Современные аспекты взаимосвязи функционального состояния автономной нервной системы и клинико-лабораторных показателей гомеостаза организма при повреждениях головного мозга

А.В. Гречко, Ю.Ю. Кирячков, М.В. Петрова

Федеральный научный клинический центр реаниматологии и реабилитологии, Москва

Для корреспонденции: Кирячков Юрий Юрьевич — д-р мед. наук, руководитель отдела хирургических и анестезиолого-реанимационных технологий ФНКЦ РР; e-mail: kirychyu@yandex.ru

Для цитирования: Гречко А.В., Кирячков Ю.Ю., Петрова М.В. Современные аспекты взаимосвязи функционального состояния автономной нервной системы и клинико-лабораторных показателей гомеостаза организма при повреждениях головного мозга. Вестник интенсивной терапии имени А.И. Салтанова. 2018;2:79–86.

DOI: 10.21320/1818-474X-2018-2-79-86


Обзор литературы посвящен анализу роли автономной нервной системы (АНС) как главного регулятора гомеостаза организма при мультикаузалгических (аноксия, черепно-мозговая травма, нарушение мозгового кровообращения) повреждениях головного мозга. В первую очередь рассмотрены клинические, патофизиологические дефиниции и методы фармакологической коррекции проявлений симпатической и парасимпатической гиперактивности (paroxysmal sympathetic hyperactivity — PSH; paroxysmal parasympathetic hyperactivity — PPH). Важным аспектом обзора является оценка публикаций, посвященных предотвращению и терапии системной воспалительной реакции и вторичного нейровоспаления исходя из функциональных адаптационных реакций автономной нервной системы. Подробно изложены аспекты влияния нормы и патологии автономной нервной системы на метаболизм и энергетический баланс организма. Оценены перспективы нормализации нутритивного статуса путем лечебных воздействий на структуры автономной нервной системы, расположенные в гипоталамических зонах головного мозга, изменения регуляторных влияний парасимпатических и симпатических нервов, иннервирующих печень, кишечник, панкреас. Рассмотрены взаимодействия периферических структур автономной нервной системы и микробиоты. Показана взаимосвязь и обсуждены возможные механизмы нарушения функционального статуса симпатической или парасимпатической нервной системы при мышечной дистонии, респираторной недостаточности.

Ключевые слова: симпатическая и парасимпатическая гиперактивность, регуляция энергетического гомеостаза, холинергический противовоспалительный путь, хеморецепторная чувствительность

