Role of ultrasound in diagnosing volume status in critically ill patients

D.O. Starostin1, A.N. Kuzovlev2

1 Branch No. 8 (pgt. Selyatino) «1586 VKG» of the Ministry of Defense of Russia Moscow region

2 V.A. Negovsky research institute of general reanimatology of the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow

Correspondence to: Artem N. Kuzovlev, MD, PhD, DrSci, head of the laboratory of clinical pathophysiology of critical states of the V.A. Negovsky research institute of general reanimatology Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow; e-mail: artem_kuzovlev@mail.ru

For citation: Starostin D.O., Kuzovlev A.N. Role of ultrasound in diagnosing volume status in critically ill patients. Alexander Saltanov Intensive Care Herald. 2018;4:42–50.

DOI: 10.21320/1818-474X-2018-4-42-50


Currently, various methods are available for assessing volemic status and volume responsiveness in critically ill patients. A significant advantage of ultrasound methods is their non-invasiveness, ease of use, and a quick learning curve, which makes them probably the most promising in the clinical practice. This literature review outlines the basic principles of diagnosis and evaluation of the volemic status of critically ill patients. The informativity of central venous pressure, hemodynamic tests (volume loading teats, passive leg raising test), as well as instrumental methods for assessing volemic status, in particular ultrasound (assessment of respiratory modulation of the inferior vena cava, collapse of internal jugular vein, transthoracic and transesophageal echocardiography).

Keywords: volemic status, hypovolemia, ultrasound, passive leg raising test, cardiac output

