Monitoring of Muscle Relaxation in Routine Anesthesia Practice: Three-year Experience

S.V. Chuprin1, O.V. Sushkova1, L.N. Girinskaia1, S.A. Kuznetsov1, V.V. Myasnikova2

1 Base Obstetrics and Gynecology Clinic of Kuban State Medical University, Ministry of Healthcare of the Russian Federation, Krasnodar

2 FSАI S.N. Fyodorov IRTC «Eye Microsurgery» of the Ministry of Healthcare of the Russian Federation, Krasnodar

For correspondence: Chuprin Sergey Vyacheslavovich — Candidate of Science, Head of the Department of anesthesiology and intensive care, Base Obstetrics and Gynecology Clinic of Kuban State Medical University, Ministry of Healthcare of the Russian Federation, Krasnodar; e-mail: sergiosoon@mail.ru

For citation: Chuprin SV, Sushkova OV, Girinskaia LN, Kuznetsov SA, Myasnikova VV. Monitoring of Muscle Relaxation in Routine Anesthesia Practice: Three-year Experience. Intensive Care Herald. 2017;1:23–27.


Neuromuscular block is a really significant component of anesthesia during surgery operations. At this time, individual sensitivity to neuromuscular blocking differs considerably and depends on great number of factors. The main task of conduct of neuromuscular monitoring is exclusion of residual block and recovery of neuromuscular conductivity. We present analysis of three years’ experience of application of monitoring of neuromuscular conductivity. The aim of the research is the estimation of effectiveness of usage of monitoring of neuromuscular conductivity in daily practice of anesthesia service for provision of patients’ security and formation of comfortable conditions for surgeons’ work. Materials and methods. In our research, we included 4459 patients who had operating treatment under general anesthesia. All the patients were divided in two groups. In the first group (2355 patients) during anesthesia there used monitor TOF-Watch SX (Organon, Ireland). In the second group (2104 patients) monitoring of neuromuscular conductivity was not performed. Results. The received results lead to the conclusion that application of monitoring of neuromuscular conductivity allowed to decrease statistically number of incidents connected with insufficient neuromuscular blocking or impaired reversion of neuromuscular block. Absence of statistically considerable differences in quantity of hyperdynamic reactions in the circulatory system connected with intubation, probably, is caused by great quantity of heterogeneous factors of influence on this index. Also, application of monitor of neuromuscular conductivity made it possible to conform to a surgeon’s expectations, ensuring muscular relaxation suitable for surgery conditions. Conclusion. Usage of monitors of neuromuscular conductivity in routine anesthesia practice is necessary and essential for ensuring patients’ security and creation of comfortable conditions for surgeons work.

Keywords: muscle relaxants, neuromuscular block, neuromuscular monitoring, TOF-mode, reversion

