Evaluation of brain bioelectrical activity during xenon-oxygen mixture inhalation

V.I. Potievskaya1, F.M. Shvetskiy2, M.B. Potievskiy3

FSBI “National Medical Research Radiological Center” of the Ministry of Health of the Russian Federation, Moscow

SBIH “Hospital for war veterans №2”, Moscow

FSBEI HE “Lomonosov Moscow State University”, Moscow

For correspondence: Vera I. Potievskaya, Ph.D., M.D., chief researcher «National Medical Research Radiology Center», Russian Federation Ministry of Healthcare; e-mail: vera.pot@mail.ru

For citation: Potievskaya VI, Shvetskiy FM, Potievskiy MB. Evaluation of brain bioelectrical activity during xenon-oxygen mixture inhalation. Alexander Saltanov Intensive Care Herald. 2019;1:94–9.

DOI: 10.21320/1818-474X-2019-1-94-99


Xenon is an inert gas used like inhalational anesthetic during different surgeries, including high-risk operations and for pain treatment caused by different factors. If concentration of the gas is less than 50 %, or the duration of the procedure is very short, no consciousness depression occurs. 20 healthy persons from 22 to 30 years old were undergone xenon/oxygen inhalation with concentration 70/30 % respectively for 3 minutes. Electroencephalography (EEG) was recorded before, during and 30 minutes later the procedure. For the data processing spectral analysis was used. Statistical analysis was performed by Wilcoxon and Page tests. As a result, significant increase in slow wave activity and reduction in alpha-rhythm activity were observed during and after the procedure as well as repartition of activity zones in brain similar to physiological sleep. This fact may be used in conduction of treatment and diagnostics procedures.

Keywords: xenon, inhalational anesthetics, mask inhalations of xenon-oxygen mixture, electroencephalography, sedation

Received: 07.10.2018


References

  1. Буров Н.Е., Потапов В.Н. Ксенон в медицине: очерки по истории и применению медицинского ксенона. М.: Пульс, 2012.
  2. [Burov N.E., Potapov V.N. Ksenon v medicine: ocherki po istorii i primeneniyu medicinskogo ksenona (Xenon in medicine: history and using). Moscow: Pulʼs Publ., 2012.  (In Russ)]
  3. Lu Tian Liu, Yan Xu, Pei Tang B. Mechanistic Insights into Xenon Inhibition of NMDA Receptors from MD Simulations. J Phys Chem. 2010; 114(27): 9010–9016.
  4. Petrenko A.B., Yamakura T., Sakimura K., Baba H. Defining the role of NMDA receptors in anesthesia: are we there yet? Eur. J. Pharmacol. 2014; 15(1): 723: 29–37.
  5. Рылова А.В., Лубнин А.Ю. Динамика внутричерепного давления во время ксеноновой анестезии у нейрохирургических больных без внутричерепной гипертензии. Анестезиология и реаниматология. 2011; 4: 13–17.
  6. [Rylova A.V., Lubnin A.Yu. Dinamika vnutricherepnogo davleniya vo vremya ksenonovoj anestezii u nejrohirurgicheskih bolʼnyh bez vnutricherepnoj gipertenzii. Anesteziologiya i reanimatologiya (Intracranial pressure changes during xenon anesthesia in neurosurgical patients without intracranial hypertention). Anesteziologiya i Reanimatologiya. 2011; 4: 13–17. (In Russ)]
  7. Козлов И.А. Ксенон при кардиохирургических операциях. Комплексный анализ. Вестник интенсивной терапии. 2007; 3: 45–53.
  8. [Kozlov I.A. Xenon in heart surgeries. Complex analysis. Vestnik intensivnoj terapii. 2007; 3: 45–53. (In Russ)]
  9. Шебзухова Е.Х., Потиевская В.И, Молчанов И.В. Лечебный наркоз ксеноном при остром коронарном синдроме. Вестник интенсивной терапии. 2014; 5: 95–98.
  10.  [Shebzuhova E.H., Potievskaya V.I., Molchanov I.V. Xenon treatment in patients with acute coronary syndrome. Vestnik intensivnoj terapii. 2014; 5: 95–98. (In Russ)]
  11. Буров Н.Е., Молчанов И.В., Николаев Л.Л. Ксенон в медицине: прошлое, настоящее и будущее. Клиническая практика. 2011; 2: 4–11.
  12. [Burov N.E., Molchanov I.V., Nikolaev L.L. Xenon in medicine: history, nowadays and future. Klinicheskaya praktika. 2011; 2: 4–11. (In Russ)]
  13. Буров Н.Е., Потапов В.Н., Макеев Г.Н. Ксенон в анестезиологии. Клинико-экспериментальные исследования. М.: Пульс, 2000.
  14. [Burov N.E., Potapov V.N., Makeev G.N. Ksenon v anesteziologii. Kliniko-ehksperementalʼnye issledovaniya (Xenon in anesthesiology. Clinical and experimental studies). Moscow: Pulʼs Publ., 2000. (In Russ)]
  15. Bosl W.J. The emerging role of neurodiagnostic informatics in integrated neurological and mental health care. Neurodiagn. J. 2018; 58(3): 143–153. DOI: 10. 1080/21646821.2018.1508983
  16. Ann S., Prim J.H., Alexander M.L., et al. Identifying and engaging neuronal oscillations by transcranial alternating current stimulation in patients with chronic low back pain: a randomized crossover, double-blind, sham-controlled pilot study. J. Pain. 2018; 27(9): 1526–1559. DOI: 10.1016/jpain2018.09.004
  17. Николаев Л.Л. Варианты низкопоточной анестезии ксеноном. М: Город, 2014.
  18. [Nikolaev L.L. Varianty nizkopotochnoj anestezii ksenonom. (Types of lowflow Xenon anesthesia). Moscow: Gorod Publ., 2014. (In Russ)]
  19. Рылова А.В., Сазонова О.Б., Лубнин А.Ю., Машеров Е.Л. Изменения биоэлектрической активности мозга в условиях ксеноновой анестезии у нейрохирургических больных. Анестезиология и реаниматология. 2010; 2: 31–33.
  20. [Rylova A.V., Sazonova O.B., Lubnin A.Yu., Masherov Ye.L. Izmeneniya bioehlektricheskoj aktivnosti mozga v usloviyah ksenonovoj anestezii u nejrohirurgicheskih bolʼnyh (Changes in brain bioelectrical activity during xenon anesthesia in neurosurgical patients). Anesteziologiya i Reanimatologiya. 2010; 2: 31–33. (In Russ)]
  21. Basar E. Brain Function and Oscillations. Integrative Brain Function, Neurophysiology and Cognitive Processes. Berlin: Springer Verlag, 1999; 2: 213–254.
  22. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis. Brain Research Reviews. 1999; 29: 169–195.