Received: 08.10.2018


References

  1. Boyd J.H., Forbes J., Nakada T.A., et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit. Care Med. 2011; 39(2): 259–265. DOI: 10.1097/CCM.0b013e3181feeb15.
  2. Vincent J.L, Sakr Y., Sprung C.L., et al. Sepsis in European intensive care units: results of the SOAP study. Crit. Care Med. 2006; 34(2): 344–353. DOI: 10.1097/01.CCM.0000194725.48928.3A.
  3. Micek S.T., McEvoy C., McKenzie M., et al. Fluid balance and cardiac function in septic shock as predictors of hospital mortality. Crit. Care. 2013; 17(5): 246. DOI: 10.1186/cc13072.
  4. Murphy C.V., Schramm G.E., Doherty J.A., et al. The importance of fluid management in acute lung injury secondary to septic shock. Chest. 2009; 136(1): 102–109. DOI: 10.1378/chest.08–2706.
  5. Rosenberg A.L., Dechert R.E., Park P.K., et al. Review of a large clinical series: association of cumulative fluid balance on outcome in acute lung injury: a retrospective review of the ARDSnet tidal volume study cohort. J. Intensive Care Med. 2009; 24(1): 35–46. DOI: 10.1177/0885066608329850.
  6. Jozwiak M., Silva S., Persichini R., et al. Extravascular lung water is an independent prognostic factor in patients with acute respiratory distress syndrome. Crit. Care Med. 2013; 41(2): 472–480. DOI: 10.1097/CCM.0b013e31826ab377.
  7. Kirkpatrick A.W., Roberts D.J., De Waele J., et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intensive Care Med. 2013; 39(7): 1190–1206. DOI: 10.1007/s00134-013-2906-z.
  8. Bouchard J., Soroko S.B., Chertow G.M., et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009; 76(4): 422–427. DOI: 10.1038/ki.2009.159.
  9. Payen D., de Pont A.C., Sakr Y., et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit. Care. 2008; 12(3): 74. DOI: 10.1186/cc6916.
  10. Benes J., Kirov M., Kuzkov V., et al. Fluid Therapy: Double-Edged Sword during Critical Care? BioMed Research International. 2015; 2015: 729075. DOI: 10.1155/2015/729075.
  11. Beaumont V. Evaluation of hemoconcentration from hematocrit measurements. Journal of Applied Physiology. 1972; 32(5): 712–713. DOI: 10.1152/jappl.1972.32.5.712.
  12. Liamis G., Filippatos T.D., Elisaf M.S. Correction of hypovolemia with crystalloid fluids: Individualizing infusion therapy. Postgrad. Med. 2015; 127(4): 405–412. DOI: 10.1080/00325481.2015.1029421.
  13. Baron S., Courbebaisse M., Lepicard E.M., et al. Assessment of hydration status in a large population. Br. J. Nutr. 2015; 113(1): 147–158. DOI: 10.1017/S0007114514003213.
  14. Gattinoni L., Carlesso E. Supporting hemodynamics: what should we target? What treatments should we use? Crit. Care. 2013; 17(1): 4. DOI: 10.1186/cc11502.
  15. Kalantari K., Chang J.N., Ronco C., et al. Assessment of intravascular volume status and volume responsiveness in critically ill patients. Kidney Int. 2013; 83(6): 1017–1028. DOI: 10.1038/ki.2012.424.
  16. Yang X., Du B. Does pulse pressure variation predict fluid responsiveness in critically ill patients? A systematic review and meta-analysis. Crit. Care. 2014; 18(6): 650. DOI: 10.1186/s13054-014-0650-6.
  17. Myatra S.N., Prabu N.R., Divatia J.V., et al. The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge” reliably predict fluid responsiveness during low tidal volume ventilation. Crit. Care Med. 2017; 45(3): 415–421. DOI: 10.1097/CCM.0000000000002183.
  18. Hadian M., Severyn D.A., Pinsky M.R. The effects of vasoactive drugs on pulse pressure and stroke volume variation in postoperative ventilated patients. J. Crit. Care. 2011; 26(3): 328. DOI: 10.1016/j.jcrc.2010.08.018.
  19. Kupersztych-Hagege E., Teboul J.L., Artigas A., et al. Bioreactance is not reliable for estimating cardiac output and the effects of passive leg raising in critically ill patients. Br. J. Anaesth. 2013; 111(6): 961–966. DOI: 10.1093/bja/aet282.
  20. Peng Z.Y., Critchley L.A., Fok B.S. An investigation to show the effect of lung fluid on impedance cardiac output in the anaesthetized dog. Br. J. Anaesth. 2005; 95(4): 458–464. DOI: 10.1093/bja/aei206.
  21. Critchley L.A., Calcroft R.M., Tan P.Y., et al. The effect of lung injury and excessive lung fluid, on impedance cardiac output measurements, in the critically ill. Intensive Care Med. 2000; 26(6): 679–685.
  22. Thiele R.H., Bartels K., Gan T.J. Cardiac output monitoring: a contemporary assessment and review. Crit. Care Med. 2015; 43(1): 177–185. DOI: 10.1097/CCM.0000000000000608.
  23. Sandham J.D., Hull R.D., Brant R.F., et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N. Engl. J. Med. 2003; 348(1): 5–14. DOI: 10.1056/NEJMoa021108.
  24. Richard C., Warszawski J., Anguel N., et al. Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2003; 290(20): 2713–2720. DOI: 10.1001/jama.290.20.2713.
  25. Harvey S., Harrison D.A., Singer M., et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC–Man): a randomized controlled trial. Lancet. 2005; 366(9484): 472–477. DOI: 10.1016/S0140–6736(05)67061–4.
  26. Latta T. Malignant cholera: documents communicated by the central board of health, London, relative to the treatment of cholera by the copious injection of aqueous and saline fluids into the veins. Lancet. 1832; 18(457): 274–280. DOI: 10.1016/S0140–6736(02)80289–6.