Поступила: 22.05.2018


Литература

  1. Osteraas N.D., Lee V.H. Neurocardiology. Handb. Clin. Neurol. 2017; 140: 49–65.
  2. Mirow S., Wilson S.H., Weaver L.K.,et al. Linear analysis of heart rate variability in post-concussive syndrome. Undersea Hyperb. Med. 2016; 43(5): 531–547.
  3. Laranjo S., Geraldes V., Oliveira M.,et al. Insights into the background of autonomic medicine. Rev. Port. Cardiol. 2017; 36(10): 757–771.
  4. Pozzi M., Locatelli F., Galbiati S.,et al. Re: “Paroxysmal Sympathetic Hyperactivity: A New Era for Diagnosis and Treatment”. J. Head Trauma Rehabil. 2015; 30(5): 366–367.
  5. Barha C.K., Nagamatsu L.S. Basics of neuroanatomy and neurophysiology. Handb. Clin. Neurol. 2016; 138: 53–68.
  6. Abou E. Fadl M.H., O’Phelan K.H. Management of traumatic brain injury: An Update. Neurol. Clin. 2017; 35(4): 641–653.
  7. Godoy D.A., Panhke P., Guerrero Suarez P.D.,et al. Paroxysmal sympathetic hyperactivity: An entity to keep in mind. Med. Intensiva. 2017: pii: S0210-5691(17)30308-X.
  8. Letzkus L., Keim-Malpass J., Kennedy C. Paroxysmal sympathetic hyperactivity: Autonomic instability and muscle over-activity following severe brain injury. Brain Inj. 2016; 30(10): 1181–1185.
  9. Shukla D. Over-diagnosis of paroxysmal sympathetic hyperactivity. Neurol. India. 2017; 65(3): 683.
  10. Martin-Gallego A., Andrade-Andrade I., Dawid-Milner M.S.,et al. Autonomic dysfunction elicited by a medulla oblongata injury after fourth ventricle tumor surgery in a pediatric patient. Auton. Neurosci. 2016; 194: 52–57.
  11. Kern J., Bodek D., Niazi O.T., Maher J. Refractory Case of Paroxysmal Autonomic Instability With Dystonia Syndrome Secondary to Hypoxia. Chest. 2016; 149(2): e39–40.
  12. Ofte H.K., Hanno T., Alstadhaug K.B. Reduced cranial parasympathetic tone during the remission phase of cluster headache. Cephalalgia. 2015; 35(6): 469–477.
  13. Baguley I.J., Perkes I.E., Fernandez-Ortega J.F.,et al. Paroxysmal sympathetic hyperactivity after acquired brain injury: consensus on conceptual definition, nomenclature, and diagnostic criteria. J. Neurotrauma. 2014; 31(17): 1515–1520.
  14. Meier K., Lee K. Neurogenic Fever. J. Intensive Care Med. 2017; 32(2): 124–129.
  15. Raithel D.S., Ohler K.H., Porto I.,et al. Morphine: An Effective Abortive Therapy for Pediatric Paroxysmal Sympathetic Hyperactivity After Hypoxic Brain Injury. J. Pediatr. Pharmacol. Ther. 2015; 20(4): 335–340.
  16. Godo S., Irino S., Nakagawa A.,et al. Diagnosis and Management of Patients with Paroxysmal Sympathetic Hyperactivity following Acute Brain Injuries Using a Consensus-Based Diagnostic Tool: A Single Institutional Case Series. Tohoku J. Exp. Med. 2017; 243(1): 11–18.
  17. Meyfroidt G., Baguley I.J., Menon D.K. Paroxysmal sympathetic hyperactivity: the storm after acute brain injury. Lancet Neurol. 2017; 16(9): 721–729.
  18. Termsarasab P., Frucht S.J. Dystonic storm: a practical clinical and video review. J. Clin. Mov. Disord. 2017; 4: 10.
  19. Vistisen S.T., Hansen T.K., Jensen J.,et al. Heart rate variability in neurorehabilitation patients with severe acquired brain injury. Brain Inj. 2014; 28(2): 196–202.
  20. Berger M.J., Kimpinski K., Currie K.D.,et al. Multi-Domain Assessment of Autonomic Function in Spinal Cord Injury Using a Modified Autonomic Reflex Screen. J. Neurotrauma. 2017; 34(18): 2624–2633.
  21. Malik M., Huikuri H., Lombardi F.,et al. The purpose of heart rate variability measurements. Clin. Auton. Res. 2017; 27(3): 139–140.
  22. Manogue M., Hirsh D.S., Lloyd M. Cardiac electrophysiology of patients with spinal cord injury. Heart Rhythm. 2017; 14(6): 920–927.
  23. Vähätalo L.H., Ruohonen S.T., Mäkelä S.,et al. Neuropeptide Y in the noradrenergic neurones induces obesity and inhibits sympathetic tone in mice. Acta Physiol. (Oxf). 2015; 213(4): 902–919.
  24. Hoarau X., Richer E., Dehail P., Cuny E. Comparison of long-term outcomes of patients with severe traumatic or hypoxic brain injuries treated with intrathecal baclofen therapy for dysautonomia. Brain Inj. 2012; 26(12): 1451–1463.
  25. Fernandez-Ortega J.F., Prieto-Palomino M.A., Garcia-Caballero M.,et al. Paroxysmal sympathetic hyperactivity after traumatic brain injury: clinical and prognostic implications. J. Neurotrauma. 2012; 29(7): 1364–1370.
