The influence of anesthesia components on systemic inflammatory response during cardiac surgery with cardiopulmonary bypass. Article

R.R. Adzhigaliev1, А.E. Вautin2, V.V. Рasyuga1

1 FSBI “Federal Center for Cardiovascular Surgery” of the Ministry of Health of the Russian Federatio., Astrakhan, Russia

2 FSBI “Almazov National Medical Research Centre” of the Ministry of Health of the Russian Federation, St. Petersburg, Russia

For correspondence: Ruslan R. Adzhigaliev — anesthesiologist and emergency physician of anesthesiology and intensive care department, Astrakhan; e-mail:

For citation: Adzhigaliev RR, Вautin АE, Рasyuga VV. The influence of anesthesia components on systemic inflammatory response during cardiac surgery with cardiopulmonary bypass. Article. Annals of Critical Care. 2019;4:73–80.

DOI: 10.21320/1818-474X-2019-4-73-80


Background. There are some experimental and clinical data indicating that propofol and morphine may to reduce systemic inflammatory response (SIR) after cardiopulmonary bypass (CPB).

Objectives. To study the impact of anesthetics and opioids on the SIR associated with cardiopulmonary bypass.

Materials and methods. The studies examined the dynamic concentration of tumor necrosis factor (TNF), interleukin-6 (IL-6) and interleukin-8 (IL-8) before CPB, 1, 3 and 24 hours after the end of CPB in 119 patients randomized in four groups. Patients of the first group received sevoflurane and fentanyl, patients of the second group received sevoflurane and morphine, patients of the third group received propofol and fentanyl, patients of the fourth group received propofol and morphine.

Results. There was found increase in cytokine level in 1 hour after CPB. In the fourth group concentration of markers was lower versus the other groups. Significant differences were found with group 1 (sevoflurane and fentanyl) in the concentration of IL-6 after 3 hours (p = 0.004) and after 24 hours (p = 0.018); IL-8 after 1 hour (p = 0.003); TNF after 1 hour (p = 0.001) and after 3 hours (p = 0.001). In the fourth group (propofol and morphine) compared with group 1 (sevoflurane and fentanyl) there was lower body temperature in 4 hours after surgery (p = 0.005) and a lower leukocyte count on the 3rd day – 8,2 (7–11,4) ×109/l versus 11,1 (9–12,6) ×109/l (p = 0,005), there was less length of the ICU stay — 24 (21–29) hours versus 44 (23–71) hours (p = 0.013) and the frequency of use of vasoactive medications is 13.3 % versus 46.7 % (p = 0.02).

Conclusion. Our results showed the ability of propofol and morphine to reduce the manifestations of a systemic inflammatory response throughout cardiac surgery with cardiopulmonary bypass.

Keywords: cardiac surgery, cardiopulmonary bypass, propofol, sevoflurane, morphine, fentanyl, systemic inflammatory response