  27. Bunn F., Trivedi D. Colloid solutions for fluid resuscitation. Cochrane Database Syst. Rev. 2012; (7): CD001319. DOI: 10.1002/14651858.CD001319.pub5.
  28. Cecconi M., Singer B., Rhodes A. The Fluid Challenge. Annual Update in Intensive Care and Emergency Medicine. 2011; 10(8): 332–339. DOI: 10.1007/978-3-642-18081-1.
  29. Marik P. Fluid therapy in 2015 and beyond: the mini-fluid challenge and mini-fluid bolus approach. Br. J. Anaesth. 2015; 115 (3): 347–349. DOI: 10.1093/bja/aev169.
  30. Malbrain M.L.N.G., Van Regenmortel N., Saugel B., et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four Dʼs and the four phases of fluid therapy. Ann. Intensive Care. 2018; 8(1): 66. DOI: 10.1186/s13613-018-0402-x.
  31. Muller L., Toumi M., Bousquet P.J., et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011; 115(3): 541–547. DOI: 10.1097/ALN.0b013e318229a500.
  32. Морган-мл. Д., МихаилМ., Марри М. Клиническая анестезиология. 4-е изд. Книга 2-я. Пер. с англ. под ред. А.М. Цейтлина. М.: БИНОМ, 2014. [Morgan D. Jr., Michael M., Marry M. Clinical anesthesiology. 4th ed. Book 2. Translation from English under the editorship of A. Tseitlin. Moscow: BINOM, 2014. (In Russ)]
  33. Magder S., Georgiadis G., Cheong Т. Respiratory variations in right atrial pressure predict the response to fluid challenge. Journal of Critical Care. 1992; 7(2): 76–85. DOI: 10.1016/0883–9441(92)90032–3.
  34. ЙовенкоИ, Кобеляцкий Ю, Царев А, и др. Гемодинамический мониторинг в практике интенсивной терапии критических состояний. Медицина неотложных состояний. 2016; 5(76): 42–46. [Yovenko I., Kobelyatsky Yu., Tsarev A., et al. Hemodynamic monitoring in the practice of intensive care of critical conditions. Medicine of emergency. 2016; 5(76): 42–46. (In Russ)]. DOI: 10.22141/2224–0586.5.76.2016.76433.
  35. Cecconi M., Parsons A.K., Rhodes A. What is a fluid challenge? Curr. Opin. Crit. Care. 2011; 17(3): 290–295. DOI: 10.1097/MCC.0b013e32834699cd.
  36. Renner J., Scholz J., Bein B. Monitoring fluid therapy. Best Practice & Research Clinical Anaesthesiology. 2009; 23(2): 159–171. DOI: 10.1016/j.bpa.2008.12.001.
  37. Carsetti A., Cecconi M., Rhodes A. Fluid bolus therapy: monitoring and predicting fluid responsiveness. Curr. Opin. Crit. Care. 2015; 21(5): 388–394. DOI: 10.1097/MCC.0000000000000240.
  38. Boyd J.H., Forbes J., Nakada T.A., et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit. Care Med. 2011; 39(2): 259–265. DOI: 10.1097/CCM.0b013e3181feeb15.
  39. Smorenberg A., Cherpanath T.G.V., Geerts B.F., et al. A mini-fluid challenge of 150 mL predicts fluid responsiveness using Modelflow pulse contour cardiac output directly after cardiac surgery. J. Clin. Anesth. 2018; 46: 17–22. DOI: 10.1016/j.jclinane.2017.12.022.
  40. Rivers E., Nguyen B., Havstad S., et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 2001; 345(19): 1368–1377. DOI: 10.1056/NEJMoa010307.
  41. Farag E., Kurz A. Perioperative Fluid Management. Springer International Publishing Switzerland 2016. Can. J. Anesth. 2017; 64: 445–446. DOI: 10.1007/s12630-016-0790-z.
  42. Marik P., Lemson J. Fluid Responsiveness: An Evolution of Our Understanding. Br. J. Anaesth. 2014; 112(4): 617–620. DOI: 10.1093/bja/aet590.
  43. Monnet X., Rienzo M., Osman D., et al. Passive leg raising predicts fluid responsiveness in the critically ill. Crit. Care Med. 2006; 34: 1402–1407. DOI: 10.1097/01.CCM.0000215453.11735.06.
  44. Jabot J., Teboul J.L., Richard C., et al. Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Med. 2009; 35(1): 85–90. DOI: 10.1007/s00134-008-1293-3.
  45. Antonelli M., Levyb M., Andrews P.J.D. Hemodynamic monitoring in shock and implications for management. 8th International Consensus Conference in Intensive Care Medicine. Réanimation. 2007; 16: 414–427. DOI: 10.1016/j.reaurg.2007.07.011.
  46. Boulain T., Achard J.M, Teboul J.L, et al. Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest. 2002; 121: 1245–1252. DOI: 10.1378/chest.121.4.1245.
  47. Lafanechère A., Pène F., Goulenok C., et al. Changes in aortic blood flow induced by passive leg raising predict fluid responsiveness in critically ill patients. Crit. Care. 2006; 10(5): 132. DOI: 10.1186/cc5044.
  48. Xiang S., Muyun H., Juan C., et al. The value of passive leg raising test in predicting fluid responsiveness in patients with sepsis-induced cardiac dysfunction. 2015; 27(9): 729–734. DOI: 10.3760/cma.j.issn.2095-4352.2015.09.006.
  49. Backer D. Can passive leg raising be used to guide fluid administration? Crit. Care. 2006; 10(6): 170. DOI: 10.1186/cc5081.
  50. Teboul J.L., Monnet X. Prediction of volume responsiveness in critically ill patients with spontaneous breathing activity. Curr. Opin. Crit. Care. 2008; 14(3): 334–349. DOI: 10.1097/MCC.0b013e3282fd6e1e.
  51. Cherpanath T.G., Hirsch A., Geerts B.F., et al. Predicting Fluid Responsiveness by Passive Leg Raising: A Systematic Review and Meta-Analysis of 23 Clinical Trials. Crit. Care Med. 2016; 44(5): 981–991. DOI: 10.1097/CCM.0000000000001556.
  52. Vincent J.L., Weil M.H. Fluid challenge revisited. Crit. Care Med. 2006; 34: 1333–1337. DOI: 10.1097/01.CCM.0000214677.76535.A5.
  53. Lakhal K., Ehrmann S., Runge I., et al. Central venous pressure measurements improve the accuracy of leg raising-induced change in pulse pressure to predict fluid responsiveness. Intensive Care Med. 2010; 36(6): 940–948. DOI: 10.1007/s00134-010-1755-2.
