Failures of intensive treatment of multiple organ failure: pathophysiology and the need for personalization

E.V. Grigoryev1,2, D.L. Shukevich1,2, G.P. Plotnikov3, A.N. Kudryavtsev3, A.S. Radivilko1

Scientific Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo

Kemerovo State Medical University, Kemerovo

A.V. Vishnevsky National Medical Research Centre of Surgery, Moscow

For correspondence: Evgeny V Grigoryev, M.D., Ph.D., Head of Chair of Anesthesiology and Reanomation, Kemerovo State Medical University, Kemerovo; e-mail:

For citation: Grigoryev EV, Shukevich DL, Plotnikov GP, Kudryavtsev AN, Radivilko AS. Failures of intensive treatment of multiple organ failure: pathophysiology and the need for personalization. Alexander Saltanov Intensive Care Herald. 2019;2:48-57.

DOI: 10.21320/1818-474X-2019-2-48-57


Multiple organ failure (MOF) is the most severe outcome of the critical care patients of any reason (sepsis, trauma, ischemia and reperfusion), the mortality rate with this syndrome has no tendency to decrease. The review article offers, first of all, an introduction to the key research areas in which the MOF theory is currently developing (alarmines, mitochondrial dysfunction, barrier insufficiency, immunological and neurological conjugation, forms of programmed cell death, induced immunosuppression, resolution of inflammation). Studies prove the feasibility of introducing a personalized approach to the diagnosis of MOF by substantiating the endophenotype of the critical care patients on the basis of a complex of immunological, genomic and clinical indicators.

Keywords: systemic inflammatory response, multiple organ failure, alarmines, mitochondria, immune suppression, barrier deficiency, endophenotype

