One-lung ventilation management for thoracic surgeries in pediatric oncology

L.A. Martynov1, N.V. Matinyan1,2

1 Pediatric Oncology and Hematology Research Institute, Blokhin Russian Cancer Research Center of the Ministry of Health of Russia, Moscow

2 Pirogov Russian National Research Medical University of the Ministry of Health of Russia, Moscow

For correspondence: Nune Matinyan — MD, PhD, Professor, Head of Anesthesiology and intensive care department, Pediatric Oncology and Hematology Research Institute, Blokhin Russian Cancer Research Center of the Ministry of Health of Russia, Moscow; e-mail:

For citation: Martynov L.A., Matinyan N.V. One-lung ventilation management for thoracic surgeries in pediatric oncology. Alexander Saltanov Intensive Care Herald. 2018;4:65–73.

DOI: 10.21320/1818-474X-2018-4-65-73

Treatment of children with mediastinal and lung tumors is an urgent problem in both surgery and anesthesiology. Main goal is to grant optimal conditions for the surgery — collapse of the lung on the side of the operation, while maintaining adequate oxygenation and efficient transport of oxygen to the tissues. The choice of devices for carrying out one-lung ventilation is the most important factor determining the safety of the patient.

Aim. To increase the efficiency and safety of anesthesia for thoracic surgeries in children due to the use of bronchial blockers for one-lung ventilation.

Materials and methods. 70 surgeries were performed (38 — thoracoscopic, 32 — thoracotomies) in 70 patients. Patients were randomly divided into two groups: Study Group (BB) (n = 56) — one-lung ventilation was performed using bronchial blocker; Control group (DLT) (n = 14) — one-lung ventilation was performed using a double-lumen tube. Ventilation parameters, hemodynamics, the incidence of complications in the perioperative and postoperative periods were recorded.

Results. A much less prolonged intubation of the trachea time in BB group was found compared to the DLT group (55.36 ± 26.34 sec versus 97.0 ± 7.09 sec, respectively, p < 0.0001) and a lower frequency of repositioning (0.2 ± 0.4 and 0.57 ± 0.51, respectively, p = 0.04). In patients with bronchial blockers, less complications were recorded, such as postoperative aphonia and sore throat.

Conclusion. An analysis of obtained results allows the assertion that bronchial blockers demonstrate greater efficacy in comparison with double-lumen tubes. They provide faster intubation than DLT, irrespective of the side of the surgery, allow complete collapse of the lung with a less frequent need for repositioning. The introduction of a new method of one-lung ventilation with the use of bronchial blockers in children will improve the results of surgeries by providing adequate conditions for the surgical team, reducing the length of stay of patients in the intensive care unit during the postoperative period due to the reduction in complications such as trauma of the main bronchi, aphonia and sore throat.

Keywords: pediatric oncology, thoracic surgery, one lung ventilation, bronchial blockers

