Influence of decompression and stabilization operations on the duration of hemodynamic support in patients with acute complicated injury of the cervical spine

I.A. Statsenko1, M.N. Lebedeva1, A.V. Palmash1, S.A. Pervukhin1, V.V. Rerikh1, V.L. Lukinov2,3

1 Novosibirsk Research Institute of Traumatology and Orthopaedics n.a. Ya.L. Tsivyan, Novosibirsk

2 Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk

3 Novosibirsk National Research State University, Novosibirsk

For correspondence: Ivan A. Statsenko, anesthesiologist-reanimatologist, Department of reanimation and intensive care, Novosibirsk Research Institute of Traumatology and Orthopaedic n.a. Ya.L. Tsivyan, Novosibirsk; e-mail: stacenko_i@mail.ru

For citation: Statsenko IA, Lebedeva MN, Palmash AV, Pervukhin SA, Rerikh VV, Lukinov VL. Influence of decompression and stabilization operations on the duration of hemodynamic support in patients with acute complicated injury of the cervical spine. Alexander Saltanov Intensive Care Herald. 2019;1:85–93.

DOI: 10.21320/1818-474X-2019-1-85-93


Complicated injury of the cervical spine is accompanied by a violation of blood circulation. This condition requires maintaining adequate perfusion pressure in order to prevent secondary damage to the spinal cord and multiple organ failure. The authors did not evaluate the effect of the urgency of spinal decompression on the severity and duration of systemic hypotension in this category of patients previously, as well as the presence of a connection between systemic hypotension and the outcome of the injury.

Objective. To determine the effect of early decompression of the spinal cord on the duration and characteristics of adrenomimetics use in the bundle of intensive care measures in the acute period of complicated injury to the cervical spine.

Material and Methods. A retrospective analysis of the treatment outcomes in 27 patients with complicated ASIA A cervical spine injury was conducted. Two groups were identified: Group I included 13 patients operated on within the first eight hours from the moment of injury; and Group II — 14 patients operated on within the period from eight to 72 hours. The analyzed parameters were: age, hemodynamic parameters, severity of organ dysfunction, duration of hemodynamic support, neurological status, time spent in intensive care unit, and length of hospital stay. Central hemodynamic parameters were registered using the impedance cardiography technique. To assess organ dysfunction, the SOFA score was used.

Results. Complicated injury of the cervical spine is accompanied by a decrease in systemic vascular resistance and cardiac index. Hemodynamic parameters and duration of hemodynamic support in groups were not statistically different. Statistically significant differences in the SOFA score between groups were obtained on the third and 10th day of the follow-up. Neurogenic shock was recorded in 70.4 % of cases. Positive dynamics of neurological deficit was observed only in two (15.4 %) patients of Group I.

Conclusion. The urgency of spinal decompression does not affect the duration of hemodynamic support, but reduces the severity of organ dysfunction and increases the risk of neurological disorder regression.

Keywords: spinal injury, spinal cord injury, spinal cord decompression, hemodynamics, adrenomimetics, neurological disorders

