The influence of anesthesia components on systemic inflammatory response during cardiac surgery with cardiopulmonary bypass. Article

R.R. Adzhigaliev1, А.E. Вautin2, V.V. Рasyuga1

1 FSBI “Federal Center for Cardiovascular Surgery” of the Ministry of Health of the Russian Federatio., Astrakhan, Russia

2 FSBI “Almazov National Medical Research Centre” of the Ministry of Health of the Russian Federation, St. Petersburg, Russia

For correspondence: Ruslan R. Adzhigaliev — anesthesiologist and emergency physician of anesthesiology and intensive care department, Astrakhan; e-mail:

For citation: Adzhigaliev RR, Вautin АE, Рasyuga VV. The influence of anesthesia components on systemic inflammatory response during cardiac surgery with cardiopulmonary bypass. Article. Annals of Critical Care. 2019;4:73–80.

DOI: 10.21320/1818-474X-2019-4-73-80


Background. There are some experimental and clinical data indicating that propofol and morphine may to reduce systemic inflammatory response (SIR) after cardiopulmonary bypass (CPB).

Objectives. To study the impact of anesthetics and opioids on the SIR associated with cardiopulmonary bypass.

Materials and methods. The studies examined the dynamic concentration of tumor necrosis factor (TNF), interleukin-6 (IL-6) and interleukin-8 (IL-8) before CPB, 1, 3 and 24 hours after the end of CPB in 119 patients randomized in four groups. Patients of the first group received sevoflurane and fentanyl, patients of the second group received sevoflurane and morphine, patients of the third group received propofol and fentanyl, patients of the fourth group received propofol and morphine.

Results. There was found increase in cytokine level in 1 hour after CPB. In the fourth group concentration of markers was lower versus the other groups. Significant differences were found with group 1 (sevoflurane and fentanyl) in the concentration of IL-6 after 3 hours (p = 0.004) and after 24 hours (p = 0.018); IL-8 after 1 hour (p = 0.003); TNF after 1 hour (p = 0.001) and after 3 hours (p = 0.001). In the fourth group (propofol and morphine) compared with group 1 (sevoflurane and fentanyl) there was lower body temperature in 4 hours after surgery (p = 0.005) and a lower leukocyte count on the 3rd day – 8,2 (7–11,4) ×109/l versus 11,1 (9–12,6) ×109/l (p = 0,005), there was less length of the ICU stay — 24 (21–29) hours versus 44 (23–71) hours (p = 0.013) and the frequency of use of vasoactive medications is 13.3 % versus 46.7 % (p = 0.02).

Conclusion. Our results showed the ability of propofol and morphine to reduce the manifestations of a systemic inflammatory response throughout cardiac surgery with cardiopulmonary bypass.

Keywords: cardiac surgery, cardiopulmonary bypass, propofol, sevoflurane, morphine, fentanyl, systemic inflammatory response