  54. Кузьков В., Киров М. Инвазивный мониторинг гемодинамики в интенсивной терапии и анестезиологии: Монография. Архангельск: Северный государственный медицинский университет, 2008. [Kuzkov V., Kirov M. Invasive monitoring of hemodynamics in intensive care and anesthesiology: Monograph. Arkhangelsk: Northern State Medical University, 2008. (In Russ)]
  55. Fink M., Suter P., Sibbald W. Intensive Care Medicine in 10 Years. Update in Intensive Care and Emergency Medicine. Berlin Heidelberg: Springer-Verlag, 2006. DOI: 10.1007/3-540-29730-8.
  56. Hofer C., Rex S., Ganter M. Integrative approach foe hemodynamic monitoring. In: Perioperative Hemodynamic Monitoring and Goal Directed Therapy: From Theory to Practice. Eds. Maxime Cannesson and Rupert Pears. 2014; 13: 107–119. Cambridge: Cambridge University Press.
  57. Fakhari S., Bilehjani E., Farzin H., et al. The effect of passive leg-raising maneuver on hemodynamic stability during anesthesia induction for adult cardiac surgery. Integr. Blood Press. Control. 2018; 11: 57–63. DOI: 10.2147/IBPC.S126514.
  58. Monnet X., Marik P., Teboul J.L. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016; 42(12): 1935–1947. DOI: 10.1007/s00134-015-4134-1.
  59. Bowra J., McLaughlin R. Emergency Ultrasound Made Easy. Ann. R. Coll. Surg. Engl. 2008; 90(4): 356. DOI:10.1308/003588408x286026b.
  60. Нигматуллина А., Касаткин А. Влияние изменения положения тела человека на величину диаметра внутренних яремных вен. Фундаментальные исследования. 2015; 1(1): 120–123. [Nigmatullina A., Kasatkin A. The effect of changing the position of the human body on the diameter of the internal jugular veins. Fundamental research. 2015; 1(1): 120–123. (In Russ)]
  61. Monnet X., Marik P., Teboul J.L. Prediction of fluid responsiveness: an update. Ann. Intensive Care. 2016; 6: 111. DOI: 10.1186/s13613-016-0216-7.
  62. Cecconi M., Backer D., Antonelli M., et al. Intensive Care Med. 2014; 40(12): 1795–1815. DOI: 10.1007/s00134-014-3525-z.
  63. Pinsky M.R., Payen D. Functional Hemodynamic Monitoring. Crit. Care. 2005; 9(6): 566–572. DOI: 10.1186/cc3927.
  64. Monnet X., Teboul J.L. Passive leg raising: five rules, not a drop of fluid! Crit. Care. 2015; 19(1): 18. DOI: 10.1186/s13054-014-0708-5.
  65. Roberts D.J., Ball C.G., Kirkpatrick A.W. Increased pressure within the abdominal compartment: intra-abdominal hypertension and the abdominal compartment syndrome. Curr. Opin. Crit. Care. 2016; 22(2): 174–185. DOI: 10.1097/MCC.0000000000000289.
  66. Bayer O., Reinhart K., Kohl M., et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 2009; 76(4): 422–427. DOI: 10.1038/ki.2009.159.
  67. Payen D., de Pont A.C., Sakr Y., et al. Effects of fluid resuscitation with synthetic colloids or crystalloids alone on shock reversal, fluid balance, and patient outcomes in patients with severe sepsis: a prospective sequential analysis. Crit. Care Med. 2012; 40(9): 2543–2551. DOI: 10.1097/CCM.0b013e318258fee7.
  68. Bentzer P., Griesdale D.E., Boyd J., et.al. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids? JAMA. 2016; 316(12): 1298–1309. DOI: 10.1001/jama.2016.12310.
  69. Marik P.E., Cavallazzi R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit. Care Med. 2013; 41(7): 1774–1781. DOI: 10.1097/CCM.0b013e31828a25fd.
  70. Cecconi M., Hofer C., Teboul J.L., et al. Fluid challenges in intensive care: the FENICE study: a global inception cohort study. Intensive Care Med. 2015; 41(9): 1529–1537. DOI: 10.1007/s00134-015-3850-x.
  71. Cannesson M., Pestel G., Ricks C., et al. Hemodynamic monitoring and management in patients undergoing high risk surgery: a survey among North American and European anesthesiologists. Crit. Care. 2011; 15(4): 197. DOI: 10.1186/cc10364.
  72. Eskesen T.G., Wetterslev M., Perner A. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness. Intensive Care Med. 2016; 42(3): 324–332. DOI: 10.1007/s00134-015-4168-4.
  73. Cavallaro F., Sandroni C., Marano C., et al. Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies. Intensive Care Med. 2010; 36(9): 1475–1483. DOI: 10.1007/s00134-010-1929-y.
  74. Teboul J.L., Monnet X. Detecting volume responsiveness and unresponsiveness in intensive care unit patients: two different problems, only one solution. Crit. Care. 2009; 13(4): 175. DOI: 10.1186/cc7979.
  75. Vincent J.L., Rhodes A., Perel A., et al. Clinical review: Update on hemodynamic monitoring — a consensus of 16. Crit. Care. 2011; 15(4): 229. DOI: 10.1186/cc10291.
  76. Kent A., Bahner D.P., Boulger C.T., et al. Sonographic evaluation of intravascular volume status in the surgical intensive care unit: a prospective comparison of subclavian vein and inferior vena cava collapsibility index. J. Surg. Res. 2013; 184(1): 561–566. DOI: 10.1016/j.jss.2013.05.040.
  77. Stawicki S.P., Braslow B.M., Panebianco N.L., et al. Intensivist use of hand-carried ultrasonography to measure IVC collapsibility in estimating intravascular volume status: correlations with CVP. J. Am. Coll. Surg. 2009; 209(1): 55–61. DOI: 10.1016/j.jamcollsurg.2009.02.062.
  78. Stawicki S.P., Adkins E.J., Eiferman D.S., et al. Prospective evaluation of intravascular volume status in critically ill patients: does inferior vena cava collapsibility correlate with central venous pressure? J. Trauma Acute Care Surg. 2014; 76(4): 956–963; discussion 963–964. DOI: 10.1097/TA.0000000000000152.