Received: 24.12.2016


References

  1. Миллер Р. Анестезия Рональда Миллера: Пер. с англ. Под общ. ред. К.М. Лебединского: В 4 т. СПб.: Человек, 2015. Т. 2. [Miller R. Miller’s anaesthesia. Ed.: K.M. Lebedinskiy. Saint-Petersburg: Chelovek, 2015. Vol. 2. (In Russ)]
  2. Морган Дж.Э. мл., Михаил М.С., Марри М.Дж. Клиническая анестезиология. Кн. 1. М.: Бином, 2013. [Morgan G.E, Mikhail M.S., Murray M.J. Clinical anesthesiology. Vol. Moscow: Binom, 2013. (In Russ)]
  3. Управление нейромышечным блоком в анестезиологии. Клинические рекомендации ФАР. Под. ред. Е.С. Горобца, В.М. Мизикова, Э.М. Николаенко. М.: ГЭОТАР-Медиа, 2014. [Upravlenie neiromyshechnym blokom v anesteziologii. Klinicheskie rekomendatsii FAR. Eds.: E.S.Gorobets, V.M. Mizikov, E.M. Nikolaenko. Moscow: GEOTAR-Media, 2014. (In Russ)]
  4. Arain S.R., Kern S., Ficke D.J. et al. Variability of duration of action of neuromuscular-blocking drugs in elderly patients. Acta Anaesthesiol. Scand. 2005; 49: 312– doi: 10.1111/j.1399-6576.2005.00634.x.
  5. Blobner M., Eriksson L.I., Scholz J. et al. Reversal rocuroniuminduced neuromuscular blockade with sugammadex compared with neostigmine during sevofluraneanaesthesia: results of a randomized, controlled trial. Eur. J. Anaesthesiol. 2010; 27(10): 874–881. doi: 10.1097/EJA.0b013e32833d56b7.
  6. Chui P.T., Gin T., Oh T.E. Anaesthesia for laparoscopic general. Anaesth. Intensive Care. 1993; 21: 163–171.
  7. Claudius C., Garvey L.H., Viby-Mogensen J. The undesirable effects of neuromuscular blocking drugs. Anaesthesia. 2009; 64(Suppl 1): 10– doi: 10.1111/j.1365-2044.2008.05866.x.
  8. Dubois P.E., Putz L., Jamart J. et al. Deep neuromuscular block improves surgical conditions during laparoscopic hysterectomy: A randomised controlled trial. Eur. J. Anaesthesiol. 2014; 31: 430–436. doi: 10.1097/EJA.0000000000000094.
  9. Fujimoto M., Tanahira C., Yamamoto M. In non-obese patients, duration of action of rocuroniumis directly correlated with body mass index. Canadian Journal of Anesthesia. 2013; 60(6): 552–556. doi: 10. 1007/s12630-013-9914-x.
  10. Grosse-Sundrup M., Henneman J.P., Sandberg W.S. et al. Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score matched cohort study. British Medical Journal. 2012; 345: e6329. doi: 10.1136/bmj.e6329.
  11. Gurusamy K.S., Samraj J.K., Davidson B.R. Low pressure versus standard pressure pneumoperitoneum in laparoscopic cholecystectomy. Cochrane Database of Systematic Reviews. 2009; 2. Art. No: CD006930. doi: 10.1002/14651858.CD006930.pub2.
  12. King M., Sujirattanawimol N., Danielson D.R. Requirements for muscle relaxants during radical retropubic prostatectomy. Anesthesiology. 2000; 93: 1392–1397.
  13. Martini C.H., Boon M., Bevers R.F. et al. Evaluation of surgical conditions during laparoscopic surgery in patients with moderate vs deep neuromuscular block. Br. J. Anaesth. 2014; 112: 498– doi: 10.1093/bja/aet377.
  14. Martyn J.A., Fagerlund M.J., Eriksson L.I. Basic principles of neuromuscular transmission. Anaesthesia. 2009; 64(Suppl 1): 1–9. doi: 10.1111/j.1365-2044.2008.05865.x.
  15. Murphy G.S., Brull S.J. Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth. Analg. 2010; 111(1): 120–
  16. Nguyen J.H., Tanaka P.P. Anesthesia for Laparoscopic Surgery. In: Wetter P.A., ed. Prevention and Management of Laparoendoscopic Surgical Complications. 2nd Society of Laparoendoscopic Surgeons. 2011.
  17. Welliver M., McDonough J., Kalynych N. et al. Discovery, development, and clinical application of sugammadex sodium, a selective relaxant binding agent. Drug Des. Devel. Ther. 2009; 2: 49–59.
  18. Xiaobo F., Jianjuan K., Yanlin W. Comparison of the variability of the onset and recovery from neuromuscular blockade with cisatracurium versus rocuronium in elderly patients under total intravenous anesthesia. Brazilian Journal of Medical and Biological Research. 2012; 45: 676–680. doi: 10.1590/S00100-879X2012007500076.

To the question about factors influencing neuromuscular blockade

G.G. Bestaev, V.D. Slepushkin

North-Ossetian State Medical Academy, Vladikavkaz

For correspondence: Georgy Bestaev — assistant of Department of anesthesiology and critical care medicine of North-Ossetian State Medical Academy; e-mail: georbest@mail.ru

For citation: Bestaev GG, Slepushkin VD. To the question about factors influencing neuromuscular blockade. Alexander Saltanov Intensive Care Herald. 2018;2:36–9.