Received: 30.08.2019

Accepted: 05.11.2019


  1. Balk R.A. Systemic inflammatory response syndrome (SIRS): Where did it come from and is it still relevant today? Virulence. 2014; 5(1): 20–26. DOI: 10.4161/viru.27135
  2. Day J.R., Taylor K.M. The systemic inflammatory response syndrome and cardiopulmonary bypass. Int. J. Surg. 2005; 3: 129–140. DOI: 10.1016/j.ijsu.2005.04.002
  3. Shinji H. Systemic inflammatory response syndrome after cardiac surgery under cardiopulmonary bypass. Ann. Thorac. Cardiovasc. Surg. 2003; 9(6): 365–370.
  4. Murphy G.S., Szokol J.W., Marymont J.H., et al. The effects of morphine and fentanyl on the inflammatory response to cardiopulmonary bypass in patients undergoing elective coronary artery bypass graft surgery. Anesth. Analg. 2007; 104(6): 1334–1342. DOI: 10.1213/01.ane.0000264108.47280.f5
  5. Schneemilch C.E., Schilling T., Bank U. Effects of general anaesthesia on inflammation. Best. Pract. Res. Clin. Anaesthesiol. 2004; 18(3): 493–507. DOI: 10.1016/j.bpa.2004.01.002
  6. Stefano G.B., Scharrer B., Smith E.M., et al. Opioid and opiate immunoregulatory processes. Crit. Rev. Immunol. 1996; 16(2): 109–144.
  7. Dabbagh A., Rajaei S., Ayad Bahadori Monfared A.B., Keramatinia A.A. Cardiopulmonary bypass, inflammation and how to defy it: focus on pharmacological interventions. Iran. J. Pharm. Res. 2012; 11(3): 705–714.
  8. Samir A., Gandreti N., Madhere M., et al. Anti inflammatory effects of propofol during cardiopulmonary bypass: A pilot study. Ann. Card. Anaesth. 2015; 18(4): 495–501. DOI: 10.4103/0971-9784.166451
  9. Sayed S., Maghraby H., Momen S., et al. Effect of morphine and fentanyl on inflammatory biomarkers in rheumatic heart patients undergoing valve replacement surgery. Anesth. Clin. Res. 2014, 5(6): 412–420. DOI: 10.4172/2155-6148.1000412
  10. Аджигалиев Р., Баутин А., Илов Н. и др. Различное влияние наркотических анальгетиков на динамику активности цитокинов во время кардиохирургических вмешательств в условиях искусственного кровообращения. Вестн. анестезиол. и реаниматол. 2017; 14(5): 34–40. DOI: 10.21292/2078-5658-2017-14-5-34-40. [Аdzhigаliev R.R., Bаutin А.E, Ilov N.N., et al. Various effects of narcotic analgesics on the changes in cytokine activities during cardiac surgery with cardiopulmonary bypass Vestnik Anasteziol. i Reanimatol. 2017; 14(5): 34–40. (In Russ)]
  11. Claxton A.R., McGuire G., Chung F., Cruise C. Evaluation of morphine versus fentanyl for postoperative analgesia after ambulatory surgical procedures. Anesth. Analg. 1997; 84 (3): 509–514.
  12. Murphy G.S., Szokol J.W., Marymont J.H., et al. Morphine-based cardiac anesthesia provides superior early recovery compared with fentanyl in elective cardiac surgery patients. Anesth. Analg. 2009; 109(2): 311−319. DOI: 10.1213/ane.0b013e3181a90adc
  13. Musacchio E., Rizzoli V., Bianchi M., et al. Antioxidant action of propofol on liver microsomes, mitochondria and brain synaptosomes in the rat. Pharmacol. Toxicol. 1991; 69: 75–77.
  14. Corcoran T.B., Engel A., Sakamoto H., et al. The effects of propofol on lipid peroxidation and inflammatory response in elective coronary artery bypass grafting. J. Cardiothorac. Vasc. Anesth. 2004; 18: 592–604.
  15. Lisowska B., Szymańska M., Nowacka E., Olszewska M. Anesthesiology and the cytokine network. Postepy. Hig. Med. Dosw. (Online). 2013; 67: 769–769.
  16. Mathy-Hartert M., Deby-Dupont G., Hans P., et al. Protective activity of propofol, diprivan and intralipid against active oxygen species. Mediators Inflamm. 1998; 7: 327–333.
  17. Heine J., Jaeger K., Osthaus A., et al. Anaesthesia with propofol decreases FMLP-induced neutrophil respiratory burst but not phagocytosis compared with isoflurane. Br. J. Anaesth. 2000; 85 (3): 424–430.
  18. Inada T., Yamanouchi Y., Jomura S., et al. Effect of propofol and isoflurane anaesthesia on the immune response to surgery. Anaesthesia. 2004; 59(10): 954–959. DOI: 10.1111/j.1365-2044.2004.03837.x
  19. Petros A.J., Bogle R.G., Pearson J.D. Propofol stimulates nitric oxide release from cultured porcine aortic endothelial cells. Br. J. Pharmacol. 1993; 109: 6–7.
  20. Mathy Hartert M., Mouithys Mickalad A., Kohnen S., et al. Effects of propofol on endothelial cells subjected to a peroxynitrite donor (SIN-1). Anaesthesia. 2000; 55: 1066–1071. DOI: 10.1046/j.1365-2044.2000.01606.x
  21. Mikawa K., Akamatsu H., Nishina K., et al. Propofol inhibits human neutrophil functions. Anesth. Analg. 1998; 87: 695–700.
  22. Day J.R., Taylor K.M. The systemic inflammatory response syndrome and cardiopulmonary bypass. Int. J. Surg. 2005; 3: 129–140. DOI: 10.1016/j.ijsu.2005.04.002.
  23. Punjabi P.P., Taylor K.M. The science and practice of cardiopulmonary bypass: From cross circulation to ECMO and SIRS. Glob. Cardiol. Sci. Pract. 2013; 3: 249–260. DOI: 10.5339/gcsp.2013.32
  24. Paparella D., Yau T.M., Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur. J. Cardiothorac. Surg. 2002; 21(2): 232–244. DOI: 10.1016/s1010-7940(01)01099-5
  25. Chen R.M., Wu CH, Chang H.C., et al. Propofol suppresses macrophage functions and modulates mitochondrial membrane potential and cellular adenosine triphosphate synthesis. Anesthesiology. 2003; 98: 1178–1185. DOI: 10.1097/00000542-200305000-00021
  26. Chang H., Tsai S.Y., Chang Y., et al. Therapeutic concentrations of propofol protects mouse macrophages from nitric oxide-induced cell death and apoptosis. Can. J. Anaesth. 2002; 49: 477–80.
  27. De La Cruz J.P., Sedeño G., Carmona J.A., Sánchez de la Cuesta F. The in vitro effects of propofol on tissular oxidative stress in the rat. Anesth. Analg. 1998; 87: 1141–1146.
  28. Mouithys-Mickalad A., Hans P., Deby-Dupont G. Propofol reacts with peroxynitrite to form a phenoxyl radical: Demonstration by electron spin resonance. Biochem. Biophys. Res. Commun. 1998; 249 (3): 833–837. DOI: 10.1006/bbrc.1998.9235
  29. Hess M.L., Okabe E., Kontos H.A. Proton and free oxygen radical interaction with the calcium transport system of cardiac sarcoplasmic reticulum. J. Mol. Cell. Cardiol. 1981; 13: 767–772.
  30. Welters I.D., Menzebach A., Goumon Y., et al. Morphine suppresses complement receptor expression, phagocytosis, and respiratory burst in neutrophils by a nitric oxide and μ3 opiate receptor−dependant mechanism. J. Neuroimmunol. 2000; 111 (1–2): 139–145. DOI: 10.1016/s0165-5728(00)00401-x

