: autonomic nervous system, dexmedetomidine, multimodal analgesia

Received: 15.01.2017


  1. Носырев С.П., Коваленко А.Н. Основания анестезиологии и реаниматологии. М.: Ключ-С, 2014. [Nosyrev P., Kovalenko A.N. Osnovanija anesteziologii i reanimatologii. Moscow: Kljuch-S Publ.; 2014. (In Russ)]
  2. Оболенский С.В., Лебединский К.М., Шавель А.Г. и др. Анестезиологическое обеспечение эндовидеохирургических операций. В кн.: Видеоэндоскопические вмешательства на органах живота, груди и забрюшинного пространства: Под ред. А.Е. Борисова. СПб.: ЭФА, 2002: 25–47. [Obolenskii S.V., Lebedinskii K.M., ShavelA.G. et al. Anesteziologicheskoe obespechenie endovideohirurgicheskih operatsii. In: Borisov A.E. Videojendoskopicheskie vmeshatel’stva na organah zhivota, grudi i zabrjushinnogo prostranstva. St.-Petersburg: EFA; 2002: 25–47. (In Russ)]
  3. Гурьянов В.А. Современная многокомпонентная сбалансированная анестезия: оптимизация оценки операционноа- нестезиологического риска, предоперационной подготовки и компонента аналгезии: Дис. … д-ра мед. наук. М., 2003. [Gurjanov V.A. Sovremennaja mnogokomponentnaja sbalan- sirovannaja anestezija: optimizacija ocenki operacionno-anesteziologicheskogo riska, predoperacionnoj podgotovki i komponenta analgezii [dissertation]. Moscow, (In Russ)]
  4. Piao G., Wu J. Systematic assessment of dexmedetomidine as an anesthetic agent: a meta-analysis of randomized controlled trials. Arch. Med. Sci. 2014; 10(1): 19–24. doi: 5114/ aoms.2014.40730.
  5. Blaudszun G., Lysakowski C., Elia N., Tramer R. Effect of perioperative systemic α2-agonists on postoperative morphine consumption and pain intensity: systematic review and meta-analysis of randomized controlled trials. Anesthesiology. 2012; 116(6): 312–322. doi: 10.1097/ALN.0b013e31825681cb.
  6. Микаелян К.П. Дифференцированная премедикация и вводная анестезия с учетом вегетативного статуса при операциях на позвоночнике: Автореф. дис. … канд. мед. наук. М., 2013. [Mikaeljan K.P. Differencirovannaja premedikacija i vvodnaja anestezija s uchetom vegetativnogo statusa pri operacijah na pozvonochnike [dissertation]. Moscow, (In Russ)]
  7. Hofman M.A., Swaab D.F. Living by the clock: The circadian pacemaker in older people. Ageing Res. 2006; 5: 33–51. doi: 10.1016/j.arr.2005.07.001.
  8. MacDonald E., Kobilka B.K., Scheinin M. Gene targeting — homing in on alpha2-adrenoceptor-subtype function. Trends Pharmacol. Sci. 1997; 18(6): 211–219.
  9. Overland A.C., Kitto F., Chabot-Dore A.J. et al. Protein kinase C mediates the synergistic interaction between agonists acting at alpha2-adrenergic and delta-opioid receptors in spinal cord. J. Neurosci. 2009; 29(42): 13264–13273. doi: 10.1523/ JNEUROSCI.1907-09.2009.
  10. Карелов А.Е., Лебединский К.М. Анальгетические адъюванты или альтернативные анальгетики? Вестн. анестезиол. и реаниматол. 2013; 6: 72–80. [Karelov A.E., Lebedinskii K.M. Anal’geticheskie ad’juvanty ili alternativnye anal’getiki? anesteziol. i reanimatol. 2013; 6: 72–80. (In Russ)]

Dexmedetomidine as the Component of Multimodal Analgesia in Vitreoretinal Surgery

V.V. Berlinsky, V.Yu. Maksimov, L.A. Chumakov, S.A. Kozlov

State autonomous healthcare institution of Saratov region, Regional Ophthalmologic Hospital, Saratov 