  79. Kelly N., Esteve R., Papadimos T.J., et al. Clinician-performed ultrasound in hemodynamic and cardiac assessment: a synopsis of current indications and limitations. European Journal of Trauma and Emergency Surgery. 2015; 41(5): 469–480. DOI: 10.1007/s00068-014-0492-6.
  80. Pasquero P., Albani S., Sitia E., et al. Inferior vena cava diameters and collapsibility index reveal early volume depletion in a blood donor model. Crit. Ultrasound J. 2015; 7: 17. DOI: 10.1186/s13089-015-0034-4.
  81. Zhang Z., Xu X., Ye S., et al. Ultrasonographic measurement of the respiratory variation in the inferior vena cava diameter is predictive of fluid responsiveness in critically ill patients: systematic review and meta-analysis. Ultrasound Med. Biol. 2014; 40(5): 845–853. DOI: 10.1016/j.ultrasmedbio.2013.12.010.
  82. Achar S.K., Sagar M.S., Shetty R. Respiratory variation in aortic flow peak velocity and inferior vena cava distensibility as indices of fluid responsiveness in anaesthetised and mechanically ventilated children. Indian J. Anaesth. 2016; 60(2): 121–126. DOI: 10.4103/0019–5049.176285.
  83. Juhl-Olsen P., Frederiksen C.A., Sloth E. Ultrasound assessment of inferior vena cava collapsibility is not a valid measure of preload changes during triggered positive pressure ventilation: a controlled cross-over study. Ultraschall Med. 2012; 33(2): 152–159. DOI: 10.1055/s-0031-1281832.
  84. Markou N., Grigorakos L., Myrianthefs P., et al. Venous pressure measurements in the superior and inferior vena cava: the influence of intra-abdominal pressure. Hepatogastroenterology. 2004; 51(55): 51–55.
  85. Muller L., Toumi M., Bousquet P.J., et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011; 115(3): 541–547. DOI: 10.1097/ALN.0b013e318229a500.
  86. Harnsberg H., Osborn A., Ross J., et al. Diagnostic and Surgical Imaging Anatomy: Brain, Head and Neck, Spine: Published by Amirsys. Lippincott Williams & Wilkins; International edition, 2006.
  87. КиллуК., Далчевски С., Коба В. УЗИ в отделении интенсивной терапии. Пер. с англ. под ред. Р.Е. Лахина. М.: ГЭОТАР-Медиа, 2016. [Killu K., Dalchevski S., Koba V. Ultrasonography in the intensive care unit. Translation from English under the editorship of R.E. Lakhin. Moscow: GEOTAR-Media, 2016. (In Russ)]
  88. Ма О., Матиэр Д., Блэйвес М. Ультразвуковое исследование в неотложной медицине. Пер. со 2-го англ. издания А.В. Сохор и Л.Л. Болотовой. М.: БИНОМ. Лаборатория знаний, 2013. [Ma O., Matier D., Blaves M. Ultrasound research in emergency medicine. Translation from the 2nd English Edition by A.V. Sokhor and L.L. Bolotova. Moscow: BINOM. Laboratory of Knowledge, 2013. (In Russ)]
  89. Joynt G.M., Ho K.M., Tan P., et al. A comparison of central venous pressure (CVP) in the superior vena cava and common iliac vein in critically ill patients. Crit. Care. 1997; 1(1): 120. DOI: 10.1186/cc93.
  90. Нобль В., Нельсон Б., Сутингко А. УЗИ при неотложных и критических состояниях. М.: Медицинская литература, 2009. [Noble V., Nelson B., Sutingko A. Ultrasonography in urgent and critical conditions. Moscow: Medical literature, 2009. Translated from English Vershinin P., Pleshkov F. (In Russ)]
  91. Finnerty N.M., Panchal A.R., Boulger C. Inferior Vena Cava Measurement with Ultrasound: What Is the Best View and Best Mode? West J. Emerg. Med. 2017; 18(3): 496–501. DOI: 10.5811/westjem.2016.12.32489.
  92. Lyon M.L., Verma N. Ultrasound Guided Volume Assessment Using Inferior Vena Cava. Medical College of Georgia, Augusta, Georgia, USA. The Open Emergency Medicine Journal, 2010; 3: 22–24. DOI: 10.2174/1876542401003010022.
  93. Weekes A.J., Tassone H.M., Babcock A. Comparison of serial qualitative and quantitative assessments of caval index and left ventricular systolic function during early fluid resuscitation of hypotensive emergency department patients. Acad. Emerg. Med. 2011; 18(9): 912–921. DOI: 10.1111/j.1553-2712.2011.01157.x.
  94. Mackenzie D.K., Noble V.E. Assessing volume status and fluid responsiveness in the emergency department. Clin. Exp. Emerg. Med. 2014; 1(2): 67–77. DOI: 10.15441/ceem.14.040.
  95. Carmody K., Christopher L., Kopman D. Handbook of Critical Care and Emergency Ultrasound. McGraw-Hill Education. Medical, 2011.
  96. Oord M., Olgers T.J., Doff-Holman M., et al. Ultrasound and NICOM in the assessment of fluid responsiveness in patients with mild sepsis in the emergency department: a pilot study. BMJ Open. 2017; 7: e013465. DOI: 10.1136/bmjopen-2016-013465.
  97. Cheriex E.C., Leunissen K.M., Janssen J.H., et al. Echography of the inferior vena cava is a simple and reliable tool for estimation of dry weight in haemodialysis patients. Nephrol. Dial. Transplant. 1989; 4(6): 563–568.
  98. Kusaba T., Yamaguchi K., Oda H. Echography of the inferior vena cava for estimating fluid removal from patients undergoing hemodialysis. Jpn. J. Nephrol. 1996; 38: 119–123.
  99. Muller L., Bobbia X., Toumi M., et al. Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit. Care. 2012; 16(5): 188. DOI: 10.1186/cc11672.
  100. Arntfield R.T., Millington S.J. Point of Care Cardiac Ultrasound Applications in the Emergency Department and Intensive Care. Curr.Cardiol. Rev. 2012; 8(2): 98–108. DOI: 10.2174/157340312801784952.
