Hyperfibrinolysis and Blood Clot Retraction on Major Trauma

V.S. Afonchikov, A.V. Miheeva

Saint-Petersburg I.I. Dzhanelidze Research Institute of Emergency Medicine, Saint-Petersburg

Saint-Petersburg State University, Saint-Petersburg

For correspondence: Afonchikov Vyacheslav Sergeevich — Chief-anesthesiologist of Saint-Petersburg I.I. Dzhanelidze Research Institute of Emergency Medicine; e-mail: shwalbe262@mail.ru

For citation: Afonchikov VS, Miheeva AV. Hyperfibrinolysis and blood clot retraction on major trauma. Intensive Care Herald. 2016;3:47–52.


Hyperfibrinolysis with shock and major trauma is considered today as one of the leading causes of early trauma-induced coagulopathy. At the present time thromboelastography is the main world wide method of assessment of blood fibrinolytic activity. Quantitative evaluation of spontaneous fibrinolytic activity is based on the reduction of the maximum amplitude and the surface area under the curve of thromboelastogram. This approach seems to be not quite correct, as this ignores the retraction of a blood clot. A comparative analysis of the activity of spontaneous fibrinolysis and retraction of a blood clot in the acute period of traumatic disease was performed. The study showed the need to assess the degree of clot retraction for adequate clinical interpretation of the results of thromboelastography.

Methods. The study involved 36 patients with major trauma. Thromboelastography of citrated blood, citrated platelet poor plasma samples and spontaneous fibrinolysis and retraction tests (E.P. Ivanov methodics) were obtained at the time of admission and after 3, 6 and 12 hours.

Results. During the study has revealed significant increase of tromboelastography indicators of fibrinolytic activity in the citrated blood samples and the absence of fibrinolytic activity in samples of platelet poor plasma, at the same time spontaneous fibrinolysis and retraction tests (E.P. Ivanov methodics) demonstrate a significant increase in the index of clot retraction and minimal fibrinolytic activity.

Conclusions. Thromboelastogrphy parameters, used to assess the fibrinolytic activity, are integrally evaluated a combination of two processes: spontaneous fibrinolysis and clot retraction. For adequately assess the thromboelastogrphy parameters we need to assess the clot retraction activity.

Keywords: hyperfibrinolysis, trauma, early trauma-induced coagulopathy, thromboelastography, blood clot retraction