  26. Bartolo M., Bargellesi S., Castioni C.A.,et al. Mobilization in early rehabilitation in intensive care unit patients with severe acquired brain injury: An observational study. J. Rehabil. Med. 2017; 49(9): 715–722.
  27. Riganello F., Cortese M.D., Arcuri F.,et al. Autonomic Nervous System and Outcome after Neuro-Rehabilitation in Disorders of Consciousness. J. Neurotrauma. 2016; 33(4): 423–424.
  28. Esterov D., Greenwald B.D. Autonomic dysfunction after mild traumatic brain injury. Brain Sci. 2017; 7(8): pii: E100.
  29. Hilz M.J., Wang R., Markus J.,et al. Severity of traumatic brain injury correlates with long-term cardiovascular autonomic dysfunction. J. Neurol. 2017; 264(9): 1956–1967.
  30. Hinson H.E., Schreiber M.A., Laurie A.L.,et al. Early fever as a predictor of paroxysmal sympathetic hyperactivity in traumatic brain injury. J. Head Trauma Rehabil. 2017; 32(5): E50–E54.
  31. Mathew M., Deepika A., Shukla D.,et al. Paroxysmal sympathetic hyperactivity in severe traumatic brain injury. Acta Neurochir (Wien). 2016; 158(11): 2047–2052.
  32. Formisano R., Contrada M., Aloisi M.,et al. Improvement rate of patients with severe brain injury during post-acute intensive rehabilitation. Neurol. Sci. 2018; 39(4): 753–755.
  33. Sykora M., Czosnyka M., Liu X., et al. Autonomic Impairment in Severe Traumatic Brain Injury: A Multimodal Neuromonitoring Study. Crit. Care Med. 2016; 44(6): 1173–1181.
  34. Rincon F.,Hunter K., Schorr C., et al. The epidemiology of spontaneous fever and hypothermia on admission of brain injury patients to intensive care units: a multicenter cohort study. J. Neurosurg. 2014; 121(4): 950–960.
  35. Feng Y.,Zheng X., Fang Z. Treatment Progress of Paroxysmal Sympathetic Hyperactivity after Acquired Brain Injury. Pediatr. Neurosurg. 2015; 50(6): 301–309.
  36. Samuel S., Allison T.A., Lee K., Choi H.A. Pharmacologic management of paroxysmal sympathetic hyperactivity after brain injury. J. Neurosci. Nurs. 2016; 48(2): 82–89.
  37. May C.C., Oyler D.R., Parli S.E., Talley C.L. Rectal propranolol controls paroxysmal sympathetic hyperactivity: a case report. Pharmacotherapy. 2015; 35(4): e27–31.
  38. Allen N.M., Lin J.P., Lynch T., King M.D. Status dystonicus: a practice guide. Dev. Med. Child Neurol. 2014; 56(2): 105–112.
  39. Peng Y., Haifeng Z., Haodong C.,et al. Dexmedetomidine attenuates acute paroxysmal sympathetic hyperactivity. Oncotarget. 2017; 8(40): 69012–69019.
  40. Jiang L., Hu M., Lu Y.,et al. The protective effects of dexmedetomidine on ischemic brain injury: A meta-analysis. J. Clin. Anesth. 2017; 40: 25–32.
  41. Chen Y., Zhang X., Zhang B.,et al. Dexmedetomidine reduces the neuronal apoptosis related to cardiopulmonary bypass by inhibiting activation of the JAK2-STAT3 pathway. Drug Des. Devel. Ther. 2017; 11:2787–2799.
  42. Xu K.L., Liu X.Q., Yao Y.L.,et al. Effect of dexmedetomidine on rats with convulsive status epilepticus and association with activation of cholinergic anti-inflammatory pathway. Biochem. Biophys Res. Commun. 2018; 495(1): 421–426.
  43. Yamanaka D., Kawano T., Nishigaki A.,et al. Preventive effects of dexmedetomidine on the development of cognitive dysfunction following systemic inflammation in aged rats. J. Anesth. 2017; 31(1): 25–35.
  44. Hu J., Vacas S., Feng X.,et al. Dexmedetomidine Prevents Cognitive Decline by Enhancing Resolution of High Mobility Group Box 1 Protein-induced Inflammation through a Vagomimetic Action in Mice. Anesthesiology. 2018; 128(5): 921–931.
  45. Carod-Artal F.J. Infectious diseases causing autonomic dysfunction. Clin. Auton. Res. 2018; 28(1): 67–81.
  46. Godbolt A.K., Stenberg M., Jakobsson J.,et al. Complications during recovery from severe traumatic brain injury: frequency and associations with outcome. BMJ Open. 2015; 5(4): e007208.
  47. Quek A.M., Britton J.W., McKeon A.,et al. Autoimmunne epilepsy: clinical characteristics and response to immunotherapy. Arch. Neurol. 2012; 69(5): 582–593.
  48. Bauer J., Becker A.J., Elyaman W.,et al. Innate and adaptive immunity in human epilepsies. Epilepsia. 2017; 58(Suppl. 3): 57–68.
  49. Gaddam S.S.,Buell T., Robertson C.S. Systemic manifestations of traumatic brain injury. Handb. Clin. Neurol. 2015; 127: 205–218.