Intraoperative prevention of cognitive impairment in total intravenous anesthesia in school-age children: randomized clinical trial

A.V. Lugovoy, M.V. Panteleeva, E.D. Nadkina, A.M. Ovezov

Vladimirsky Moscow Regional Clinical Research Institute, Moscow

For correspondence: Alexandr V. Lugovoy — research fellow of Department of anesthesiology of Vladimirsky Moscow Regional Clinical Research Institute; e-mail:

For citation: Lugovoy A.V., Panteleeva M.V., Nadkina E.D., Ovezov A.M. Intraoperative prevention of cognitive impairment in total intravenous anesthesia in school-age children: randomized clinical trial. Alexander Saltanov Intensive Care Herald. 2018;4:57–64.

DOI: 10.21320/1818-474X-2018-4-57-64

Objective. To determine the possibility of prophylactic use of the domestic drug Cytoflavin to reduce the incidence of cognitive impairment after total intravenous anesthesia based on propofol and fentanyl in school-age children.

Material and methods. A prospective randomized clinical trial involving 90 school-age children (ASA I–II) was conducted. Children operated under total intravenous anesthesia on the basis of propofol and fentanyl were randomized into two groups: intraoperative cerebroprotection with cytoflavine 0.25 mg/kg per minute by succinate was performed in group 1 (n = 30), and no cerebroprotection was performed in group 2 (n = 30). For the Z-assessment of cognitive potential, neuropsychological testing of children of the same age who were not subjected to anesthesia was performed (group 3, n = 30).

Research results. There were no significant differences in hemodynamic and neurophysiological parameters in the groups using total intravenous anesthesia based on propofol and fentanyl. Analysis of these parameters showed the safety of the study drug. In the 1 group postoperative cognitive dysfunction (POCD) was detected on the first day of 6.67 % of children, and on the 7th day of postoperative period — at 3.33 %. In group 2, on the first day of the postoperative period, POCD was verified in 13.79 % of patients, on the 7th day — in 27.59 %.

Conclusion. The obtained data showed the effectiveness and safety of the domestic drug Cytoflavin as a prophylactic agent of POCD in school-age children with total intravenous anesthesia based on propofol and fentanyl.