  101. Быков М. Ультразвуковые исследования в обеспечении инфузионной терапии в отделениях реанимации и интенсивной терапии. Тверь: ООО«Издательство “Триада”», 2011. [Bykov M. Ultrasound studies in providing infusion therapy in the intensive care units and intensive care. Tver: Triada Publishing House LLC, 2011. (In Russ)]
  102. Michalke J.A. An overview of emergency ultrasound in the United States. World J. Emerg. Med. 2012; 3(2): 85–90. DOI: 10.5847/wjem.j.issn.1920-8642.2012.02.001.
  103. Poelaert J.I., Schüpfer G. Hemodynamic monitoring utilizing transesophageal echocardiography: the relationships among pressure, flow, and function. Chest. 2005; 127(1): 379–390. DOI: 10.1378/chest.127.1.379.
  104. Melamed R., Sprenkle M.D., Ulstad V.K., et al. Assessment of left ventricular function by intensivists using hand-held echocardiography. Chest. 2009; 135(6): 1416–1420. DOI: 10.1378/chest.08–2440.
  105. Шиллер Н., Осипов М. Клиническая эхокардиография. М.: МЕДпресс-информ, 2018. [Schiller N., Osipov M. Clinical echocardiography. Moscow: MEDpress-inform, 2018. (In Russ)]
  106. Henningsen C., Kuntz K., Youngs D. Clinical Guide to Sonography: Exercises for Critical Thinking. Mosby. 2013; 2: 528.
  107. Mueller X., Stauffer J.C., Jaussi A., et al. Subjective visual echocardiographic estimate of left ventricular ejection fraction as an alternative to conventional echocardiographic methods: comparison with contrast angiography. Clin. Cardiol. 1991; 14(11): 898–902. DOI: 10.1002/clc.4960141108.
  108. Amico A.F., Lichtenberg G.S., Resiner S.A., et al. Superiority of visual versus computerized echocardiographic estimation of radionuclide left ventricular ejection fraction. Am. Heart J. 1989; 118(6): 1259–1265. DOI: 10.1016/0002–8703(89)90018–5.
  109. Stamm R.B., Carabello B.A., Mayers D.L., et al. Two-dimensional echocardiographic measurement of left ventricular ejection fraction: prospective analysis of what constitutes an adequate determination. Am. Heart J. 1982; 104(1): 136–144. DOI: 10.1016/0002–8703(82)90651–2.
  110. Foster E., Schiffer N.B. The Role of Transesophageal Echocardiography in Critical Care: UCSF Experience. 1992; 5(4): 368–374.
  111. Rose J., Bair A., Mandavia D., et al. The UHP ultrasound protocol: a novel ultrasound approach to the empiric evaluation of the undifferentiated hypotensive patient. Am. J. Emerg. Med. 2001; 19: 299–302. DOI: 10.1016/S0894–7317(14)80269–1.
  112. Jones A.E., Tayal V.S., Sullivan D.M., et al. Randomized, controlled trial of immediate versus delayed goal-directed ultrasound to identify the cause of nontraumatic hypotension in emergency department patients. Crit. Care Med. 2004; 32(8): 1703–1708. DOI: 10.1097/01.CCM.0000133017.34137.82.
  113. Kaul S., Stratienko A.A., Pollack S.G., et al. Value of two-dimensional echocardiography for determining the basis of hemodynamic compromise in critically ill patients: a prospective study. J. Am. Soc. Echocardiogr. 1994; 7(6): 598–606.
  114. Backer D., Fagnoul D. Intensive Care Ultrasound: VI. Fluid Responsiveness and Shock Assessment. Annals of the American Thoracic Society. 2013; 11(1): 129–136. DOI: 10.1513/AnnalsATS.201309–320OT.
  115. Mazraeshahi R.M., Farmer J.C., Porembka D.T. A suggested curriculum in echocardiography for critical care physicians. Crit. Care Med. 2007; 35(8): 431–433. DOI: 10.1097/01.CCM.0000270280.65365.AA.
  116. Cikes M., Solomon S.D. Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur. Heart J. 2016; 37(21): 1642–1650. DOI: 10.1093/eurheartj/ehv510.
  117. Vieillard-Baron A., Mayo P.H., Vignon P., et al. International consensus statement on training standards for advanced critical care echocardiography. Intensive Care Med. 2014; 40(5): 654–666. DOI: 10.1007/s00134-014-3228-5.
  118. Wetterslev M., Møller-Sørensen H., Johansen R.R., et al. Systematic review of cardiac output measurements by echocardiography vs. thermodilution: the techniques are not interchangeable. Intensive Care Med. 2016; 42(8): 1223–1233. DOI: 10.1007/s00134-016-4258-y.
  119. Myatra S.N., Prabu N.R., Divatia J.V., et al. The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge» reliably predict fluid responsiveness during low tidal volume ventilation. Crit. Care Med. 2017; 45(3): 415–421. DOI: 10.1097/CCM.0000000000002183.
  120. Roche A.M., Miller T.E., Gan T.J. Goal-directed fluid management with trans-oesophageal Doppler. Best Pract. Res. Clin. Anaesthesiol. 2009; 23(3): 327–334. DOI: 10.1016/j.bpa.2009.03.001.
  121. Stec S., Zaborska B., Sikora-Frac M., et al. First experience with microprobe transoesophageal echocardiography in non-sedated adults undergoing atrial fibrillation ablation: feasibility study and comparison with intracardiac echocardiography. Europace. 2011; 13(1): 51–56. DOI: 10.1093/europace/euq349.
  122. Monge G.M., Gil C.A., Monrove J.C. Brachial artery peak velocity variation to predict fluid responsiveness in mechanically ventilated patients. Crit. Care. 2009; 13(5): 142. DOI: 10.1186/cc8027.
  123. Wu J., Wang Z., Wang T., et al. Evaluation of the fluid responsiveness in patients with septic shock by ultrasound plus the passive leg raising test. J.Surg. Res. 2018; 224: 207–214. DOI: 10.1016/j.jss.2017.12.014.