Received: 22.02.2019

Accepted: 26.03.2019


  1. Ciesla D.J., Moore E.E., Johnson J.L., et al. A 12-year prospective study of postinjury multiple organ failure: has anything changed? Arch. Surg. 2005; 140(5): 432–438. DOI: 10.1001/archsurg.140.5.432
  2. Davidson G.H., Hamlat C.A., Rivara F.P., et al. Long-term survival of adult trauma patients. JAMA. 2011; 305(10): 1001–1007. DOI: 10.1001/jama.2011.259
  3. Eiseman B., Beart R., Norton L. Multiple organ failure. Surg. Gynecol. Obstet. 1977; 144(3): 323–326.
  4. Deitch E.A., Vincent J.L., Windsor A. Sepsis and multiple organ dysfunction: multidisciplinary approach. Philadelphia: WB Sanders company, 2002.
  5. Minei J.P., Cuschieri J., Sperry J., et al. The changing pattern and implications of multiple organ failure after blunt injury with hemorrhagic shock. Crit. Care Med. 2012; 40(4): 1129–1135. DOI: 10.1097/CCM.0b013e3182376e9f
  6. Lelubre C., Vincent J.L. Mechanisms and treatment of organ failure in sepsis. Nature Review. Nephrology. 2018; 14: 417–427. DOI: 10.1038/s41581-018-0005-7
  7. Григорьев Е.В., Плотников Г.П., Шукевич Д.Л., Головкин А.С. Персистирующая полиорганная недостаточность. Патология кровообращения и кардиохирургия. 2014; 18(3): 82–86.DOI: 10.21688/1681-3472-2014-3-82-86. [Grigoryev Ye.V., Plotnikov G.P., Shukevich D.L., Golovkin A.S. Persistent multiorgan failure. Patologiya krovoobrascheniya i kardiohirurgiya. Circulation Pathology and Cardiac Surgery. 2014; 18(3): 82–86. (In Russ)]
  8. Schaefer L. Complexity of danger: The diverse nature of damage-associated molecular patterns. J. Biol.  Chem. 2014; 289: 35237–35245. DOI: 10.1074/jbc.R114.619304
  9. Ma K.C., Schenck E.J., Pabon M.A., Choi A.M.K. The role of danger signals in the pathogenesis and perpetuation of critical illness. Am. J. Respir. Crit. Care Med. 2018; 197(3): 300–309. DOI: 10.1164/rccm.201612–2460PP
  10. Zhang Q., Raoof M., Chen Y., et al. Circulating mitochondrial DAMPs cause in inflammatory responses to injury. Nature. 2010; 464: 104–107. DOI: 10.1038/nature08780
  11. Harris H.E., Raucci A. Alarmin(g) news about danger: Workshop on innate danger signals and HMGB1. EMBO Rep. 2006; 7: 774–778. DOI: 10.1038/sj.embor.7400759
  12. Guo H., Callaway J.B., Ting J.P. Infammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med. 2015; 21: 677–687. DOI: 10.1038/nm.3893
  13. Cobb J.P., Buchman T.G., Karl I.E., Hotchkiss R.S. Molecular biology of multiple organ dysfunction syndrome: Injury, adaptation, and apoptosis. Surg. Infect (Larchmt). 2000; 1: 207–213; discussion 214. DOI: 10.1089/109629600750018132
  14. Conrad M., Angeli J.P., Vandenabeele P., Stockwell B.R. Regulated necrosis: Disease relevance and therapeutic opportunities. Nat. Rev. Drug. Discov. 2016; 15: 348–366. DOI: 10.1038/nrd.2015.6
  15. Kaczmarek A., Vandenabeele P., Krysko D.V. Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013; 38: 209–223. DOI: 10.1016/j.immuni.2013.02.003
  16. Krysko D.V., Agostinis P., Krysko O., et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 2011; 32: 157–164. DOI: 10.1016/
  17. Zhang Q., Raoof M., Chen Y., et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010; 464: 104–107. DOI: 10.1038/nature08780
  18. Deutchman C.S., Tracey K.J. Sepsis: Current dogma and new perspectives. Immunity. 2014; 40: 463–475. DOI: 10.1016/j.immuni.2014.04.001
  19. Bosmann M., Ward P.A. The inflammatory response in sepsis. Trends Immunol. 2013; 34: 129–136. DOI: 10.1016/
  20. Matsuda N. Alert cell strategy in SIRS-induced vasculitis: sepsis and endothelial cells Journal of Intensive Care. 2016; 4: 21. DOI: 10.1186/s40560-016-0147-2
  21. Johansson P.I., Henriksen H.H., Stensballe J., et al. Traumatic endotheliopathy: a prospective observational study of 424 severely injured patients. Ann. Surg. 2017; 265(3): 597–603. DOI: 10.1097/SLA.0000000000001751
  22. Hirase T, Node K. Endothelial dysfunction as a cellular mechanism for vascular failure. Am. J. Physiol. Heart Circ. Physiol. 2012; 302(3): 499–505. DOI: 10.1152/ajpheart.00325.2011
  23. Aird W.C. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003; 101(10): 3765–3777. DOI: 10.1182/blood-2002-06-1887