Keywords: postoperative cognitive dysfunction, total intravenous anesthesia, propofol, cytoflavine, school-age children

Received: 05.10.2018


    1. Disma N., Hansen T.G. Pediatric anesthesia and neurotoxicity: can findings be translated from animals to humans? Minerva Anestesiol. 2016; 82: 791–796.
    2. DiMaggio C., Sun L., Li G. Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth. Analg. 2011; 113: 1143–1145. DOI: 10.1213/ANE.0b013e3182147f42.
    3. ОвезовА.М., Князев А.В., Пантелеева М.В. и др. Послеоперационная энцефалопатия: патофизиологические и морфологические основы профилактики при общем обезболивании. Неврология. Нейропсихиатрия. Психосоматика. 2015; 2(7): 61–65. [Ovezov A.M., Knyazev A.V., Panteleeva M.V., et al. Postoperative encephalopathy: Pathophysiological and morphological bases of its prevention under general anesthesia. Nevrologiya. Neiropsikhiatriya. Psikhosomatika. 2015; 2(7): 61–65. (In Russ)]. DOI: 10.14412/2074-2711-2015-2-61-66.
    4. Jevtovic-Todorovic V. General Anesthetics and Neurotoxicity. How Much Do We Know? Anesthesiol. Clin. 2016; 34(3): 439–451. DOI: 10.1016/j.anclin.2016.04.001.
    5. Vutskitsa L., Davidson A. Update on developmental anesthesia neurotoxicity. Curr. Opin. Anesthesiol. 2017; 30: 337–342. DOI: 10.1097/ACO.0000000000000461.
    6. Montana M., Evers A.S. Anesthetic Neurotoxicity: New Findings and Future Directions. J. Pediatr. 2017; 181: 279–285. DOI: 10.1016/j.jpeds.2016.10.049.
    7. Rasmussen L.S., Larsen K., Houx P., et al. ISPOCD group. The International Study of Postoperative Cognitive Dysfunction. The assessment of postoperative cognitive function. Acta Anaesthesiol. Scand. 2001; 45(3): 275–289.
    8. Новицкая-УсенкоЛ.В. Послеоперационная когнитивная дисфункция в практике врача-анестезиолога. Медицина неотложных состояний. 2017; 4(83): 9–15. [Novitskaya-Usenko L.V. Post-operative cognitive dysfunction in an anesthesiologist’s practice. Emergency Medicine. 2017; 4(83): 9–15. (In Russ)]. DOI: 10.22141/2224–0586.4.83.2017.107418.
    9. ОвезовА.М., Лобов М.А., Машков А.Е и др. Частота развития и возможность коррекции послеоперационной когнитивной дисфункции у детей школьного возраста при современных вариантах анестезиологического обеспечения. Consilium Medicum. Педиатрия. (Приложение). 2013; 03: 16–20. [Ovezov A.M., Lobov M.A., Mashkov A.E., et al. Chastota razvitiya i vozmozhnost’ korrektsii posleoperatsionnoi kognitivnoi disfunktsii u detei shkol’nogo vozrasta pri sovremennykh variantakh anesteziologicheskogo obespecheniya. Consilium Medicum. Pediatriya. 2013; 03: 16–20. (In Russ)]
    10. Pearn M.L., Hu Y.B.S., Niesman I.R., et al. Propofol Neurotoxicity Is Mediated by p75 Neurotrophin Receptor Activation. Anesthesiology. 2012; 116: 1–10. DOI: 10.1097/ALN.0b013e318242a48c.
    11. ЛобовМ.А., Древаль А.А., Овезов А.М. и др. Влияние пропофола на гиппокамп развивающегося мозга. Анналы клинической и экспериментальной неврологии. 2013; 7(3): 42–46. [Lobov M.A., Dreval A.A., Ovezov A.M., et al. Influence of propofol on hippocampus in developing brain: an experimental study. Annaly klinicheskoi i eksperimental’noi nevrologii. 2013; 7(3): 42–46. (In Russ)]
    12. ЕлькинИ.О., Егоров В.М., Блохина С.И. Операционный стресс, общая анестезия и высшие психические функции. Екатеринбург: Клен, 2007. [El’kin I.O., Egorov V.M., Blokhina S.I. Operatsionnyi stress, obshchaya anesteziya i vysshie psikhicheskie funktsii. Ekaterinburg: Klen, 2007. (In Russ)]
    13. Euliano Т. Effects of General Anesthesia During Pregnancy on the Child’s Ability to Learn. Anesthesiology Clin. 2013; 31(3): 595–607. DOI: 10.1016/j.anclin.2013.04.003.
    14. ЗаваденкоН.Н., Григоренко Е.Л., Баранов А.А. и др. Синдром дефицита внимания с гиперактивностью: этиология, патогенез, клиника, течение, прогноз, терапия, организация помощи. Экспертный доклад. М., 2007; 64. [Zavadenko N.N., Grigorenko E.L., Baranov A.A., et al. Sindrom defitsita vnimaniya s giperaktivnost’yu: etiologiya, patogenez, klinika, techenie, prognoz, terapiya, organizatsiya pomoshchi. Ekspertnyi doklad. M., 2007; 64. (In Russ)]
  1. Овезов А.М., Пантелеева М.В., Луговой А.В. Интраоперационная церебропротекция при тотальной внутривенной анестезии у детей школьного возраста. Журнал неврологии ипсихиатрии им. С.С. Корсакова. 2017; 10: 28–33. [Ovezov A.M., Panteleeva M.V., Lugovoy A.V. Intraoperative cerebroprotection in total intravenous anesthesia in children of school age. S.S. Korsakov Journal of Neurology and Psychiatry. 2017; 10: 28–33. (In Russ)]. DOI: 10.17116/jnevro201711710128–33.