Received: 29.07.2016


References

  1. Селезнев С.А., Худайбердыев Г.С. Травматическая болезнь (актуальные аспекты проблемы). Ашхабад: Ылым, 1984. [Seleznev S.A., Hudajberdyev G.S. Travmaticheskaya bolezn’ (aktual’nye aspekty problemy). Ashkhabad: Ylym, 1984. (In Russ)]
  2. Самохвалов И.М., Щеголев А.В., Гаврилин С.В. и др. Анестезиологическая и реаниматологическая помощь пострадавшим с политравмой. СПб.: ИнформМед, 2013. [Samohvalov I.M., Chshegolev A.V., Gavrilin S.V. et al. Anesteziologicheskaya i reanimatologicheskaya pomoshch’ postradavshim s politravmoj. SPb.: InformMed, 2013. (In Russ)]
  3. Maegele M., Schochl H., Cohen M.J. An update on the coagulopathy of trauma. Shock. 2014; 41(Suppl 1): 21–5. doi: 10.1097/SHK.0000000000000088.
  4. MacLeod J.B., Lynn M., McKenney M.G. et a Early coagulopathy predicts mortality in trauma. J. Trauma. 2003; 55: 39–44. doi: 0.1097/01.TA.0000075338.21177.EF.
  5. Kauvar D.S., Lefering R., Wade C.E. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J. Trauma. 2006; 60: S3–11. doi: 10.1097/01.ta.0000199961.02677.19.
  6. Ferrara A., MacArthur J.D., Wright H.K. et al. Hypothermia and acidosis worsen coagulopathy in the patient requiring massive transfusion. Am. J. Surg. 1990; 160: 515–518.
  7. Noel P, Cashen S, Patel B. Trauma-induced coagulopathy: from biology to therapy. Semin Hematol. 2013; 50(3): 259–269. doi: 1053/j.seminhematol.2013.06.009.
  8. Staab D.B., Sorensen V.J., Fath J.J. et al. Coagulation defects resulting from ambient temperature-induced hypothermia. J. Trauma. 1994; 36: 634–638.
  9. Brohi K., Singh J., Heron M. et al. Acute traumatic coagulopathy. J. Trauma. 2003; 54: 1127–1130. doi: 10.1097/01.TA.0000069184.82106.
  10. Gando S., Tedo I., Kubota M. Posttrauma coagulation and fibrinolysis. Crit. Care Med. 1992; 20: 594–600.
  11. Johansson P.I., Sorensen A.M., Perner A. et al. Disseminated intravascular coagulation or acute coagulopathy of trauma shock early after trauma? Critical Care. 2011; 15: R272. doi: 10.1186/cc10553.
  12. Hess J.R., Lawson J.H. The coagulopathy of trauma versus disseminated intravascular coagulation. J. Trauma. 2006; 60: S12–S19. doi: 10.1097/01.ta. 0000199545.06536.22.
  13. Hess J.R., Brohi K., Dutton R.P. et al. The coagulopathy of trauma: a review of mechanisms. J. Trauma. 2008; 65: 748–754. doi: 10.1097/TA.0b013e3181877a9c.
  14. Cohen M.J., Kutcher M., Redick B. et al. Clinical and mechanistic drivers of acute traumatic coagulopathy. J. Trauma Acute Care Surg. 2013; 75: S40–S47. doi: 10.1097/TA.0b013e31828fa43d.
  15. Brohi K., Cohen M.J., Davenport R.A. Acute coagulopathy of trauma: Mechanism, identification and effect. Curr. Opin. Crit. Care. 2007; 13: 680–685. doi: 10.1097/MCC.0b013e3282f1e78f.
  16. Duan K., Yu W., Li N. The Pathophysiology and Management of Acute Traumatic Coagulopathy. Clin. Appl. Thromb. Hemost. 2015; 21(7): 645–652. doi: 10.1177/1076029613516190.
  17. Brohi K., Cohen M.J., Pittet J.F. et al. Acute traumatic coagulopathy: Initiated by hypoperfusion: Modulated through the protein C pathway? Ann. Surg. 2007; 245: 812–818. doi: 10.1097/01.sla.0000256862.79374.31.
  18. Davenport R. The Pathophysiology and Management of Acute Traumatic Coagulopathy. Transfusion. 2013; 53(Suppl 1): 23S–27S. doi: 10.1111/trf.12032.
  19. Brohi K., Cohen M.J., Ganter M.T. et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J. Trauma. 2008; 64: 1211–1217.
  20. Roberts I., Shakur H., Coats T. et al. The CRASH-2 trial: a randomised controlled trial and economic evaluation of the effects of tranexamic acid on death, vascular occlusive events and transfusion requirement in bleeding trauma patients. Health Technol. 2013; 17(10): 1–79. doi: 10.3310/hta17100.
  21. Ker K., Roberts I., Shakur H. et al. Antifibrinolytic drugs for acute traumatic injury. Cochrane Database Syst Rev. 2015 May 9; (5) doi:10.1002/14651858.CD004896.pub4.
  22. Simmons J., Sikorski R.A., Pittet J.F. Tranexamic acid: from trauma to routine perioperative use. Curr. Opin. Anaesthesiol. 2015; 28(2): 191–200. doi: 10.1097/ACO.0000000000000165.
  23. Дементьева И.И., Чарная М.А., Морозов Ю.А., Гладышева В.Г. Тромбоэластография в кардиохирургии. М., 2007. [Dementyeva I.I., Charnaya M.A., Morozov Yu.A., Gladysheva V.G. Tromboelastografiya v kardiohirurgii. M., 2007. (In Russ)]
  24. Levrat A., Gros A., Rugeri L. et al. Evaluation of rotation thrombelastography for the diagnosis of hyperfibrinolysis in trauma patients. Br. J. Anaesth. 2008; 100(6): 792–797. doi: 10.1093/bja/aen083.
  25. Ganter M.T., Hofer C.K. Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices. Anesth. Analg. 2008; 106: 1366–1375.
  26. Carroll R.C., Craft R.M., Langdon R.J. et al. Early evaluation of acute traumatic coagulopathy by thrombelastography. Transl. Res. 2009; 154: 34–39. doi: 10.1016/j.trsl.2009.04.001.
  27. Schochl H., Frietsch T., Pavelka M., Jambor C. Hyperfibrinolysis after major trauma: differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J. Trauma. 2009; 67(1): 125–131. doi: 10.1097/TA.0b013e31818b2483.
  28. Chapman M.P., Moore E.E., Moore H.B. et al. The «Death Diamond»: Rapid thrombelastography identifies lethal hyperfibrinolysis. J. Trauma Acute Care Surg. 2015; 79(6): 925–929. doi: 10.1097/TA.0000000000000871.
  29. Holli Halset J., Hanssen S.W., Espinosa A. et al. Tromboelastography: variability and relation to conventional coagulation test in non-bleeding intensive care unit patients. BMC Anesthesiol. 2015; 15: 28. doi: 10.1186/s12871-015-0011-2.
  30. Чарная М.А., Морозов Ю.А., Гладышева В.Г. Использование метода тромбоэластографии для диагностики и выбора тактики коррекции нарушений системы гемостаза в кардиохирургической практике. Вестн. анестезиол. и реаниматол. 2010; 1: 28–33. [Charnaya M.A., Morozov Yu.A., Gladysheva V.G. Ispol’zovanije metoda tromboelastografii dlya diagnostiki i vybora taktiki korrektsii naryshenij sistemy gemostaza v kardiohirurgicheskoj praktike. anesteziol. i reanimatol. 2010; 1: 28–33. (In Russ)]
  31. Schochl H, Nienaber U, Hofer G, et al. Goal-directed coagulation management of major trauma patients using thromboelastometry (ROTEM)-guided administration of fibrinogen concentrate and prothrombin complex concentrate. Care. 2010; 14(2): R55. doi: 10.1186/cc8948.
  32. Буланов А.Ю., Шулутко Е.М., Щербакова О.В. и др. Опыт использования тромбоэластографии в практике специализированного отделения анестезиологии и реаниматологии: Материалы V Всерос. конф. «Клиническая гемостазиология и гемореология в сердечно-сосудистой хирургии». М., 3–5 февраля 2011: 81. [Bulanov A.Yu., Shulutko E.M., Shcherbakova O.V. et al. Opyt ispol’zovaniya tromboelastografii v praktike spetsializirovannogo otdeleniya anesteziologii i reanimatologii: Materialy V Vseros. konf. «Klinicheskaya gemostaziologiya i gemoreologiya v serdechno-sosudistoj hirurgii ». M., 3–5 Feb 2011: 81. (In Russ)]
  33. TEG 5000 User’s Manual 1999–2007. Haemoscope Corporation. Niles. IL. USA.
  34. Иванов Е.П. Руководство по гемостазиологии (Нормальные и нарушенные функции системы гемостаза, клинико-лабораторная диагностика кровотечений, тромбозов и ДВС-синдрома). Минск: Беларусь, 1991. [Ivanov E.P. Rukovodstvo po gemostaziologii (Normal’nye i narushennye funktsii sistemy gemostaza, kliniko-laboratornaya diagnostika krovotechenij, trombozov i DVS-sindroma). Minsk: Belarus, 1991. (In Russ)]
  35. Акопов И.Э., Ядрова В.М. О ретракции кровяного сгустка и ее изменении под влиянием некоторых гемостатических средств. Бюлл. эксп. биол. и мед. 1996; 62(8): 64. [Akopov I.E., Yadrova V.M. O retraktsii krovyanogo sgustka i ee izmenenii pod vliyaniem nekotoryh gemostaticheskih sredstv. Bull. eksp. biol. i med. 1996; 62(8): 64. (In Russ)]