To the question about factors influencing neuromuscular blockade

G.G. Bestaev, V.D. Slepushkin

North-Ossetian State Medical Academy, Vladikavkaz

For correspondence: Georgy Bestaev — assistant of Department of anesthesiology and critical care medicine of North-Ossetian State Medical Academy; e-mail: georbest@mail.ru

For citation: Bestaev GG, Slepushkin VD. To the question about factors influencing neuromuscular blockade. Alexander Saltanov Intensive Care Herald. 2018;2:36–9.

DOI: 10.21320/1818-474X-2018-2-36-39


It has long been known that the duration of the action of muscle relaxants is affected by a variety of factors, and to a greater extent this effect is observed when using non-depolarizing muscle relaxants of medium and long duration. Surprisingly, factors, influencing neuromuscular block, are not becoming the subject of scientific discussion and are not reflected in modern literature. It is absolutely obvious at the same time that the study of quantitative dynamics of neuromuscular block represents a significant scientific and practical interest. In the given literature review the most important factors will be considered and discussed.

Keywords: factors, muscle relaxants, neuromuscular block, inhalational anesthetics, smoking, electrolytes, temperature, circadian rhythm

Received: 07.02.2018


References

  1. Бестаев Г.Г., Слепушкин В.Д. Миорелаксанты: от кураре до круарона. Владикавказ, 2016. [Bestaev G.G., Slepushkin V.D. Muscle relaxants: from curare to kruaron. Vladikavkaz,2016. (In Russ)]
  2. СлепушкинВ.Д., Бестаев Г.Г. Использование миорелаксантов в анестезиологии и реаниматологии. Москва — Владикавказ, 2017. [Slepushkin V.D., Bestaev G.G. The use of muscle relaxants in anesthesia and resuscitation. Moskva — Vladikavkaz, 2017. (In Russ)]
  3. Багомедов В.Р., Слепушкин В.Д., Тотикова М.Б. Особенности анестезиологического пособия у курящих больных. Актуальные вопросы современной медицины.2012. [Bagomedov V.P., Slepushkin V.D., Totikova M.B. Features anesthetic in smoking patients. Topical issues of modern medicine. 2012. (In Russ)]
  4. Ishigaki S., Ogura T., Kanaya A. Influence of preoperative oral rehydration on arterial plasma rocuronium concentration and neuromuscular blocking effects: A randomized controlled trial. Eur. J. Anaesthesiol. 2017; 34: 16–22.
  5. Saitoh Y., Toyooka H., Amaha K. Recoveries of post-tetanic twitch and train-of-four responses after administration of vecuronium with different inhalation anaeshetics and neuroleptanaesthesia. Br. J. Anaesth. 1993; 70: 402–404.
  6. Bock M., Klippel K., Nitsche B., et al. Rocuronium potency and recovery characteristics during steady-state desflurane, sevoflurane, isoflurane or propofol anaesthesia. Br. J. Anaesth. 2000; 84: 43–47.
  7. Suzuki T., Fukano N., Kitajima O., et al. Normalization of acceleromyographic train-of-four ratio by baseline value for detecting residual neuromuscular block. Br. J. Anaesth. 2006; 96: 44–47.
  8. Pereon Y., Bernard J.M., Nguyen The Tich S., et al. The effects of desflurane on the nervous system: from spinal cord to muscles. Anesth. Analg. 1999; 89: 490–495.
  9. Paul M., Fokt R.M., Kindler C.H., et al. Characterization of the interactions between volatile anesthetics and neuromuscular blockers at the muscle nicotinic acetylcholine receptor. Anesth. Analg. 2002; 95: 362–367.
  10. Cannon J.E., Fahey M.R., Castagnoli K.P., et al. Continuous infusion of vecuronium: the effect of anesthetic agents. Anesthesiology. 1987; 67: 503–506.
  11. Rupp S.M., Miller R.D., Gencarelli P.J. Vecuronium-induced neuromuscular blockade during enflurane, isoflurane, and halothane anesthesia in humans. Anesthesiology. 1984; 60: 102–105.