Change of the temperature balance of the brain in various types of general anesthesia

A.V. Butrov, K.A. Salimova, B.J. Torosyan, G.R. Makhmutova, P.P. Davydov

Peoplesʼ Friendship University of Russia, Moscow

For correspondence: Salimova Kamila Azatovna — resident Peoplesʼ Friendship University of Russia, Moscow, Moscow; e-mail:

For citation: Butrov AV, Salimova KA, Torosyan BJ, Makhmutova GR, Davydov PP. Change of the temperature balance of the brain in various types of general anesthesia. Alexander Saltanov Intensive Care Herald. 2018;3:72–6.

DOI: 10.21320/1818-474X-2018-3-72-76

Under the influence of general anesthesia various functions of the body can change depending on the main and concomitant diseases, the type and volume of the surgical intervention. General anesthesia is traditionally associated with the loss of normal thermoregulatory mechanisms. The intracranial temperature of 32 patients were measured in this study. These patients were divided into 3 groups depending on the type of general anesthesia. The brain temperature of all patients were measured by recording the strength of the electromagnetic radiation from deep brain tissues and also, the axillary and tympanic temperatures were measured. According to the thermometry results of the brain, it was evident that when using Propofol, the temperature of the brain during anesthesia decreased by 1.21 ± 0.19 °C. During the maintenance of inhalational anesthesia the temperature of the brain decreased by 0.69 ± 0.15 °C. There was a decrease of brain temperature in all patients from all 3 groups and the temperature gradient of the brain/axillary region increased. Therefore, we concluded that the decrease in brain temperature occurs not only because of thermoregulatory center temperature decrease, but also because of reduced brain metabolism and/or cerebral blood flow. Propofol in a greater degree causes brain temperature decrease which may be important for the prevention or treatment of conditions that are accompanied by an increase in brain temperature or perfusion-metabolic balance disturbances (for example in neuroanesthesiology and in operations on the main cerebral vessels).

Keywords: brain temperature, temperature balance, microwave thermometry, propofol, sevoflurane, general anesthesia