Received: 30.08.2019

Accepted: 05.11.2019


  1. Balk R.A. Systemic inflammatory response syndrome (SIRS): Where did it come from and is it still relevant today? Virulence. 2014; 5(1): 20–26. DOI: 10.4161/viru.27135
  2. Day J.R., Taylor K.M. The systemic inflammatory response syndrome and cardiopulmonary bypass. Int. J. Surg. 2005; 3: 129–140. DOI: 10.1016/j.ijsu.2005.04.002
  3. Shinji H. Systemic inflammatory response syndrome after cardiac surgery under cardiopulmonary bypass. Ann. Thorac. Cardiovasc. Surg. 2003; 9(6): 365–370.
  4. Murphy G.S., Szokol J.W., Marymont J.H., et al. The effects of morphine and fentanyl on the inflammatory response to cardiopulmonary bypass in patients undergoing elective coronary artery bypass graft surgery. Anesth. Analg. 2007; 104(6): 1334–1342. DOI: 10.1213/01.ane.0000264108.47280.f5
  5. Schneemilch C.E., Schilling T., Bank U. Effects of general anaesthesia on inflammation. Best. Pract. Res. Clin. Anaesthesiol. 2004; 18(3): 493–507. DOI: 10.1016/j.bpa.2004.01.002
  6. Stefano G.B., Scharrer B., Smith E.M., et al. Opioid and opiate immunoregulatory processes. Crit. Rev. Immunol. 1996; 16(2): 109–144.
  7. Dabbagh A., Rajaei S., Ayad Bahadori Monfared A.B., Keramatinia A.A. Cardiopulmonary bypass, inflammation and how to defy it: focus on pharmacological interventions. Iran. J. Pharm. Res. 2012; 11(3): 705–714.
  8. Samir A., Gandreti N., Madhere M., et al. Anti inflammatory effects of propofol during cardiopulmonary bypass: A pilot study. Ann. Card. Anaesth. 2015; 18(4): 495–501. DOI: 10.4103/0971-9784.166451
  9. Sayed S., Maghraby H., Momen S., et al. Effect of morphine and fentanyl on inflammatory biomarkers in rheumatic heart patients undergoing valve replacement surgery. Anesth. Clin. Res. 2014, 5(6): 412–420. DOI: 10.4172/2155-6148.1000412
  10. Аджигалиев Р., Баутин А., Илов Н. и др. Различное влияние наркотических анальгетиков на динамику активности цитокинов во время кардиохирургических вмешательств в условиях искусственного кровообращения. Вестн. анестезиол. и реаниматол. 2017; 14(5): 34–40. DOI: 10.21292/2078-5658-2017-14-5-34-40. [Аdzhigаliev R.R., Bаutin А.E, Ilov N.N., et al. Various effects of narcotic analgesics on the changes in cytokine activities during cardiac surgery with cardiopulmonary bypass Vestnik Anasteziol. i Reanimatol. 2017; 14(5): 34–40. (In Russ)]
  11. Claxton A.R., McGuire G., Chung F., Cruise C. Evaluation of morphine versus fentanyl for postoperative analgesia after ambulatory surgical procedures. Anesth. Analg. 1997; 84 (3): 509–514.
  12. Murphy G.S., Szokol J.W., Marymont J.H., et al. Morphine-based cardiac anesthesia provides superior early recovery compared with fentanyl in elective cardiac surgery patients. Anesth. Analg. 2009; 109(2): 311−319. DOI: 10.1213/ane.0b013e3181a90adc
  13. Musacchio E., Rizzoli V., Bianchi M., et al. Antioxidant action of propofol on liver microsomes, mitochondria and brain synaptosomes in the rat. Pharmacol. Toxicol. 1991; 69: 75–77.
  14. Corcoran T.B., Engel A., Sakamoto H., et al. The effects of propofol on lipid peroxidation and inflammatory response in elective coronary artery bypass grafting. J. Cardiothorac. Vasc. Anesth. 2004; 18: 592–604.
  15. Lisowska B., Szymańska M., Nowacka E., Olszewska M. Anesthesiology and the cytokine network. Postepy. Hig. Med. Dosw. (Online). 2013; 67: 769–769.
  16. Mathy-Hartert M., Deby-Dupont G., Hans P., et al. Protective activity of propofol, diprivan and intralipid against active oxygen species. Mediators Inflamm. 1998; 7: 327–333.
  17. Heine J., Jaeger K., Osthaus A., et al. Anaesthesia with propofol decreases FMLP-induced neutrophil respiratory burst but not phagocytosis compared with isoflurane. Br. J. Anaesth. 2000; 85 (3): 424–430.
  18. Inada T., Yamanouchi Y., Jomura S., et al. Effect of propofol and isoflurane anaesthesia on the immune response to surgery. Anaesthesia. 2004; 59(10): 954–959. DOI: 10.1111/j.1365-2044.2004.03837.x
  19. Petros A.J., Bogle R.G., Pearson J.D. Propofol stimulates nitric oxide release from cultured porcine aortic endothelial cells. Br. J. Pharmacol. 1993; 109: 6–7.
  20. Mathy Hartert M., Mouithys Mickalad A., Kohnen S., et al. Effects of propofol on endothelial cells subjected to a peroxynitrite donor (SIN-1). Anaesthesia. 2000; 55: 1066–1071. DOI: 10.1046/j.1365-2044.2000.01606.x
  21. Mikawa K., Akamatsu H., Nishina K., et al. Propofol inhibits human neutrophil functions. Anesth. Analg. 1998; 87: 695–700.
  22. Day J.R., Taylor K.M. The systemic inflammatory response syndrome and cardiopulmonary bypass. Int. J. Surg. 2005; 3: 129–140. DOI: 10.1016/j.ijsu.2005.04.002.
  23. Punjabi P.P., Taylor K.M. The science and practice of cardiopulmonary bypass: From cross circulation to ECMO and SIRS. Glob. Cardiol. Sci. Pract. 2013; 3: 249–260. DOI: 10.5339/gcsp.2013.32
  24. Paparella D., Yau T.M., Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment. An update. Eur. J. Cardiothorac. Surg. 2002; 21(2): 232–244. DOI: 10.1016/s1010-7940(01)01099-5
  25. Chen R.M., Wu CH, Chang H.C., et al. Propofol suppresses macrophage functions and modulates mitochondrial membrane potential and cellular adenosine triphosphate synthesis. Anesthesiology. 2003; 98: 1178–1185. DOI: 10.1097/00000542-200305000-00021
  26. Chang H., Tsai S.Y., Chang Y., et al. Therapeutic concentrations of propofol protects mouse macrophages from nitric oxide-induced cell death and apoptosis. Can. J. Anaesth. 2002; 49: 477–80.
  27. De La Cruz J.P., Sedeño G., Carmona J.A., Sánchez de la Cuesta F. The in vitro effects of propofol on tissular oxidative stress in the rat. Anesth. Analg. 1998; 87: 1141–1146.
  28. Mouithys-Mickalad A., Hans P., Deby-Dupont G. Propofol reacts with peroxynitrite to form a phenoxyl radical: Demonstration by electron spin resonance. Biochem. Biophys. Res. Commun. 1998; 249 (3): 833–837. DOI: 10.1006/bbrc.1998.9235
  29. Hess M.L., Okabe E., Kontos H.A. Proton and free oxygen radical interaction with the calcium transport system of cardiac sarcoplasmic reticulum. J. Mol. Cell. Cardiol. 1981; 13: 767–772.
  30. Welters I.D., Menzebach A., Goumon Y., et al. Morphine suppresses complement receptor expression, phagocytosis, and respiratory burst in neutrophils by a nitric oxide and μ3 opiate receptor−dependant mechanism. J. Neuroimmunol. 2000; 111 (1–2): 139–145. DOI: 10.1016/s0165-5728(00)00401-x