  12. Gecarelli P.J., Miller R.D., Eger E.I., et al. Decreasing enflurane concentrations and rf-tubocurarine neuromuscular blockade. Anesthesiology. 1982; 56: 192–194.
  13. Wulf H., Kahl M., Ledowski T. Augmentation of the neuromuscular blocking effects of cisatracurium during desflurane, sevoflurane, isoflurane or total i.v. anaesthesia. Br.J. Anaesth. 1988; 80: 308–312.
  14. СуиниБ.П., Грейлинг М. Курение и анестезия: фармакология и последствия. Регионарная анестезия и лечение острой боли. 2011; 5(4): 52–60. [Sweeney B.P., Grayling M. Smoking and anaesthesia: the pharmacological implications. Regional anesthesia and treatment of acute pain. 2011; 5(4): 52–60. (In Russ)]
  15. Beckers S., Camu F. The anesthetic risk of tobacco smoking. Acta Anaesthesiologica Belgica. 1991; 42: 45–56.
  16. Rodrigo C. The effects of cigarette smoking on anesthesia. Anesthesia Progress. 2000; 47: 143–150.
  17. Benowitz N.L. Pharmacological aspects of cigarette smoking and nicotine. New England Journal of Medicine. 1988; 319: 1318–1330.
  18. Teiria H., Rautoma P., Yli-Hankala A. Effect of smoking on dose requirements for vecuronium. Br. J. of Anaesthesia. 1996; 76: 154–155.
  19. Latorre F., de Almeida M.C., Stanek A., et al. The interaction between rocuronium and smoking. The effect of smoking on neuromuscular transmission after rocuronium. Anaesthesist. 1997; 46: 493–495.
  20. Puhringer F.K., Keller P., Lockinger A., et al. Smoking does not alter the dose-requirements and the pharmacodynamics of rocuronium. Can. J. Anaesthesia. 2000; 47: 347–349.
  21. Puura A.I., Rorarius M.G., Laippala P., et al. Does abstinence from smoking or a transdermal nicotine system influence atracurium-induced neuromuscular block? Anesthesia and Analgesia. 1998; 87: 430–433.
  22. Fuchs-Buder T. et al. Interaction of magnesium sulphate with vecuronium-induced neuromuscular block. Br. J. Anaesth. 1995; 74(4): 405–409.
  23. Kussman B. et al. Administration of magnesium sulphate before rocuronium: effects on speed of onset and duration of neuromuscular block. Br. J. Anaesth. 1997; 79(1): 122–124.
  24. Czarnetzki C. et al. Time course of rocuronium-induced neuromuscular block after pretreatment with magnesium sulphate: a randomised study. Acta Anaesthesiol. Scand. 2010; 54(3): 299–306.
  25. Kim M.H. et al. A randomised controlled trial comparing rocuronium priming, magnesium pretreatment and a combination of the two methods. Anaesthesia. 2012; 67(7): 748–754.
  26. Waud B.E., Waud D.R. Interaction of calcium and potassium with neuromuscular blocking agents. Br. J. Anaesth. 1980; 52: 863–866.
  27. Naquib M., Lien C.A. Pharmacology of muscle relaxants and their antagonists. In: Miller’s Anesthesia. 6thed. Ed. R.D. Miller. New York: Churchill Livingstone, 2005: 481–572.
  28. Biro K. Effects of respiratory and metabolic alkalosis and acidosis on pipecuronium neuromuscular block. Eur. J. Pharmacol. 1988; 154: 329–333.
  29. Adamus M., Hrabalek L., Wanek T., et al. Influence of age and gender on the pharmacodynamic parameters of rocuronium during total intravenous anesthesia. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2011; 155: 347–353.
  30. Craig R.G., Hunter J.M. Neuromuscular blocking drugs and their antagonists in patients with organ disease. Anaesthesia. 2009; 64: 55–65.
  31. Dahaba A.A., Perelman S.I., Moskowitz D.M., et al. Geographic regional differences in rocuronium bromide dose-response relation and time course of action: an overlooked factor in determining recommended dosage. Anesthesiology. 2006; 104: 950–953.
  32. Soltész S., Fraisl P., Noé K.G., et al. Dexamethasone decreases the duration of rocuronium-induced neuromuscular block: a randomised controlled study. Eur.J. Anaesthesiol. 2014; 31: 417–422.