Clinical efficacy of metabolically active fluid therapy in patients with fat embolism syndrome

A.Yu. Yakovlev1, A.A. Pevnev1, M.S. Belous1, S.A. Tezyaeva3, D.V. Ryabikov2, S.I. Chistyakov1, T.A. Galanina1

1 Nizhniy Novgorod regional clinical hospital named after N.A. Semashko, Nizhniy Novgorod

2 Nizhny Novgorod clinical hospital 13, Nizhniy Novgorod

3 Nizhny Novgorod clinical hospital 5, Nizhniy Novgorod

For correspondence: Aleksey Y. Yakovlev — Sc. D., Associate Prof., ICU curator of “Nizhniy Novgorod regional clinical hospital named after N.A. Semashko”, Nizhniy Novgorod; е-mail: aritnnru@list.ru

For citation: Yakovlev AYu, Pevnev AA, Belous MS, et al. Clinical efficacy of metabolically active fluid therapy in patients with fat embolism syndrome. Alexander Saltanov Intensive Care Herald. 2018;2:51–6.

DOI: 10.21320/1818-474X-2018-2-51-56


The research tested changes of organ disorders in 22 patients with fat embolism syndrome in the early posttraumatic period. It was found that early multiple organ failure is related to traumatic shock. At Day 1 and thereafter, in patients with the severe combined injury, multiple organ failure was associated with manifesting fat embolism. We confirmed the efficacy of multiple substrate antihypoxant fluid to prevent multiple organ failure related to fat embolism manifesting in the early post-traumatic period.