Received: 02.04.2018


  1. Choi J.W., Kim D.K., Kim J.K., et al. A retrospective analysis on the relationship between intraoperative hypothermia and postoperative ileus after laparoscopic colorectal surgery.PLoS One. 2018; 13(1): e0190711.
  2. Rogers A.D., Saggaf M., Ziolkowski N. A quality improvement project incorporating preoperative warming to prevent perioperative hypothermia in major burns. Burns. 2018; 44(5): 1279–1286.
  3. Cohen B., Meilik B., Weiss-Meilik A., et al. Intraoperative factors associated with postoperative complications in body contouring surgery. J. Surg. Res. 2018; 221: 24–29.
  4. Trescher K., Gleiss A., Boxleitner M., et al. Short-term clinical outcomes for intermittent cold versus intermittent warm blood cardioplegia in 2200 adult cardiac surgery patients. J. Cardiovasc. Surg (Torino). 2017; 58(1): 105–112.
  5. Young C.C., Sladen R.N. Temperature monitoring. Int. Anestesiol. Clin. 1996; 34(3): 149–174.
  6. Маршак М.Е. Термоэлектрические методы исследования регионарного кровообращения в острых и хронических опытах. Современные методы исследования функций сердечно-сосудистой системы. М., 1962: 179–188. [Marshak M.E. Termoelektricheskiye metodi issledovaniya regionarnogo krovoobrasheniya v ostrich I khronicheskikh opitakh. Sovremennie metodi issledovaniya funkciy cerdechno-sosudistoy sistemi. (Thermoelectric methods of investigation regional blood circulation in acute and chronic experiments. Modern methods of studying the functions of the cardiovascular system.) Moscow, 1962: 179–188. (In Russ)]
  7. Гречин В.Б. Применение терморезисторов в стереотаксической нейрохирургии. Вопросы нейрохирургии. 1972; 1: 57–60. [Grechin V.B. Primeneniye termorezistrov v stereotoksicheskoy neyrokhirurgii. Voprosi neyrokhirurgii. 1972; 1: 57–60. (In Russ)]
  8. Mayers P.O., Sadowski M.I., Barrett A.H. Microwave thermography. Principles, methods and clinical applications. J. of Microwave Power. 1979; 14(2): 105–115.
  9. В.А. Березовский. Измерение температуры различных участков коры больших полушарий головного мозга собаки как показатель функционального состояния нервной ткани. Автореф. дис. … канд. мед. наук. Киев, 1962. [V.A. Berezovskiy. Izmereniye temperaturi razlichnikh uchastkov kori bolshikh polushariy golovnogo mozga sobaki kak pokazatel funkcionalnogo sostoyaniya nervnoy tkani. (Measurement of the temperature of various parts of cortex of cerebral hemispheres of the dogʼs brain as an indicator of the functional state of the nerve tissue.) [dissertation] Kiev, 1962. (In Russ)]
  10. Koutsoupidou M., Groumpas E., Karanasiou I.S., et al. The effect of using a dielectric matching medium in focused microwave radiometry: an anatomically detailed head model study. Med. Biol. Eng. Comput. 2018; 56(5): 809–816.
  11. Stauffer P.R., Snow B.W., Rodrigues D.B., et al. Non-Invasive Measurement of Brain Temperature with Microwave Radiometry: Demonstration in a Head Phantom and Clinical Case. Neuroradiol. J. 2014; 27(1): 3–12.
  12. Цейтлин А.М., Лубнин А.Ю. Применение пропофола в нейроанестезиологии [электронный документ]. URL: (Дата обращения: 18.08.2018.) [Ceytlin A.M., Lubnin A.U. Primeneniye propofola v neyroanesteziologii. (The use of propofol in neuroanesthesiology.) [Internet] URL: (In Russ)]

Propofol Infusion Syndrome

A.A. Birkun, A.A. Babanin, M.A. Glotov, A.L. Govdalyuk, P.V. Mel’nychenko, N.Yu. Pylaeva, S.A. Samarin, M.I. Fedosov

Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol

For correspondence: Alexei A. Birkun — Cand. Sci. Med., assistant professor of the chair of anesthesiology-resuscitaion and emergency medicine in Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University; e-mail:

For citation: Birkun AA, Babanin AA, Glotov MA, Govdalyuk AL, Mel’nychenko PV, Pylaeva NYu, Samarin SA, Fedosov MI. Propofol Infusion Syndrome. Intensive Care Herald. 2016;3:38–42. 

Propofol infusion syndrome (PRIS) is rare but extremely dangerous complication of propofol administration that is characterized by increased mortality level. Pathogenesis of PRIS is represented by the conjunction of intensified lipolysis, disturbances of fatty acid oxidation and impaired mitochondrial respiratory chain function. PRIS typically develops in patients with critical conditions receiving continuous high-dose propofol infusion and presents as lactate acidosis, rhabdomyolysis and acute circulatory failure. For PRIS there is no specific treatment and the prognosis is largely determined by an ability of the clinician to recognize the syndrome early and stop propofol administration. This review provides a modern insight into pathogenesis, clinical presentations, preventive measures and intensive care of the syndrome and is generally intended to raise an alertness and improve understanding of the problem among practicing physicians.

Keywords: propofol infusion syndrome, PRIS, propofol, hyperlipidemia, rhabdomyolysis, acidosis, Brugada syndrome, ECMO