  24. Szotowski B., Antoniak S., Rauch U. Alternatively spliced tissue factor: a previously unknown piece in the puzzle of hemostasis. Trends Cardiovasc. Med. 2006; 16(5): 177–182. DOI: 10.1016/j.tcm.2006.03.005
  25. Monroe D.M., Key N.S. The tissue factor-factor VIIa complex: procoagulant activity, regulation, and multitasking. J. Thromb. Haemost. 2007; 5(6): 1097–1105. DOI: 10.1111/j.1538-7836.2007.02435.x
  26. Danese S., Vetrano S., Zhang L., et al. The protein C pathway in tissue inflammation and injury: pathogenic role and therapeutic implications. Blood. 2010; 115(6): 1121–1130. DOI: 10.1182/blood-2009-09-201616
  27. Brinkmann V., Zychlinsky A. Beneficial suicide: why neutrophils die to, make NETs. Nature Rev. 2007; 5: 577–582. DOI: 10.1038/nrmicro1710
  28. Camicia G., Pozner R., de Larrañaga G. Neutrophil extracellular traps in Sepsis. Shock. 2014; 42(4): 286–294. DOI: 10.1097/SHK.0000000000000221
  29. Wang X., Qin W., Sun B. New strategy for sepsis: Targeting a key role of platelet-neutrophil interaction. Burns Trauma. 2014; 2(3): 114–120. DOI: 10.4103/2321–3868.135487
  30. Salmon A.H., Satchell S.C. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J. Pathol. 2012; 226: 562–574. DOI: 10.1002/path.3964
  31. Pries A.R., Secomb T.W., Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000; 440: 653–666. DOI: 10.1007/s004240000307
  32. Reitsma S., Slaaf D.W., Vink H., et al. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007; 454: 345–359. DOI: 10.1007/s00424-007-0212-8
  33. Lekakis J., Abraham P., Balbarini A., et al. Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation. Eur. J. Cardiovasc. Prev. Rehabil. 2011; 18: 775–789. DOI: 10.1177/1741826711398179
  34. Woodcock T.E., Woodcock T.M. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br. J. Anaesth. 2012; 108: 384–394. DOI: 10.1093/bja/aer515
  35. Chelazzi C., Villa G., Mancinelli P. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit. Care. 2015; 19(1): 26. DOI: 10.1186/s13054-015-0741-z
  36. Uchimido R., Schmidt E.P., Shapiro N.I. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit. Care. 2019; 23(1): 16. DOI: 10.1186/s13054-018-2292-6
  37. Steppan J., Hofer S., Funke B., et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalyx. J. Surg. Res. 2011; 165: 136–141. DOI: 10.1016/j.jss.2009.04.034
  38. Tracey K.J. The inflammatory reflex. Nature. 2002; 420: 853–859. DOI: 10.1038/nature01321
  39. Tracey K.J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest. 2007; 117: 289–296. DOI: 10.1172/JCI30555
  40. Григорьев Е.В., Шукевич Д.Л., Плотников Г.П. и др. Нейровоспаление в критических состояниях: механизмы и протективная роль гипотермии. Фундаментальная и клиническая медицина. 2016; 1(3): 88–96. [Grigoryev E.V., Shukevich D.L., Plotnikov G.P., et al. Neuroinflammation in critical care: neuroprotective role role of hypothermia. Fundamental and clinical medicine. 2016; 1(3): 88–96. (In Russ)]
  41. Qin S., Wang H., Yuan R., et al. Role of HMGB1 in apoptosis mediated sepsis lethality. J. Exp. Med. 2006; 203: 1637–1642. DOI: 10.1084/jem.20052203
  42. Lu H., Wen D., Wang X., et al. Host genetic variants in sepsis risk: a field synopsis and meta-analysis. Crit. Care. 2019; 23(1): 26. DOI: 10.1186/s13054-019-2313-0
  43. Thayer J.F., Sternberg E.M. Neural aspects of immunomodulation: focus on the vagus nerve. Brain Behav. Immun. 2010; 24: 1223–1228. DOI: 10.1016/j.bbi.2010.07.247
  44. Karbowski M., Youle R.J. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death. Differ. 2003, 10: 870–880. DOI: 10.1038/sj.cdd.4401260
  45. Kuznetsov A.V., Kehrer I., Kozlov A.V., et al. Mitochondrial ROS production under cellular stress: comparison of different detection methods. Anal. Bioanal. Chem. 2011, 400: 2383–2390. DOI: 10.1007/s00216-011-4764-2
  46. Li C., Jackson R.M. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am. J. Physiol. Cell Physiol. 2002; 282: 227–241. DOI: 10.1152/ajpcell.00112.2001
  47. Pellegrini M., Baldari C.T. Apoptosis and oxidative stress-related diseases: the p66Shc connection. Curr. Mol. Med. 2009; 9: 392–398. DOI: 10.2174/156652409787847254
  48. Butow R.A., Avadhani N.G. Mitochondrial signalling: the retrograde response. Mol. Cell. 2004, 14: 1–15. DOI: 10.1016/S1097–2765(04)00179–0