 

Features of Ultrasonic Signs in the Diagnosis of Volume and Nature of Lung Disease

R.E. Lahin, A.V. Shhegolev, E.A. Zhirnova, A.A. Emeljanov, I.N. Grachev

Federal State Budgetary Educational Military Institution of Higher Professional Education Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation, Saint-Petersburg

For correspondence: Lahin Roman Evgenievich — Doctor of Medical Science, Associate Professor, Department of Anesthesiology and Intensive Care Federal State Budgetary Educational Military Institution of Higher Professional Education Military Medical Academy named after S.M. Kirov of the Ministry of Defense of the Russian Federation, Saint-Petersburg; e-mail: doctor-lahin@yandex.ru

For citation: Lahin RE, Shhegolev AV, Zhirnova EA, Emeljanov AA, Grachev IN. Features of Ultrasonic Signs in the Diagnosis of Volume and Nature of Lung Disease. Intensive Care Herald. 2016;4:5–11.


Ultrasound is an evolving research method to assess the volume and nature of lung disease and interest in this direction is growing. Fast performance, accuracy, availability, reproducibility, portability, there is no need to transport patients to the place of study allows us to consider as a bedside ultrasound imaging diagnostic method, observing the principle of «point-of-care». Using the ultrasonic inspection to assess lung severe pneumonia showed a high degree of sensibility and specificity. Ultrasound can accurately define the nature of destruction of lung tissue, confirming signs of infiltration, consolidation, free fluid in the pleural cavity. Understanding of the pathophysiology of occurrence ultrasonic indication is not only important for the diagnosis of pneumonia, but also for control and correction of the intensive therapy, including respiratory support. Ultrasonic sign of B-lines is associated with interstitial infiltration of the lungs and is caused by many times reflected in the interlobular spaces between interalveolar, collapse, filled with a fluid and well-aerated alveoles. Ultrasonic Consolidation sign displayed with the disappearance of airiness of lung tissue and the tissue is visualized as a sign to him, as a rule, associated ultrasound sign aerobronhograms. Symptom-free fluid in the pleural cavity is determined by the echonegative space above the diaphragm.