Keywords: trauma, fat embolism, SOFA, methionine, succinate

Received: 29.12.2017


References

  1. Доклад о безопасности дорожного движения в мире 2015 г. Резюме. Октябрь 2015 г. WHO, ed. (2015). «Global Status Report on Road Safety 2015» (PDF) (official report). Geneva, Switzerland: World Health Organisation (WHO). pp. vii, 1–14, 75ff (countries), 264–271 (table A2), 316–332 (table A10).
  2. Дерябин И.И., Насонкин О.С. Травматическая болезнь. Л.: Медицина, 1987. [Deryabin I.I., Nasonkin O.S. Travmaticheskaya boleznʼ. Leningrad: Meditsina, 1987. (In Russ)]
  3. Saigal R., Mittal M., Kansal A., et al. Fat embolism syndrome. J. Assoc. Phys. India. 2008; 56: 245–249.
  4. Szabó G., Magyar Z., Réffy A. The role of free fatty acids in pulmonary fat embolism. Injury. 1977; 8(4): 278–283.
  5. Crocker G., Jones J. Effects of oleic acid-induced lung injury on oxygen transport and aerobic capacity. Respiratory physiology and neurobiology. 2014; 196(1): 43–49.
  6. Shi S., Gao Y., et al. Elevated free fatty acid level is a risk factor for early postoperative hypoxemia after on-pump coronary artery bypass grafting: association with endothelial activation. J. Cardiothorac. Surg. 2015; 10: 122.
  7. Kwiatt M.E., Seamon M.J. Fat embolism syndrome. Int. J. Crit. Illn. Inj. Sci. 2013; 3: 64–68.
  8. БорисовМ.Б., Гаврилин С.В. Синдром жировой эмболии при тяжелых сочетанных травмах. Вестник хирургии имени И.И. Грекова. 2006; 165(5): 68–71. [Borisov M.B., Gavrilin S.V. The fat embolism syndrome in severe combined traumas. Vestnik khirurgii imeni I.I. Grekova. 2006; 165(5): 68–71. (In Russ)]
  9. Vincent J.L., Moreno R., Takala J., et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European society of intensive care medicine. Intensive Care Med. 1996; 22: 707–710.
  10. Antonelli M., Moreno R., Vincent J.L., et al. Application of SOFA score to trauma patients. Sequential Organ Failure Assessment. Intensive Care Med. 1999; 25: 389–394.
  11. Teasdale G., Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974; 2(7872): 81–84.
  12. ГерасимовЛ.В., Карпун Н.А., Пирожкова О.С. Избранные вопросы патогенеза и интенсивного лечения тяжелой сочетанной травмы. Общая реаниматология. 2012; 8(4): 111–117. [Gerasimov L.V., Karpun N.A., Pirozhkova O.S. Selected issues of the pathogenesis and intensive treatment of severe concomitant injury. Obshchaya reanimatologiya. 2012; 8(4): 111–117. (In Russ)].
  13. Ehinger J.R., Piel S., Ford R., et al. Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nat. Commun. 2016; 7: 12317.
  14. Leite L.N., Gonzaga N.A., Simplicio J.A., et al. Pharmacological characterization of the mechanisms underlying the vascular effects of succinate. Eur. J. Pharmacol. 2016; 789: 334–343.
  15. Adeva-Andany M.M., Calvo-Castro I., Fernández-Fernández C., et al. Significance of L-carnitine for human health. IUBMB Life. 2017; 69: 578–594.
  16. Weimann A., Felbinger T.W. Gastrointestinal dysmotility in the critically ill: A role for nutrition. Curr. Opin. Clin. Nutr. Metab. Care. 2016.
  17. Endo K., Tsuji A., Kondo S., et al. Carnitine is associated with fatigue following chemoradiotherapy for head and neck cancer. Acta Oto-Laryngol. 2015; 135: 846–852.
  18. Famularo G., De Simone C., Trinchieri V., Mosca L. Carnitines and its congeners: a metabolic pathway to the regulation of immune response and inflammation. Ann. N. Y. Acad. Sci. 2004; 1033: 132–138.
  19. Flanagan J.L. et al. Role of carnitine in disease. Nutrition & Metabolism. 2010; 7: 30.
  20. Jeevanandam M., Young D.H., Ramias L., Schiller W.R. Effect of major trauma on plasma free amino acid concentrations in geriatric patients. Am.J. Clin. Nutr. 1990; 51: 1040–1045.
  21. Яковлев А.Ю., Певнев А.А., Никольский В.О. и др. Метаболическая профилактика жировой эмболии. Анестезиология и реаниматология. 2016; 61(4): 280–283. [Yakovlev A.Yu., Pevnev А.А., Nikol’skiyV.O., et al. Metabolic prevention of fat embolism. Anesteziologiya i reanimatologiya. 2016; 61(4): 280–283. (In Russ)]