  49. Wendel M., Heller A.R. Mitochondrial function and dysfunction in sepsis. Wien. Med. Wochenschr. 2010; 160: 118–123. DOI: 10.1007/s10354-010-0766-5
  50. Basanez G., Zhang J., Chau B.N., et al. Pro-apoptotic cleavage products of Bcl-xL form cytochrome c-conducting pores in pure lipid membranes. J. Biol. Chem. 2001, 276: 31083–31091. DOI: 10.1074/jbc.M103879200
  51. Orrenius S., Gogvadze A., Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu Rev. Pharmacol. Toxicol. 2007, 47: 143–183. DOI: 10.1146/annurev.pharmtox.47.120505.105122
  52. Glick D., Barth S., Macleod K.F. Autophagy: cellular and molecular mechanisms. J. Pathology. 2010; 221: 3–12. DOI: 10.1002/path.2697
  53. Lee I., Huttemann M. Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochim. Biophys. Acta. 2014; 1842(9): 1579–1586. DOI: 10.1016/j.bbadis.2014.05.031
  54. Merz T.M., Pereira A.J., Schürch R., et al. Mitochondrial function of immune cells in septic shock: A prospective observational cohort study. PLoS One. 2017; 12(6): e0178946. DOI: 10.1371/journal.pone.0178946
  55. Grigoryev E.V., Shukevich D.L., Matveeva V.G., Kornekyuk R.A. Immunosuppression as a component of multiple organ dysfunction syndrome following cardiac surgery. Complex issues of cardiovascular diseases. 2018; 7(4): 84–91. DOI: 10.17802/2306-1278-2018-7-4-84-91
  56. Boomer J.S., Green J.M., Hotchkiss R.S. The changing immune system in sepsis: Is individualized immuno-modulatory therapy the answer? Virulence. 2014; 5(1), 45–56. DOI: 10.4161/viru.26516
  57. Rock K.L., Latz E., Ontiveros F., Kono H. The sterile inflammatory response. Annu Rev. Immunol. 2010; 28: 321–342. DOI: 10.1146/annurev-immunol-030409-101311
  58. Warren O.J., Smith A.J., Alexiou C., et al. The inflammatory response to cardiopulmonary bypass: part 1 — mechanisms of pathogenesis. Journal of cardiothoracic and vascular anaesthesia. 2009; 23(2): 223–231. DOI: 10.1053/j.jvca.2008.08.007
  59. Callahan L.A., Supinski G.S. Sepsis-induced myopathy. Crit. Care Med. 2009; 37(10 Suppl.): 354–367. DOI: 10.1007/s13539-010-0010-6
  60. Hermans G., Van den Berghe G. Clinical review: intensive care unit acquired weakness. Crit. Care. 2015; 19(1): 274. DOI: 10.1186/s13054-015-0993-7
  61. Klaude M., Mori M., Tjader I., et al. Protein metabolism and gene expression in skeletal muscle of critically ill patients with sepsis. Clin. Sci (Lond.). 2012; 122(3): 133–142. DOI: 10.1042/CS20110233
  62. Preiser J.-C. High protein intake during the early phase of critical illness: yes or no? Crit. Care. 2018; 22: 261. DOI: 10.1186/s13054-018-2196-5
  63. Cuenca A.G., Cuenca A.L., Winfield R.D., et al. Novel role for tumor-induced expansion of myeloid-derived cells in cancer cachexia. J. Immunol. 2014; 192(12): 6111–6119. DOI: 10.4049/jimmunol.1302895
  64. Mittal R., Coopersmith C.M. Redefining the gut as the motor of critical illness. Trends Mol. Med. 2014; 20: 214–223. DOI: 10.1016/j.molmed.2013.08.004
  65. Moore F.A., Moore E.E., Poggetti R. Gut bacterial translocation via the portal vein: A clinical perspective with major torso trauma. J. Trauma. 1991; 31: 629–636.
  66. Assimakopoulos S.F., Triantos C., Thomopoulos K., et al. Gut-origin sepsis in the critically ill patient: pathophysiology and treatment. Infection. 2018; 46(6): 751–760. DOI: 10.1007/s15010-018-1178-5
  67. Zahs A., Bird M.D., Ramirez L., et al. Inhibition of long myosin light chain kinase activation alleviates intestinal damage after binge ethanol exposure and burn injury. Am. J. Physiol. Gastrointest Liver Physiol. 2012; 303: G705–G712. DOI: 10.1152/ajpgi.00157.2012
  68. Nathan C., Ding A. Nonresolving inflammation. Cell. 2010; 140 (6): 871–882. DOI: 10.1016/j.cell.2010.02.029
  69. Carcillo J.A., Halstead E.S., Hall M.W., et al. Three Hypothetical Inflammation Pathobiology Phenotypes and Pediatric Sepsis-Induced Multiple Organ Failure Outcome. Pediatric Critical Care Medicine. 2017, 18(6): 513–523. DOI: 10.1097/PCC.0000000000001122
  70. Scicluna B.P., Vught L.A., Zwinderman A.H, et al., on behalf of the MARS consortium. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir. Med. 2017. DOI: 10.1016/S2213–2600(17)30294-1