DOI: 10.21320/1818-474X-2018-2-36-39


It has long been known that the duration of the action of muscle relaxants is affected by a variety of factors, and to a greater extent this effect is observed when using non-depolarizing muscle relaxants of medium and long duration. Surprisingly, factors, influencing neuromuscular block, are not becoming the subject of scientific discussion and are not reflected in modern literature. It is absolutely obvious at the same time that the study of quantitative dynamics of neuromuscular block represents a significant scientific and practical interest. In the given literature review the most important factors will be considered and discussed.

Keywords: factors, muscle relaxants, neuromuscular block, inhalational anesthetics, smoking, electrolytes, temperature, circadian rhythm

Received: 07.02.2018


References

  1. Бестаев Г.Г., Слепушкин В.Д. Миорелаксанты: от кураре до круарона. Владикавказ, 2016. [Bestaev G.G., Slepushkin V.D. Muscle relaxants: from curare to kruaron. Vladikavkaz,2016. (In Russ)]
  2. СлепушкинВ.Д., Бестаев Г.Г. Использование миорелаксантов в анестезиологии и реаниматологии. Москва — Владикавказ, 2017. [Slepushkin V.D., Bestaev G.G. The use of muscle relaxants in anesthesia and resuscitation. Moskva — Vladikavkaz, 2017. (In Russ)]
  3. Багомедов В.Р., Слепушкин В.Д., Тотикова М.Б. Особенности анестезиологического пособия у курящих больных. Актуальные вопросы современной медицины.2012. [Bagomedov V.P., Slepushkin V.D., Totikova M.B. Features anesthetic in smoking patients. Topical issues of modern medicine. 2012. (In Russ)]
  4. Ishigaki S., Ogura T., Kanaya A. Influence of preoperative oral rehydration on arterial plasma rocuronium concentration and neuromuscular blocking effects: A randomized controlled trial. Eur. J. Anaesthesiol. 2017; 34: 16–22.
  5. Saitoh Y., Toyooka H., Amaha K. Recoveries of post-tetanic twitch and train-of-four responses after administration of vecuronium with different inhalation anaeshetics and neuroleptanaesthesia. Br. J. Anaesth. 1993; 70: 402–404.
  6. Bock M., Klippel K., Nitsche B., et al. Rocuronium potency and recovery characteristics during steady-state desflurane, sevoflurane, isoflurane or propofol anaesthesia. Br. J. Anaesth. 2000; 84: 43–47.
  7. Suzuki T., Fukano N., Kitajima O., et al. Normalization of acceleromyographic train-of-four ratio by baseline value for detecting residual neuromuscular block. Br. J. Anaesth. 2006; 96: 44–47.
  8. Pereon Y., Bernard J.M., Nguyen The Tich S., et al. The effects of desflurane on the nervous system: from spinal cord to muscles. Anesth. Analg. 1999; 89: 490–495.
  9. Paul M., Fokt R.M., Kindler C.H., et al. Characterization of the interactions between volatile anesthetics and neuromuscular blockers at the muscle nicotinic acetylcholine receptor. Anesth. Analg. 2002; 95: 362–367.
  10. Cannon J.E., Fahey M.R., Castagnoli K.P., et al. Continuous infusion of vecuronium: the effect of anesthetic agents. Anesthesiology. 1987; 67: 503–506.
  11. Rupp S.M., Miller R.D., Gencarelli P.J. Vecuronium-induced neuromuscular blockade during enflurane, isoflurane, and halothane anesthesia in humans. Anesthesiology. 1984; 60: 102–105.
  12. Gecarelli P.J., Miller R.D., Eger E.I., et al. Decreasing enflurane concentrations and rf-tubocurarine neuromuscular blockade. Anesthesiology. 1982; 56: 192–194.
  13. Wulf H., Kahl M., Ledowski T. Augmentation of the neuromuscular blocking effects of cisatracurium during desflurane, sevoflurane, isoflurane or total i.v. anaesthesia. Br.J. Anaesth. 1988; 80: 308–312.