For correspondence: Berlinsky Vadim Viktorovich — Candidate of Medical Sciences, Head of department of anaesthesiology and intensive care, State autonomous healthcare institution of Saratov region «Regional Ophthalmologic Hospital», Saratov; anaesthetist and expert in resuscitation, Clinical Hospital n.a. S.R. Mirotvortsev of Saratov State Medical University, Saratov; e-mail:

For citation: Berlinsky VV, Maksimov VYu, Chumakov LA, Kozlov SA. Dexmedetomidine as the Component of Multimodal Analgesia in Vitreoretinal Surgery. Intensive Care Herald. 2017;1:28–31.

The study of efficacy and safety of using of the dexmedetomidine related to the group of central agonists of α2-adrenoceptor as the component of multimodal analgesia in vitreoretinal surgery was carried out. For this purpose 2 groups of patients after vitreoretinal surgical interventions were examined prospectively. Evaluation of anesthesia adequacy was performed using the following parameters: depth of sedation level and consciousness depression, which were estimated by means of Richmond Agitation-Sedation Scale. The degree of collaboration with physician was also evaluated. Monitoring of arterial pressure, heart rate, respiratory rate and SpO2 were conducted. Assessment of pain syndrome was performed with use of verbal descriptive scale of pain intraoperatively and at early postoperative period. The perioperative consumption of fentanyl was taken into consideration. Analysis of the results allowed to conclude that the usage of dexmedetomidine reduced perioperative consumption of opioid analgesics and severity of hemodynamic responses, it helped to maintain consciousness at a comfortable level both for patients and operators.

Keywords: dexmedetomidine, multimodal analgesia, agonist α2-adrenoceptor, anesthesia in ophthalmosurgery

Received: 26.01.2017


  1. Ashburh M.A., Caplan R.A., Carr D.B. et al. Practice guidelines for acute pain management in the perioperative setting: an updated report by the American Society of Anesthesiologists task force on acute pain management. 2004; 100(6): 1573–1581.
  2. Овечкин А.М. Седация в интенсивной терапии. Вестник интенсивной терапии. 2009; 1: 21–26. [OvechkinA.M. Sedatsiya v intensivnoy terapii. Vestnik intensivnoy terapii. 2009; 1: 21–26. (In Russ)]
  3. Тахчиди Х.П., Сахнова С.Н., Мясникова В.В. и др. Анестезия в офтальмологии. М.: МИА, 2007. [Takhchidi Kh.P., Sakhnova S.N., Myasnikova V.V. et al. Anesteziya v oftal’mologii. M.: MIA, 2007. (In Russ)]
  4. Sessler C.N., Gosnell M.S., Grap J. et al. The Richmond Agitation-Sedation Scale. Validiti and Realiabiliti in Adult intensive Care Unit Patients. Am. J. Respir. Crit. Care Med. 2002; 166(10): 1338–1344.
  5. Александрович Ю.С., Гордеев В.И. Оценочные и прогностические шкалы в медицине критических состояний. СПб.: Элби-СПб, 2010. [Aleksandrovich Yu.S., Gordeyev V.I. Otsenochnyye i prognosticheskiye shkaly v meditsine kriticheskikh sostoyaniy. Saint-Petersburg: Elbi-SPb, 2010. (In Russ)]
  6. Жданов Г.Г., Харитонова Е.Б. Клофелин как компонент общей и регионарной анестезии. Саратовский научно-медицинский журнал. 2009; 5(1): 115–118. [Zhdanov G.G., Kharitonova E.B. Klofelin kak komponent obshchey i regionarnoy anestezii. Saratovskiy nauchno-meditsinskiy zhurnal. 2009; 5(1): 115–118. (In Russ)]

Stress response during combined anaesthesia xenon and dexmedetomidine in radical surgery for gastric cancer

V.V. Faltin, S.V. Avdeev, S.G. Afanasiev, K.V. Shalygina, I.P. Puteev

Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk

For correspondence: Vladimir V. Faltin — junior researcher of the Department of anesthesiology and critical care of the Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences; e-mail:

For citation: Faltin VV, Avdeev SV, Afanas’ev SG, et al. Stress response during combined anaesthesia xenon and dexmedetomidine in radical surgery for gastric cancer. Alexander Saltanov Intensive Care Herald. 2018;2:40–5.