Received: 29.01.2019


References

  1. Пташников Д.А. Спинальный шок, нейрогенный шок: диагностика, корреляционные связи между тяжестью ПСМТ и функциональными исходами. В кн.: Колесов С.В., Пташников Д.А., Швец В.В. Повреждения спинного мозга и позвоночника. Под ред. Миронова С.П. Гл. 5. М.: Авторская Академия, 2018: 44–55.
  2. [Ptashnikov D.A. Spinal shock, neurogenic shock: diagnosis, correlation between the severity of SCI and functional outcomes. In: Kolesov S.V., Ptashnikov D.A., Shvets V.V. Injuries to the Spinal Cord and Spine. Ed. by Mironov S.P. Ch. 5. Moscow: Authors Academy, 2018: 44–55. (In Russ)]
  3. Редкокаша Л.Ю., Лукашов К.В., Чепишко С.Я и др. Общие закономерности гемодинамических нарушений в остром периоде позвоночно-спинномозговой травмы на шейном уровне. Общая реаниматология. 2005; 1(4): 9–22.
  4. [Redkokasha L.Yu., Lukashov K.V., Chepishko S.Ya., et al. General trends in hemodynamics in acute vertebrocerebrospinal injury at the cervical level. General Reanimatology. 2005; 1(4): 19–22. (In Russ)]
  5. Taylor M.P., Wrenn P., OʼDonnell A.D. Presentation of neurogenic shock within the emergency department. Emerg. Med. J. 2017; 34(3): 157–162. DOI: 10.1136/emermed-2016-205780
  6. Frisbie J.H. Breathing and the support of blood pressure after spinal cord injury. Spinal Cord. 2005; 7(43): 406–407. DOI: 10.1038/sj.sc.3101732
  7. Кан С.Л., Чурляев Ю.А. Интенсивная терапия тяжелой позвоночно-спинномозговой травмы (обзор литературы). Политравма. 2007; 2: 67–75.
  8. [Kan S.L., Churljaev J.A. Intensive care of the spinal cord injury (the review of the literature). Polytrauma. 2007; 2: 67–75. (In Russ)]
  9. Первухин С.А., Лебедева М.Н., Елистратов А.А и др. Интенсивная терапия осложненной травмы шейного отдела позвоночника. Хирургия позвоночника. 2014; 4: 13–15.
  10. [Pervukhin S.A., Lebedeva M.N., Elistratov A.A., et al. Intensive therapy for complicated cervical spine injury. Hir. Pozvonoc. 2014; 4: 72–79. (In Russ)]
  11. El Tecle N.E., Dahdaleh N.S., Hitchon P.W. Timing of Surgery in Spinal Cord Injury Spine (Phila Pa 1976). 2016; 41(16): E995–E1004. DOI: 10.1097/BRS.0000000000001517
  12. Ter Wengel P.V., Feller R.E., Stadhouder A., et al. Timing of surgery in traumatic spinal cord injury: a national, multidisciplinary survey. Eur. Spine. J. 2018; 27(8): 1831–1838. DOI: 10.1007/s00586-018-5551-y
  13. Liu J.M., Long X.H., Zhou Y., et al. Is Urgent Decompression Superior to Delayed Surgery for Traumatic Spinal Cord Injury? A Meta-Analysis. World Neurosurg. 2016; 87: 124–31. DOI: 10.1016/j.wneu.2015.11.098
  14. Бердюгин К.А., Штадлер Д.И., Гусев Д.А. Роль срока декомпрессии в исходах позвоночно-спинномозговой травмы в эксперименте и клинике. Современные проблемы науки и образования. 2015; 3: 20.
  15. [Berdyugin K.A., Shtadler D.I., Gusev D.A. The role of date of decompression in results of spinal trauma in experiment and clinic. Modern Problems of Science and Education. 2015; 3: 20. (In Russ)]
  16. Виссарионов С.В., Белянчиков С.М., Солохина И.Ю. и др. Оценка временного фактора операции на динамику неврологических нарушений у детей с позвоночно-спинномозговой травмой. Успехи современного естествознания. 2015; 4: 14–18.
  17. [Vissarionov S.V., Belyanchikov S.M., Solokhina I.Y., et al. Influence of surgical treatment timing on development of neurological disorders in children with spinal cord injury. Advances in Current Natural Sciences. 2015; 4: 14–18. (In Russ)].
  18. Яфарова Г.Г., Валеев Е.К., Груббер Н.М. Оценка исходов позвоночно-спинальной травмы в зависимости от сроков хирургического вмешательства. Практическая медицина. 2015; 89: 215–217.
  19. [Yafarova G.G., Valeev E.K., Gruber N.M. Assessment of the outcomes of vertebrospinal trauma based on time of surgical intervention. Practical Medicine. 2015; 89 : 215–217. (In Russ)]
  20. Ryken T.C., Hurlbert R.J., Hadley M.N. The acute cardiopulmonary management of patients with cervical spinal cord injuries. Neurosurgery. 2013; 72: 84–92. DOI: 10.1227/NEU.0b013e318276ee16
  21. Guly H.R., Bouamra O., Lesky F.E. Trauma Audit and Research Network. The incidence of neurogenic shock in patiens with isolated spinal cord injuri in the emergence department. Resuscitation. 2008; 76: 57–62.
  22. Hadley M.N., Walters B.C., Grabb P.A., et al. Blood pressure management after acute spinal cord injury. Neurosurgery. 2002; 50(Suppl. 3): 58–62. DOI: 10.1097/00006123-200203001-00012
  23. Furlan J.C., Noonan V., Cadotte D.W., Michael G. Fehlingscorresponding Timing of Decompressive Surgery of Spinal Cord after Traumatic Spinal Cord Injury: An Evidence-Based Examination of Pre-Clinical and Clinical Studies J. Neurotrauma. 2011; 28(8): 1371–1399. DOI: 10.1089/neu.2009.1147 PMCID: PMC3143409 PMID: 20001726
  24. Jug M., Kejžar N., Vesel M., et al. Neurological Recovery after Traumatic Cervical Spinal Cord Injury Is Superior if Surgical Decompression and Instrumented Fusion Are Performed within 8 Hours versus 8 to 24 Hours after Injury: A Single Center Experience. J. Neurotrauma. 2015; 32(18): 1385–1392. DOI: 10.1089/neu.2014.3767. Epub 2015 Apr 22