Clinical case of treatment of patient with aHUS in obstetrical practice. Experience of anesthesiology and resuscitation department

A.V. Yakubov1, G.N. Salogub1, E.V. Komlichenko1, T.V. Kirsanova2

1 Almazov National Medical Research Centre, Saint-Petersburg

2 Federal State Institution “Research Center for Obstetrics, Gynecology and Perinatology” Ministry of Healthcare of Russian Federation, Moscow

For correspondence: Andrey V. Yakubov — head of Department of anesthesiology and critical care for adult patients of Specialized Perinatal Center of Almazov National Medical Research Centre, St. Petersburg; e-mail:

For citation: Yakubov AV, Salogub GN, Komlichenko EV, Kirsanova TV. Clinical case of treatment of patient with aHUS in obstetrical practice. Experience of anesthesiology and resuscitation department. Alexander Saltanov Intensive Care Herald. 2018;2:87–94.

DOI: 10.21320/1818-474X-2018-2-87-94

Atypical hemolytic-uremic syndrome (aHUS), a variant of thrombotic microangiopathy (TMA), is a life-threatening disease that leads to multiple organ damage with the high rate of maternal mortality or the disability of surviving. Our experience of the clinical course of the disease, launched after delivery, features of multiple organ failure, intensive care unit monitoring and treatment is presented in the article. We suggest, timely diagnosis and early specific anticomplementary therapy with complex and escalation treatment of multiple organ failure, which can be realized only in large multidisciplinary medical centers, can contribute to the improvement of outcomes.

Keywords: thrombotic microangiopathy, atypical hemolytic-uremic syndrome, eculizumab, obstetrics, multiple organ failure