Received:  15.10.2018


    1. Erginel B., Soysal F.G., Keskin E., et al. Pulmonary metastasectomy in pediatric patients. World J. Surg. Oncol. 2015; 14: 27. DOI: 10.1186/s12957-016-0788-6.
    2. Rodriguez M.A., Lugo-Vicente H. Pulmonary metastasectomy for children with malignant tumors. Bol. Asoc. Med. P. R. 2012; 104(3): 35–40.
    3. Fuchs J., Seitz G., Handgretinger R., et al. Surgical treatment of lung metastases in patients with embryonal pediatric solid tumors: an update. Semin. Pediatr. Surg. 2012; 21(1): 79–87. DOI: 10.1053/j.sempedsurg.2011.10.008.
    4. Falzon D., Alston R.P., Coley E., Montgomery K. Lung Isolation for Thoracic Surgery: From Inception to Evidence-Based. J. Cardiothorac. Vasc. Anesth. 2017; 31(2): 678–693. DOI: 10.1053/j.jvca.2016.05.032.
    5. Hammer G.B. Single-lung ventilation in infants and children. Pediatric Anesthesia. 2004; 14: 98–102. DOI: 10.1046/j.1460-9592.2003.01197.x.
    6. Fabila T.S., Menghraj S.J. One lung ventilation strategies for infants and children undergoing video assisted thoracoscopic surgery. Indian J. Anaesth. 2013; 57(4): 339–344. DOI: 10.4103/0019–5049.118539.
    7. Neustein S.M. Pro: bronchial blockers should be used routinely for providing one-lung ventilation. J. Cardiothorac. Vasc. Anesth. 2015; 29(1): 234–236. DOI: 10.1053/j.jvca.2014.07.028.
    8. Knoll H., Ziegeler S., Schreiber J.U., et al. Airway injuries after one-lung ventilation: a comparison between double-lumen tube and endobronchial blocker. Anesthesiology. 2006; 105: 471–477.
    9. Saracoglu A., Saracoglu K.T. VivaSight: a new era in the evolution of tracheal tubes. J. Clin. Anesth. 2016; 33: 442–449. DOI: 10.1016/j.jclinane.2016.04.034.
    10. Neustein S.M. The use of bronchial blockers for providing one-lung ventilation. J. Cardiothorac. Vasc. Anesth. 2009; 23: 860–868. DOI: 10.1053/j.jvca.2009.05.014.
    11. Levine M., Slinger P. Single-lung ventilation in pediatrics. Can. J. Anesth. 2002; 49: 221–225.
    12. Campos J.H. Lung isolation techniques for patients with difficult airway. Curr. Opin. Anaesthesiol. 2010; 23: 12–17. DOI: 10.1097/ACO.0b013e328331e8a7.
    13. Campos J.H. Which device should be considered the best for lung isolation: Double-lumen endotracheal tube versus bronchial blockers? Curr. Opin. Anaesthesiol. 2007; 20: 27–31. DOI: 10.1097/ACO.0b013e3280111e2a.
    14. Slinger P. Con: the new bronchial blockers are not preferable to double-lumen tubes for lung isolation. J. Cardiothorac. Vasc. Anesth. 2008; 22: 925–929. DOI: 10.1053/j.jvca.2008.09.001.
    15. Bauer C. et al. Bronchial blocker compared to DLT for one-lung ventilation during thoracoscopy. Acta Anaesthesiol. Scand. 2001; 45: 250–254.
    16. Cohen E. The Cohen flexitip endobronchial blocker: an alternative to a double lumen tube. Anesth. Analg. 2005; 101: 1877–1879. DOI: 10.1213/01.ANE.0000184116.86888.D9.
    17. Ruetzler K., Grubhofer G., Schmid W., et al. Randomized clinical trial comparing double-lumen tube and EZ-Blocker for single-lung ventilation. Br. J. Anaesth. 2011; 106: 896–902. DOI: 10.1093/bja/aer086.
  1. Kus A., Hosten T., Gurkan Y., et al. A comparison of the EZ-Blocker with a Cohen Flex-Tip Blocker for One-Lung Ventilation. J. Cardiothorac. Vasc. Anesth. 2014; 28(4): 896–899. DOI: 10.1053/j.jvca.2013.02.006.
  2. Purohit A., Bhargava S., Mangal V., Parashar V.K. Lung isolation, one‐lung ventilation and hypoxaemia during lung isolation. Indian J. Anaesth. 2015; 59: 606–617. DOI: 10.4103/0019–5049.165855.
  3. Narayanaswamy M., McRae K., Slinger P., et al. Choosing a lung isolation device for thoracic surgery: a randomized trial of three bronchial blockers versus double-lumen tubes. Anesth. Analg. 2009; 108(4): 1097–1101. DOI:10.1213/ane.0b013e3181999339.


Use of Presepsin and Nitric Oxide Metabolites in Pediatric Oncology Patients with Infectious Complications

E.G. Golovnya, A.V. Sotnikov, V.N. Baykova, O.P. Petina

N.N. Blokhin Russian Cancer Research Center, Moscow

For correspondence: Sotnikov Anatoly Bjacheslavovich — Ph.D, Senior Research Officer, Department of anesthesiology and reanimatology of N.N. Blokhin Russian Cancer Research Center; e-mail:

For citation: Golovnya EG, Sotnikov AV, Baykova VN, Petina OP. Use of presepsin and nitric oxide metabolites in pediatric oncology patients with infectious complications. Intensive Care Herald. 2016;3:43–46.

Early diagnostics of infectious complications is an actual problem of modern medicine. Application of different methods of laboratory biomarkers of sepsis allows to differentiate between different pathological conditions by its severity (from SIRS to septic shock and multi-organ failure), that seems to be crucial in prognosis. Differences in concentration of presepsin (PSP) and nitric oxide metabolites (sum of nitrates and nitrites) in two groups of pediatric patient with oncological diseases are presented in current research (р < 0.05). There was no statistically significant correlation between these biomarkers in both groups of patients. Our data showed evidence that growth of concentration of PSP and simultaneous drawdown of concentration of NOx could be a factor of poor prognosis in patients with infectious complications.