Ultrasound-based monitoring of cardiac output after off-pump coronary artery bypass grafting

N.N. Izotova1, 2, Y.Yu. Ilyina1, 2, E.V. Fot1, 2, A.A. Smetkin1, 2, V.V. Kuzkov1, 2, M.Yu. Kirov1, 2

Northern State Medical University, Arkhangelsk

2 Volosevich First City Clinical Hospital, Arkhangelsk

For correspondence: Kirov Mikhail Yu. — MD, PhD, professor, Head of the Department of Anesthesiology and Intensive care of Northern State Medical University, Arkhangelsk; e-mail: mikhail_kirov@hotmail.com

For citation: Izotova NN, Il’ina YaYu, Fot EV, et al. Ultrasound-based monitoring of cardiac output after off-pump coronary artery bypass grafting. Alexander Saltanov Intensive Care Herald. 2018;2:57–60.

DOI: 10.21320/1818-474X-2018-2-57-60


Aim of the study. To assess the accuracy of USCOM in patients after off-pump coronary artery bypass grafting (OPCAB).

Methods. We enrolled 14 patients who underwent elective OPCAB into an ongoing prospective observational study. The measurements of cardiac index (CI) based on USCOM (CIUSCOM) in comparison with thermodilution CI (CITD) were performed at seven stages during postoperative period. Statistical analysis included assessment of agreement in absolute values of CI using Bland–Altman analysis.

Results. Totally, 98 pairs of data were collected. According to Bland–Altman analysis of all pairs of data, mean bias between CIUSCOM and CITD was –1.09 L/min/m2 with limits of agreement of ±1.18 L/min/m2 and percentage error of 63 %. In a subgroup of stages with requirement of mechanical ventilation the intermethod bias was –1.16 L/min/m2 with limits of agreement of ±1.15 L/min/m2 and percentage error of 67 %, in a subgroup of stages after tracheal extubation the mean bias was –1.00 L/min/m2 with limits of agreement of ±1.23 L/min/m2 and percentage error of 59 %.

Conclusions. USCOM demonstrates poor accuracy with underestimation of CI compared to thermodilution technique both before and after tracheal extubation. This method can not be recommended as an acceptable alternative in cardiac surgery.