DOI: 10.21320/1818-474X-2018-2-40-45

The prospective randomized study included 53 patients with operable II–III stage gastric cancer. The age range was from 26 to 75 years. The patients underwent gastrectomy (n = 21) and subtotal distal gastrectomy (n = 32). The study group comprised 27 patients who received anesthesia with xenon and dexmedetomidine combined with epidural analgesia. The control group consisted of 26 patients who received anesthesia with sevoflurane in combination with epidural analgesia. The effectiveness of the compared methods of anesthesia was assessed by the parameters of hemodynamic, oxygenation, hormone level and cytokine profile. In the perioperative period, the combination of xenon and dexmedetomidine in combination with epidural analgesia was characterized by significant inhibition of systemic inflammatory reactions and a lower release of stress hormones as components of a surgical stress response. The use of the combination of xenon and dexmedetomidine during surgery for gastric cancer provides a more adequate course of the perioperative period.

Keywords: xenon, dexmedetomidine, a cytokine, surgical stress, stomach cancer

Received: 20.03.2017


  1. Desborough J.P. The stress response to trauma and surgery. British Journal of Anaesthesia. 2000; 85(1): 109–117.
  2. Fahlenkamp A.V., Coburn M., Rossaint R., et al. Comparison of the effects of xenon and sevoflurane anaesthesia on leucocyte function in surgical patients: a randomized trial. British Journal of Anaesthesia. 2014; 112(2): 272–280.
  3. Kvarnström A., Swartling T., Kurlberg G., et al. Pro-inflammatory cytokine release in rectal surgery: comparison between laparoscopic and open surgical techniques. Archivum Immunologiae et Therapiae Experimentalis. 2013; 61(5): 407–411.
  4. Chattopadhyay U., Mallik S., Ghosh S., et al. Comparison between propofol and dexmedetomidine on depth of anesthesia: A prospective randomized trial. Journal of Anaesthesiology, Clinical Pharmacology. 2014; 30(4): 550–554.
  5. Gutierrez T., Hornigold R., Pearce A. The systemic response to surgery. Surgery (Oxford). 2011; 29(2): 93–96.
  6. Bugada D., Ghisi D., Mariano E.R. Continuous regional anesthesia: a review of perioperative outcome benefits. Minerva Anestesiologica. 2017; 83: 1089–1100.
  7. Soliz J.M., Ifeanyi I.C., Katz M.H., et al. Comparing Postoperative Complications and Inflammatory Markers Using Total Intravenous Anesthesia Versus Volatile Gas Anesthesia for Pancreatic Cancer Surgery. Anesthesiology and Pain Medicine. 2017; 7(4): e13879.
  8. Franks N.P. Molecular targets underlying general anesthesia. British Journal of Anaesthesia. 2006; 147(1): 72–81.
  9. Куликов А.Ю., Кулешов О.В., Лебединский К.М. Влияние анестезии ксеноном на гемодинамику: что нам известно к 2015 г. Анестезиология и реаниматология. 2015; 60(6): 71–74. [Kulikov A.Y., Kuleshov O.V., Lebedinskii K.M. Effects of xenon anesthesia on hemodynamics: what do we know until 2015? Anesteziologiia i reanimatologiia. 2015; 60(6): 71–74. (In Russ)]
  10. Cruickshank A.M., Fraser W.D., Burns H.J., et al. Response of serum interleukin-6 in patients undergoing elective surgery of varying severity. Clinical Science. 1990; 79: 161–165.
  11. Vacas S., Degos V., Feng X., et al. The neuroinflammatory response of postoperative cognitive decline. British Medicine Bulletin. 2013; 106: 161–178.