Keywords: lung, ultrasound, pneumonia, consolidation, infiltration, free fluid

Received: 05.12.2016


References

  1. Seif D., Perera P., Mailhot T. et al. Bedside ultrasound in resuscitation and the rapid ultrasound in shock protocol. Crit. Care Res. Pract. 2012; 2012: 503254. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3485910/. doi: 10.1155/2012/503254.
  2. Labovitz A.J., Noble V.E., Bierig M. et al. Focused cardiac ultrasound in the emergent setting: a consensus statement of the American Society of Echocardiography and American College of Emergency Physicians. J. Am. Soc. Echocardiogr. 2010; 23(12): 1225–1230. URL: http://www.ncbi.nlm.nih.gov/pubmed/21111923. doi: 10.1016/j.echo.2010.10.005.
  3. Киллу К., Далчевски С., Коба В. УЗИ в отделении интенсивной терапии: Пер. с англ. под ред. Р.Е. Лахина. М.: ГЭОТАР-Медиа; 2016. [Killu K., Dulchavsky S., Coba V. Ultrasound in intensive care unit. Moscow: GEOTAR-Media, 2016. (In Russ)].
  4. Лахин Р.Е., Антипин Э.Э., Баутин А.Е. и др. Клинические рекомендации по катетеризации сосудов под контролем ультразвука. В кн.: Клинические рекомендации. Анестезиология-реаниматология. Под ред. И.Б.Заболотских, Е.М. Шифман. М.: ГЭОТАР-Медиа, 2016: 912–947. [Lakhin R.E., Antipin E.E., Bautin A.E. et al. Clinical practice guidelines for catheterization of vessels under the control of ultrasound. In: Zabolotskikh I.B., Shifman E.M. (eds.) Clinical practice guidelines Anesthesiology-Reanimatology. Moscow: GEOTAR-Media, 2016: 912–947. (In Russ)].
  5. Holm J.H., Frederiksen C.A., Juhl-Olsen P., Sloth E. Perioperative use of focus assessed transthoracic echocardiography (FATE). Anesth. Analg. 2012; 115(5): 1029–1032. URL: http://www.ncbi.nlm.nih.gov/pubmed/23051882. doi: 10.1213/ANE.0b013e31826dd867.
  6. Griffin J., Nicholls B. Ultrasound in regional anaesthesia. Anaesthesia. 2010; 65(Suppl 1): 1–12. URL: http://www.ncbi.nlm.nih.gov/pubmed/20377542. doi: 10.1111/j.1365-2044.2009.06200.x.
  7. Aksoy Y., Eyi Y.E. The Bedside Ultrasound: A Rapid Way of Measuring Optic Nerve Sheath Diameter in Emergency. J. Emerg. Med. 2016; 51(2): e25–e26. URL: http://www.ncbi.nlm.nih.gov/pubmed/27283482. doi: 10.1016/j.jemermed.2015.06.090.
  8. Via G., Storti E., Gulati G. et al. Lung ultrasound in the ICU: from diagnostic instrument to respiratory monitoring tool. Minerva Anestesiol. 2012; 78(11): 1282–1296. URL: http://www.ncbi.nlm.nih.gov/pubmed/22858877.
  9. Abdelhamid S., Mansour M. Ultrasound-guided intrathecal anesthesia: Does scanning help? Egypt J. Anaesth. 2013; 29(4): 389–394. URL: http://linkinghub.elsevier.com/retrieve/pii/S1110184913000809. doi.: 10.1016/j.egja.2013.06.003.
  10. Caltabeloti F.P., Rouby J.-J. Lung ultrasound: a useful tool in the weaning process? Rev. Bras. Ter. Intensiva. 2016; 28(1): 5–7. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4828084&tool=pmcentrez&rendertype=abstract. doi: 10.5935/0103-507X.20160002.
  11. Picano E., Frassi F., Agricola E. et al. Ultrasound lung comets: a clinically useful sign of extravascular lung water. J. Am. Soc. Echocardiogr. 2006; 19(3): 356–363. URL: http://www.ncbi.nlm.nih.gov/pubmed/16500505. doi: 10.1016/j.echo.2005.05.019.
  12. Reissig A. Lung Ultrasound in the Diagnosis and Follow-up of Community-Acquired Pneumonia. Chest. 2012; 142(4): 965. URL: http://www.ncbi.nlm.nih.gov/pubmed/22700780. doi: 10.1378/chest.12-0364.
  13. Reissig A., Copetti R. Lung Ultrasound in Community-Acquired Pneumonia and in Interstitial Lung Diseases. Respiration. 2014; 87(3): 179–189. URL: http://www.ncbi.nlm.nih.gov/pubmed/24481027. doi: 10.1159/000357449.
  14. Bourcier J.-E., Braga S., Garnier D. Lung Ultrasound Will Soon Replace Chest Radiography in the Diagnosis of Acute Community-Acquired Pneumonia. Curr. Infect. Dis. Rep. 2016; 18(12): 43. URL: http://www.ncbi.nlm.nih.gov/pubmed/27785748. doi: 10.1007/s11908-016-0550-9.
  15. Chavez M.A., Shams N., Ellington L.E. et al. Lung ultrasound for the diagnosis of pneumonia in adults: a systematic review and meta-analysis. Respir. Res. 2014; 15: 50. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4005846&tool=pmcentrez&rendertype=abstract. doi: 10.1186/1465-9921-15-50.
  16. Berlet T. Thoracic ultrasound for the diagnosis of pneumonia in adults: a meta-analysis. Respir Res. 2015; 16: 89. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4531799&tool=pmcentrez&rendertype=abstract. doi: 10.1186/s12931-015-0248-9.
  17. Lichtenstein D., Meziere G., Biderman P. et al. The comet-tail artifact. An ultrasound sign of alveolar-interstitial syndrome. Am. J. Respir. Crit. Care Med. 1997; 156(5): 1640–1646. URL: http://www.ncbi.nlm.nih.gov/pubmed/9372688. doi: 10.1164/ajrccm.156.5.96-07096.
  18. Soldati G., Inchingolo R., Smargiassi A. et al. Ex vivo lung sonography: morphologic-ultrasound relationship. Ultrasound Med. Biol. 2012; 38(7): 1169–1179. URL: http://www.ncbi.nlm.nih.gov/pubmed/22579543. doi: 10.1016/j.ultrasmedbio.2012.03.001. doi: 10.1016/j.ultrasmedbio.2012.03.001.
  19. Spinelli A., Vinci B., Tirella A. et al. Realization of a poro-elastic ultrasound replica of pulmonary tissue. Biomatter. 2016; 2(1): 37–42. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3849056&tool=pmcentrez&rendertype=abstract. doi: 10.4161/biom.19835.
  20. Volpicelli G., Elbarbary M., Blaivas M. et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2012; 38(4): 577–591. URL: http://www.ncbi.nlm.nih.gov/pubmed/22392031. doi: 10.1007/s00134-012-2513-4.
  21. Jambrik Z., Gargani L., Adamicza A. et al. B-lines quantify the lung water content: a lung ultrasound versus lung gravimetry study in acute lung injury. Ultrasound Med. Biol. 2010; 36(12): 2004–2010. URL: http://www.ncbi.nlm.nih.gov/pubmed/21030138. doi: 10.1016/j.ultrasmedbio.2010.09.003.
  22. Ma H., Huang D., Zhang M. et al. Lung ultrasound is a reliable method for evaluating extravascular lung water volume in rodents. BMC Anesthesiol. 2015; 15: 162. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4643534&tool=pmcentrez&rendertype=abstract. doi: 10.1186/s12871-015-0146-1.
  23. Enghard P., Rademacher S., Nee J. et al. Simplified lung ultrasound protocol shows excellent prediction of extravascular lung water in ventilated intensive care patients. Crit. Care. 2015; 19: 36. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4335373&tool=pmcentrez&rendertype=abstract. doi: 10.1186/s13054-015-0756-5.
  24. Gargani L., Lionetti V., Di Cristofano C. et al. Early detection of acute lung injury uncoupled to hypoxemia in pigs using ultrasound lung comets. Crit. Care Med. 2007; 35(12): 2769–2774. URL: http://www.ncbi.nlm.nih.gov/pubmed/17828031. doi: 10.1097/01.CCM.0000287525.03140.3F.
  25. Ye X., Xiao H., Chen B., Zhang S. Accuracy of Lung Ultrasonography versus Chest Radiography for the Diagnosis of Adult Community-Acquired Pneumonia: Review of the Literature and Meta-Analysis. PLoS One. 2015; 10(6): e0130066. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4479467&tool=pmcentrez&rendertype=abstract. doi: 10.1371/journal.pone.0130066.
  26. Liu X., Lian R., Tao Y. et al. Lung ultrasonography: an effective way to diagnose community-acquired pneumonia. Emerg. Med. J. 2015; 32(6): 433–438. URL: http://www.ncbi.nlm.nih.gov/pubmed/25142033. doi: 10.1136/emermed-2013-203039.
  27. Nazerian P., Volpicelli G., Vanni S. et al. Accuracy of lung ultrasound for the diagnosis of consolidations when compared to chest computed tomography. Am. J. Emerg. Med. 2015; 33(5): 620–625. URL: http://www.ncbi.nlm.nih.gov/pubmed/25758182. doi: 10.1016/j.ajem.2015.01.035.
  28. Balik M., Plasil P., Waldauf P. et al. Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med. 2006; 32(2): 318–21. doi: 10.1007/s00134-005-0024-2.