Keywords: cardiac index, hemodynamics, monitoring of hemodynamics, off-pump coronary artery bypass grafting

Received: 31.03.2018


References

  1. Смeткин А.А., Хуссейн А., Захаров В.И., Изотова Н.Н.и др. Точность неинвазивного измерения сердечного выброса на основе оценки времени транзита пульсовой волны при аортокоронарном шунтировании на работающем сердце. Патология кровообращения и кардиохирургия. 2016; 20(2): 104–110. [Smetkin A.A., Hussain A., Zakharov V.I., Izotova N.N., et al. Reliability of non-invasive cardiac output monitoring based on pulse wave transit time in off-pump coronary artery bypass grafting. Pathology of blood circulation and heart surgery. 2016; 20(2): 104–110. (In Russ)].
  2. СметкинА.А., Хуссейн А., Фот Е.В., Изотова Н.Н. и др. Инвазивный мониторинг сердечного выброса по времени транзита пульсовой волны после аортокоронарного шунтирования на работающем сердце. Вестник анестезиологии и реаниматологии. 2016; 13(5): 4–10. [Smetkin A.A., Hussain A., Fot E.V., Izotova N.N., et al. Invasive monitoring of cardiac output by pulse wave transit time after aortocoronary bypass on the beating heart. Messenger of anesthesiology and resuscitation. 2016; 13(5): 4–10. (In Russ)].
  3. Smetkin A., Hussain A., Fot E., Izotova N.,et al. Estimated continuous cardiac output based on pulse wave transit time in off-pump coronary artery bypass grafting: a comparison with transpulmonary thermodilution. Journal of Clinical Monitoring and Computing. 2017; 31(2): 361–370.
  4. Fot E., Kuzkov V., Gromova J., Izotova N.,et al. Mini-fluid challenge and PEEP-test can predict fluid responsiveness after off-pump coronary surgery. European Journal of Anaesthesiology. 2015; 32(e-Suppl. 53): 215.
  5. Dey I., Sprivuls P. Emergency physicians can reliably assess emergency department patient cardiac output using the USCOM continuous wave Doppler cardiac output monitor. Emergency Medicine Australasia. 2005; 17: 193–199.
  6. Stewart G.M., Nguyen H.B., Kim T.Y.,et al. Inter-Rater Reliability for Noninvasive Measurement of Cardiac Function in Children. Pediatric Emergency Care. 2008; 24(7): 433–437.
  7. Kager С.C.M., Dekker G. A., Stam M.C. Measurement of cardiac output in normal pregnancy by a non-invasive two-dimensional independent Doppler device. Australian and New Zealand Journal of Obstetrics and Gynecology. 2009; 49: 142–144.
  8. Thom O., Taylor D., Wolfe R., et al. Comparison of a supra-sternal cardiac output monitor (USCOM) with the pulmonary artery catheter. British Journal of Anaesthesia. 2009; 103(6): 800–804.
  9. Meyer S., Todd D. A., Shadboldt B. Assessment of portable continuous wave Doppler ultrasound (ultrasonic cardiac output monitor) for cardiac output measurements in neonates. Journal of Pediatrics and Child Health. 2009; 45(7–8): 464–468.
  10. Wentland A.L., Grist T.M., Wieben O. Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness. Cardiovasc. Diagn. Ther. 2014; 4: 193–206.
  11. Patel N., Dodsworth M., Mills J. F. Cardiac output measurement in newborn infants using the ultrasonic cardiac output monitor: an assessment of agreement with conventional echocardiography, repeatability and new user experience. Archives of Disease in Childhood — Fetal and Neonatal Edition. 2010; 96(3): 206–211.
  12. Nguyen H.B., Banta D., Stewart G. et al. Cardiac index measurements by transcutaneous doppler ultrasound and transthoracic echocardiography in adult and pediatric emergency patients. Journal of Clinical Monitoring and Computing. 2010; 24(3): 237–247.