Received: 26.03.2016


  1. Krajcova A., Waldauf P., Andel M., Duska F. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Care. 2015; 19: 398. doi: 10.1186/s13054-015-1112-5.
  2. Справочник Видаль «Лекарственные препараты в России» — описание лекарственных средств. URL: (дата обращения: 18.02.2016). [Spravochnik Vidal’ Lekarstvennye preparaty v Rossii — opisanie lekarstvennykh sredstv. URL: (accessed: 18.02.2016) (In Russ)]
  3. Kotani Y., Shimazawa M., Yoshimura S. et al. The experimental and clinical pharmacology of propofol, an anesthetic agent with neuroprotective properties. CNS Neurosci. Ther. 2008; 14: 95–106. doi: 10.1111/j.1527-3458.2008.00043.x.
  4. Mayette M., Gonda J., Hsu J.L., Mihm F.G. Propofol infusion syndrome resuscitation with extracorporeal life support: a case report and review of the literature. Ann. Intensive Care. 2013; 3(1): 32. doi: 10.1186/2110-5820-3-32.
  5. Mijzen E.J., Jacobs B., Aslan A., Rodgers M.G. Propofol infusion syndrome heralded by ECG changes. Neurocrit. Care. 2012; 17: 260–264. doi: 10.1007/s12028-012-9743-8.
  6. Vanlander A.V., Jorens P.G., Smet J. et al. Inborn oxidative phosphorylation defect as risk factor for propofol infusion syndrome. Acta Anaesthesiol. Scand. 2012; 56: 520–525. doi: 10.1111/j.1399-6576.2011.02628.x.
  7. Levin P.D., Levin V., Weissman C. et al. Therapeutic plasma exchange as treatment for propofol infusion syndrome. J. Clin. Apher. 2015; 30: 311–313. doi: 10.1002/jca.21376.
  8. Bray R.J. Propofol infusion syndrome in children. Paediatric Anaesthesia. 1998; 8: 491-499.
  9. Diaz J.H., Prabhakar A., Urman R.D., Kaye A.D. Propofol infusion syndrome: a retrospective analysis at a level 1 trauma center. Crit. Care Res. Pract. 2014; 2014: 346968. doi: 10.1155/2014/346968.
  10. Mirrakhimov A.E., Voore P., Halytskyy O. et al. Propofol infusion syndrome in adults: a clinical update. Crit. Care Res. Pract. 2015; 2015: 260385. doi: 10.1155/2015/260385.
  11. Roberts R.J., Barletta J.F., Fong J.J. et al. Incidence of propofol-related infusion syndrome in critically ill adults: a prospective, multicenter study. Crit. Care. 2009; 13: R169. doi: 10.1186/cc8145.
  12. Smith H., Sinson G., Varelas P. Vasopressors and propofol infusion syndrome in severe head trauma. Neurocrit Care. 2009; 10: 166–1 doi: 10.1007/s12028-008-9163-y.
  13. Corbett S.M., Montoya I.D., Moore F.A. Propofol-related infusion syndrome in intensive care patients. 2008; 28: 250–258. doi: 10.1592/phco.28.2.250.
  14. Лесной И.И., Черний В.И. Изменение показателей центральной гемодинамики при проведении эпидуральной аналгезии у больных с аналгоседацией и ИВЛ. Український журнал екстремальної медицини імені Г.О. Можаєва. 2012; 13: 49–53. [Lisnyy I.I., Chernyy V.I. The hemodynamic changes during administration of epidural analgesia in patients getting analgosedation and mechanical ventilation. Ukraїns’kii zhurnal ekstremal’noї meditsini іmenіO. Mozhaєva. 2012; 13: 49–53. (In Russ)]
  15. Бабак С.И., Крутой С.В., Злочевский А.Н. Опыт применения препарата Пропофол-Ново в нашей клинике. Медицина неотложных состояний. 2014; 6: 110–112. [Babak S.I., Krutoy S.V., Zlochevsky A.N. Experience of Propofol-Novo application in our clinic. Meditsina neotlozhnykh sostoyanii. 2014; 6: 110–11 (In Russ)]
  16. Черний Т.В., Стецик В.Ю., Черний В.И. Черепно-мозговая травма в аспекте доказательной медицины: обзор актуальных международных рекомендаций. Медицина неотложных состояний. 2014; 5: 16–19. [Cherniy T.V., Stetsik V.Yu., Cherniy V.I. Traumatic brain injury in terms of evidence-based medicine: an overview of current international guidelines Meditsina neotlozhnykh sostoyanii. 2014; 5: 16–19. (In Russ)]
  17. Фесенко У.А. Синдром пропофолової інфузії. Український журнал екстремальної медицини імені Г.О.Можаєва. 2013; 14(4): 129–132. [Fesenko A. Propofol infusion syndrome. Ukraїns’kii zhurnal ekstremal’noї meditsini іmenі G.O. Mozhaєva. 2013; 14(4): 129–132. (In Russ)]