  14. СуиниБ.П., Грейлинг М. Курение и анестезия: фармакология и последствия. Регионарная анестезия и лечение острой боли. 2011; 5(4): 52–60. [Sweeney B.P., Grayling M. Smoking and anaesthesia: the pharmacological implications. Regional anesthesia and treatment of acute pain. 2011; 5(4): 52–60. (In Russ)]
  15. Beckers S., Camu F. The anesthetic risk of tobacco smoking. Acta Anaesthesiologica Belgica. 1991; 42: 45–56.
  16. Rodrigo C. The effects of cigarette smoking on anesthesia. Anesthesia Progress. 2000; 47: 143–150.
  17. Benowitz N.L. Pharmacological aspects of cigarette smoking and nicotine. New England Journal of Medicine. 1988; 319: 1318–1330.
  18. Teiria H., Rautoma P., Yli-Hankala A. Effect of smoking on dose requirements for vecuronium. Br. J. of Anaesthesia. 1996; 76: 154–155.
  19. Latorre F., de Almeida M.C., Stanek A., et al. The interaction between rocuronium and smoking. The effect of smoking on neuromuscular transmission after rocuronium. Anaesthesist. 1997; 46: 493–495.
  20. Puhringer F.K., Keller P., Lockinger A., et al. Smoking does not alter the dose-requirements and the pharmacodynamics of rocuronium. Can. J. Anaesthesia. 2000; 47: 347–349.
  21. Puura A.I., Rorarius M.G., Laippala P., et al. Does abstinence from smoking or a transdermal nicotine system influence atracurium-induced neuromuscular block? Anesthesia and Analgesia. 1998; 87: 430–433.
  22. Fuchs-Buder T. et al. Interaction of magnesium sulphate with vecuronium-induced neuromuscular block. Br. J. Anaesth. 1995; 74(4): 405–409.
  23. Kussman B. et al. Administration of magnesium sulphate before rocuronium: effects on speed of onset and duration of neuromuscular block. Br. J. Anaesth. 1997; 79(1): 122–124.
  24. Czarnetzki C. et al. Time course of rocuronium-induced neuromuscular block after pretreatment with magnesium sulphate: a randomised study. Acta Anaesthesiol. Scand. 2010; 54(3): 299–306.
  25. Kim M.H. et al. A randomised controlled trial comparing rocuronium priming, magnesium pretreatment and a combination of the two methods. Anaesthesia. 2012; 67(7): 748–754.
  26. Waud B.E., Waud D.R. Interaction of calcium and potassium with neuromuscular blocking agents. Br. J. Anaesth. 1980; 52: 863–866.
  27. Naquib M., Lien C.A. Pharmacology of muscle relaxants and their antagonists. In: Miller’s Anesthesia. 6thed. Ed. R.D. Miller. New York: Churchill Livingstone, 2005: 481–572.
  28. Biro K. Effects of respiratory and metabolic alkalosis and acidosis on pipecuronium neuromuscular block. Eur. J. Pharmacol. 1988; 154: 329–333.
  29. Adamus M., Hrabalek L., Wanek T., et al. Influence of age and gender on the pharmacodynamic parameters of rocuronium during total intravenous anesthesia. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2011; 155: 347–353.
  30. Craig R.G., Hunter J.M. Neuromuscular blocking drugs and their antagonists in patients with organ disease. Anaesthesia. 2009; 64: 55–65.
  31. Dahaba A.A., Perelman S.I., Moskowitz D.M., et al. Geographic regional differences in rocuronium bromide dose-response relation and time course of action: an overlooked factor in determining recommended dosage. Anesthesiology. 2006; 104: 950–953.
  32. Soltész S., Fraisl P., Noé K.G., et al. Dexamethasone decreases the duration of rocuronium-induced neuromuscular block: a randomised controlled study. Eur.J. Anaesthesiol. 2014; 31: 417–422.