Keywords: biomarkers of sepsis, pediatric oncology, presepsin, nitric oxide

Received: 06.03.2016


  1. Mayr F.B., Yende S., Angus D.C. Epidemiology of severe sepsis. Virulence. 2014; 5(1): 4–11. doi: 10.4161/viru.27372. Epub 2013 Dec 11.
  2. Samraj R.S., Zingarelli B., Wong H.R. Role of biomarkers in sepsis care. Shock. 2013; 40(5): 358–365. doi: 1097/SHK.0b013e3182a66bd6.
  3. Колесниченко А.П., Мосякин Н.А., Распопин Ю.С., Кондрашов М.А. Информативность различных биохимических маркеров сепсиса: литературные и собственные данные. Сибирское медицинское обозрение. 2015; 4: 11–17. [Kolesnichenko A.P., Mosyakin N.A., Raspopin Yu.S., Kondrashov M.A. Informativnost’ razlichnyh biohimicheskih markerov sepsisa: literaturnye i sobstvennye dannye. Sibirskoe meditsinskoe obozrenie. 2015; 4: 11–17. (In Russ)]
  4. Vincent J.L., Donadello K., Schmit X. Biomarkers in the critically ill patient: C-reactive protein. Crit. Care Clin. 2011; 27: 241–251. doi: 10.1016/j.ccc.2010.12.010.
  5. Reinhart K., Meisner M. Biomarkers in the critically ill patient: procalcitonin. Crit. Care Clin. 2011; 27: 253–263. doi: 10.1016/j.ccc.2011.01.002.
  6. Yaegashi Y., Shirakawa K., Sato N. et al. Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J. Infect. Chemother. 2005; 11: 234–238. doi: 10.1007/s10156-005-0400-4.
  7. Shozushima T., Takahashi G., Matsumoto N. et al. Usefulness of presepsin (sCD14-ST) measurements as a marker for the diagnosis and severity of sepsis that satisfied diagnostic criteria of systemic inflammatory response syndrome. J. Infect. Chemother. 2011; 17: 764–769. doi: 10.1007/s10156-011-0254-x. Epub 2011 May 12.
  8. Lupp C., Baasner S., Ince C. et al. Differentiated control of deranged nitric oxide metabolism: a therapeutic option in sepsis? Crit. Care. 2013; 17(3): 311. doi: 10.1186/cc12538.
  9. Endo S., Suzuki Y., Takahashi G. et al. Presepsin as a powerful monitoring tool for the prognosis and treatment of sepsis: A multicenter prospective study. J. Infect. Chemother. 2013;18(6): 891–897. doi: 10.1007/s10156-012-0435-2.
  10. Liu B., Chen Y.X., Yin Q. et al. Diagnostic value and prognostic evaluation of Presepsin for sepsis in an emergency department. Crit. Care. 2013; 17(5): R244. doi: 10.1186/cc13070.
  11. Levy M.M., Fink M.P., Marshall J.C. et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit. Care 2003; 31: 1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B
  12. Голиков П.П., Николаева Н.Ю. Метод определения нитрита/нитрата (NOx) в сыворотке крови. Биомедицинская химия. 2004; 50(1): 79–85. [Golikov P.P., Nikolaeva N.Yu. Metod opredeleniya nitrita/nitrata (NOx) v syvorotke krovi. Biomeditsinskaya himiya. 2004; 50(1): 79–85. (In Russ)]
  13. Марков Х.М. Роль оксида азота в патогенезе болезней детского возраста. Российский вестник перинатологии и педиатрии. 2000; 4: 43–47. [Markov H.M. Pol’ oksida azota v patogeneze boleznej detskogo vozrasta. Rossijskij vestnik perinatologii i pediatrii. 2000; 4: 43–47. (In Russ)]
  14. Sargentini V., Ceccarelli G., D’Alessandro M. et al. Presepsin as a potential marker for bacterial infection relapse in critical care patients. A preliminary study. Chem. Lab. Med. 2014; 53(4): 567–573. doi: 10.1515/cclm-2014-0119.
  15. Shears L.L., Kawaharada N., Tzeng E. et al. Inducible nitric oxide synthase suppresses the development of allograft arteriosclerosis. Clin. Invest. 1997; 100(8): 2035–2042. doi: 10.1172/JCI119736