  18. Vasile B., Rasulo F., Candiani A., Latronico N. The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Med. 2003; 29: 1417–1425.
  19. Wolf A., Weir P., Segar P. et al. Impaired fatty acid oxidation in propofol infusion syndrome. Lancet. 2001; 357: 606–607.
  20. Jouven X., Charles M.A., Desnos M., Ducimetiere P. Circulating nonesterified fatty acid level as a predictive risk factor for sudden death in the population. Circulation. 2001; 104: 756–761.
  21. Vanlander A.V., Okun J.G., de Jaeger A. et al. Possible pathogenic mechanism of propofol infusion syndrome involves coenzyme Q. Anesthesiology. 2015; 122: 343–3 doi: 10.1097/ALN.0000000000000484.
  22. Merz T.M., Regli B., Rothen H.-U., Felleiter P. Propofol infusion syndrome — a fatal case at a low infusion rate. Anesth. Analg. 2006; 103: 1050.
  23. Casserly B., O’Mahony E., Timm E.G. et al. Propofol infusion syndrome: an unusual cause of renal failure. Am. J. Kidney Dis. 2004; 44: e98–101.
  24. Myburgh J.A., Upton R.N., Grant C., Martinez A. Epinephrine, norepinephrine and dopamine infusions decrease propofol concentrations during continuous propofol infusion in an ovine model. Intensive Care Med. 2001; 27: 276–282.
  25. Kam P.C., Cardone D. Propofol infusion syndrome. Anaesthesia. 2007; 62: 690–701.
  26. Annen E., Girard T., Urwyler A. Rare, potentially fatal, poorly understood propofol infusion syndrome. Clin. Pract. 2012; 2: e79. doi: 10.4081/cp.2012.e79.
  27. Savard M., Dupre N., Turgeon A.F. et al. Propofol-related infusion syndrome heralding a mitochondrial disease: case report. Neurol 2013; 81: 770–771. doi: 10.1212/WNL.0b013e3182a1aa78.
  28. Vernooy K., Delhaas T., Cremer O.L. Electrocardiographic changes predicting sudden death in propofol-related infusion syndrome. Heart Rhythm. 2006; 3: 131–137.
  29. Timpe E.M., Eichner S.F., Phelps S.J. Propofol-related infusion syndrome in critically ill pediatric patients: coincidence, association, or causation? J. Pediatr. Pharmacol. Ther. 2006; 11: 17–42. doi: 10.5863/1551-6776-11.1.17.
  30. Walsh R.J., Amato A.A. Toxic myopathies. Neurologic Clinics. 2005; 23: 397–428.
  31. Ahlen K., Buckley C.J., Goodale D.B., Pulsford A.H. The ‘propofol infusion syndrome’: the facts, their interpretation and implications for patient care. Eur. J. Anaesthesiol. 2006; 23: 990–998.
  32. Cannon M.L., Glazier S.S., Bauman L.A. Metabolic acidosis, rhabdomyolysis and cardiovascular collapse after prolonged propofol infusion. J. Neurosurg. 2001; 95: 1053–1056.
  33. Parke T.J., Stevens J.E., Rice A.S. et al. Metabolic acidosis and fatal myocardial failure after propofol infusion in children: five case reports. 1992; 305: 613–616.
  34. Blum J.M., Brunsvold M.E. Non-acidotic propofol infusion syndrome. Br. J. Anaesth. 2009; 103: 617–618. doi: 10.1093/bja/aep252.
  35. Culp K.E., Augoustides J.G., Ochroch A.E., Milas B.L. Clinical management of cardiogenic shock associated with prolonged propofol infusion. Anesth. Analg. 2004; 99: 221–226.
  36. Guitton C., Gabillet L., Latour P. et al. Propofol Infusion syndrome during refractory status epilepticus in a young adult: successful ECMO resuscitation. Neurocrit. Care. 2011; 15: 139–145. doi: 10.1007/s12028-010-9385-7.
  37. Vitali S., Cronly S. Six days of veno-arterial ECMO rescue therapy for propofol infusion syndrome occuring despite reassuring biochemical markers. Am. J. Respir. Crit. Care Med. 2015; 191: A6222.
  38. Cray S.H., Robinson B.H., Cox P.N. Lactic acidemia and bradyarrhythmia in a child sedated with propofol. Crit. Care Med. 1998; 26: 2087–2092.
  39. Shimony A., Almog Y., Zahger D. Propofol infusion syndrome: a rare cause of multi-organ failure in a man with complicated myocardial infarction. Med. Assoc. J. 2008; 10: 316–317.