Received: 15.05.2018


  1. КозловскаяН.Л., Прокопенко Е.И., Эмирова Х.М. Клинические рекомендации по диагностике и лечению атипичного гемолитико-уремического синдрома. Нефрология и диализ. 2015; 17(3): 242–264. [Kozlovskaya N.L., Prokopenko E.I., Emirova Kh.M. Clinical guideline for the diagnosis and treatment of atypical hemolytic-uremic syndrome. Nephrologiya and Dialys. 2015; 17(3): 242–264. (In Russ)]
  2. Fakhouri F., Vercel C., Frémeaux-Bacchi V. Obstetric nephrology: AKI and thrombotic microangiopathies in pregnancy. Clin. J. Am. Soc. Nephrol. 2012; 7(12): 2100–2106.
  3. Besbas N., Karpman D., Landau D.,et al. A classification of hemolytic uremic syndrome and thrombotic thrombocytopenic purpura, and related disorders. Kidney Int. 2006; 70(3): 423–431.
  4. Noris M., Remuzzi G. Atypical hemolytic-uremic syndrome. N.Engl. J. Med. 2009; 361: 1676–1687.
  5. КирсановаТ.В., Виноградова М.А., Шмаков Р.Г. Развитие атипичного гемолитико-уремического синдрома после гинекологической операции: особенности клинической картины, диагностики и лечения. Акушерство и гинекология. 2018; 1: 154–160. [Kirsanova T.V., Vinogradova M.A., Shmakov R.G. Development of atypical hemolytic uremic syndrome after gynecologic surgery: clinical presentations, diagnosis, and treatment. Obstetrics and gynecology. 2018; 1: 154–160. (In Russ)]
  6. National Clinical Guideline Centre (UK). Acute Kidney Injury: Prevention, Detection and Management Up to the Point of Renal Replacement Therapy [Internet]. London: Royal College of Physicians (UK); 2013.
  7. Wu V.C., Lin S.L., Tsai C.C., Tien H.F. Postpartum hemolytic uremic syndrome following abruptio placenta: report of a case. J.Formos. Med. Assoc. 2002; 101(12): 868–870.
  8. КирсановаТ.В., Виноградова М.А., Федорова Т.А. Имитаторы тяжелой преэклампсии и HELLP-синдрома: различные виды тромботической микроангиопатии, ассоциированной с беременностью. Акушерство и гинекология. 2016; 12: 5–14. [Kirsanova T.V., Vinogradova M.A., Fedorova T.A. The imitators of severe preeclampsia and HELLP syndrome: Different types of pregnancy-associated thrombotic microangiopathy. Obstetrics and gynecology. 2016; 12: 5–14. (In Russ)]
  9. КозловскаяН.Л., Коротчаева Ю.В., Боброва Л.А. и др. Атипичный гемолитико-уремический синдром: Первый Российский опыт диагностики и лечения. Нефрология. 2016; 2: 68–80. [Kozlovskaya N.L., Korotchaeva Yu.V., Bobrova L.A., et al. Atypical hemolytic-uremic syndrome in obstetric practice: The first Russian experience of diagnosis and treatment. Nephrologiya. 2016; 2: 68–80. (In Russ)]
  10. Clark W.F., Patriquin С., Licht С.,et al. Simple diagnosis and treatment algorithm for adult thrombotic microangiopathy. Transfus. Apher. Sci. 2016; pii: S1473-0502(16)30204-X.
  11. Appel G.B. Thrombotic microangiopathies: Similar presentations, different therapies. Cleve. Clin. J. Med. 2017; 84(2): 114–130.
  12. Shatzel J.J., Taylor J.A. Syndromes of Thrombotic Microangiopathy. Med. Clin. North Am. 2017; 101(2): 395–415.
  13. КирсановаТ.В., Меркушева Л.И., Козловская Н.Л. и др. Атипичный гемолитико-уремический синдром при беременности: особенности течения, сложности диагностики, подходы к терапии. Акушерство и гинекология. 2013; 6: 70–75. [Kirsanova T.V., Merkusheva L.I., Kozlovskaya N.L., et al. Pregnancy-associated atypical hemolytic-uremic syndrome: treatment features, diagnostic difficulties, therapeutic approaches. Obstetrics and gynecology. 2013; 6: 70–75. (In Russ)]
  14. Tsimpanakos I., Connolly J., Alatzoglou K.S. Two cases of myomectomy complicated by intravascular hemolysis and renal failure: disseminated intravascular coagulation or hemolytic uremic syndrome? Fertil. Steril. 2010; 93(6): 2075.
  15. Sizzi O., Rossetti A., Malzoni M. Italian multicenter study on complications of laparoscopic myomectomy. J. Minim. Invasive Gynecol. 2007; 14(4): 453–462.
  16. George J., Nester C., McIntosh J. Syndromes of thrombotic microangiopathy associated with pregnancy. Hematology Am. Soc. Hematol. Educ. Program. 2015; 2015: 644–648.
  17. Kitchens C.S. Thrombotic storm: when thrombosis begets thrombosis. Am. J. Med. 1998; 104(4): 381–385.
  18. Cervera R., Bucciarelli S., Plasin M.A.,et al. Catastrophic antiphospholipid syndrome (CAPS): descriptive analysis of a series of 280 patients from the “CAPS Registry”. J. Autoimmun. 2009; 32(3–4): 240–245.
  19. Caggiano V., Fernando L., Schneider J.,et al. Thrombotic thrombocytopenic purpura, report of fourteen cases: occurrence during pregnancy and response to plasma exchange. J. Clin. Apheresis. 1983; 1: 71–85.
  20. Vesely S.K., Li X., McMinn J.R.,et al. Pregnancy outcomes after recovery from thrombotic thrombocytopenic purpura-hemolytic uremic syndrome. Transfusion. 2004; 44(8): 1149–1158.
  21. Ardissino G., Wally O.M., Maria B.G.,et al. Eculizumab for atypical hemolytic uremic syndrome in pregnancy. Obstet Gynecol. 2013; 122(2 Pt. 2): 487–489.
  22. Mussoni M.P., Veneziano F.A., Boetti L. Innovative therapeutic approach: sequential treatment with plasma exchange and eculizumab in a pregnant woman affected by atypical hemolytic-uremic syndrome. Transfus. Apher. Sci. 2014; 51(2): 134.
  23. Mehmood T., Taylor M., Winters J. Management of Thrombotic Microangiopathic Hemolytic Anemias with Therapeutic Plasma Exchange: When It Works and When It Does Not. Hematol. Oncol. Clin. North Am. 2016; 30(3): 679–694.
  24. Delaney M., Wendel S., Bercovitz R.S.,et al. Biomedical Excellence for Safer Transfusion (BEST) Collaborative. Transfusion reactions: prevention, diagnosis, and treatment. Lancet. 2016; 388(10061): 2825–2836.
  25. Laurence J., Haller H., Mannucci P.M.,et al. Atypical Hemolytic Uremic Syndrome (aHUS): Essential aspects of an accurate diagnosis. Clin. Adv. Hematol. Oncol. 2016; 14(Suppl. 11): 2–15.
  26. ШифманЕ.М., Тиканадзе А.Д., Вартанов В.Я. Инфузионно-трансфузионная терапия в акушерстве. Петрозаводск: ИнтелТек, 2001. [Shifman E.M., Tikanadze A.D., Vartanov V.Ya. Infusion-transfusion therapy in obstetrics. Petrozavodsk: IntelTek, 2001. (In Russ)]
  27. Burwick R.M., Feinberg B.B. Eculizumab for the treatment of preeclampsia/HELLP syndrome. Placenta. 2013; 34(2): 201–203.
  28. Beucher G., Simonet T., Dreyfus M. Management of the HELLP syndrome. Gynecol. Obstet. Fertil. 2008; 36(12): 1175–1190.