  50. Shin S.S., Dixon C.E. Alterations in Cholinergic Pathways and Therapeutic Strategies Targeting Cholinergic System after Traumatic Brain Injury. J. Neurotrauma. 2015; 32(19): 1429–1440.
  51. Lu J., Goh S.J., Tng P.Y.,et al. Systemic inflammatory response following acute traumatic brain injury. Front. Biosci. (Landmark Ed). 2009; 14: 3795–3813.
  52. Toklu H.Z., Tümer N. Oxidative Stress, Brain Edema, Blood–Brain Barrier Permeability, and Autonomic Dysfunction from Traumatic Brain Injury. In: Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor & Francis; 2015.
  53. Dash P.K., Zhao J., Kobori N.,et al. Activation of Alpha 7 Cholinergic Nicotinic Receptors Reduce Blood-Brain Barrier Permeability following Experimental Traumatic Brain Injury. J. Neurosci. 2016; 36(9): 2809–2818.
  54. Frasch M.G., Szynkaruk M., Prout A.P.,et al. Decreased neuroinflammation correlates to higher vagus nerve activity fluctuations in near-term ovine fetuses: a case for the afferent cholinergic anti-inflammatory pathway? J. Neuroinflammation. 2016; 13(1): 103.
  55. Nicholls A.J., Wen S.W., Hall P.,et al. Activation of the sympathetic nervous system modulates neutrophil function. J. Leukoc. Biol. 2018; 103(2): 295–309.
  56. Han C., Rice M.W., Cai D. Neuroinflammatory and autonomic mechanisms in diabetes and hypertension. Am. J. Physiol. Endocrinol. Metab. 2016; 311(1): 32–41.
  57. Hung C.Y., Tseng S.H., Chen S.C.,et al. Cardiac autonomic status is associate with spasticity in post-stroke patients. Neuroreabilitation. 2014; 34(2): 227–233.
  58. Garrison M.K., Schmit B.D. Flexor reflex decreases during sympathetic stimulation in chronic human spinal cord injury. Exp. Neurol. 2009; 219(2): 507–515.
  59. Bickelhaupt B., Richard M., Trbovich M. Advanced Hip Osteoarthritis Causing Autonomic Dysreflexia and Severe Spasticity in a Patient With Spinal Cord Injury: PMR. 2017; 9(10): 1047–1050.
  60. Canon S., Shera A., Phan N.M.,et al. Autonomic dysreflexia during urodynamics in children and adolescents with spinal cord injury or severe neurologic disease. J. Pediatr. Urol. 2015; 11(1): 32.e1–4.
  61. Marina N., Turovsky E., Christie I.N.,et al. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia. 2017; 66(6): 1185–1199.
  62. Maldonado-Ruiz R., Fuentes-Mera L., Camacho A. Central Modulation of Neuroinflammation by Neuropeptides and Energy-Sensing Hormones during Obesity. Biomed. Res. Int. 2017; 2017: 7949582.
  63. Costa J., Moreira A., Moreira P.,et al. Effects of weight changes in the autonomic nervous system: A systematic review and meta-analysis. Clin. Nutr. 2018: pii: S0261-5614(18)30006-2.
  64. Wang Y.Y., Lin S.Y., Chuang Y.H.,et al. Endocrinology. Activation of hepatic inflammatory pathways by catecholamines is associated with hepatic insulin resistance in male ischemic stroke rats. 2014; 155(4): 1235–1246.
  65. Rothberg L.J., Lees T., Clifton-Bligh R., Lal S. Association Between Heart Rate Variability Measures and Blood Glucose Levels: Implication for Noninvasive Glucose Monitoring for Diabetes. Diabetes Technol. Ther. 2016; 18(6): 366–376.
  66. Croizier S., Prevot V., Bouret S.G. Leptin Controls Parasympathetic Wiring of the Pancreas during Embryonic Life. Cell Rep. 2016; 15(1): 36–44.
  67. Meyer M.L., Gotman N.M., Soliman E.Z.,et al. Association of glucose homeostasis measures with heart rate variability among Hispanic/Latino adults without diabetes: the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Cardiovasc. Diabetol. 2016; 15: 45.
  68. Yahagi N. Hepatic Control of Energy Metabolism via the Autonomic Nervous System. J. Atheroscler. Thromb. 2017; 24(1): 14–18.
  69. Flak J.N., Arble D., Pan W.,et al. A leptin-regulated circuit controls glucose mobilization during noxious stimuli. J. Clin. Invest. 2017; 127(8): 3103–3113.
  70. Hill J.W., Faulkner L.D. The Role of the Melanocortin System in Metabolic Disease: New Developments and Advances. Neuroendocrinology. 2017; 104(4): 330–346.
  71. Gavini C.K., Jones W.C., Novak C.M. Ventromedial hypothalamic melanocortin receptor activation: regulation of activity energy expenditure and skeletal muscle thermogenesis. J. Physiol. 2016; 594(18): 5285–5301.
  72. Zhang Z., Boelen A., Bisschop P.H.,et al. Hypothalamic effects of thyroid hormone. Mol. Cell. Endocrinol. 2017; 458: 143–148.
  73. Gao H., Molinas A.J., Miyata K.,et al. Overactivity of Liver-Related Neurons in the Paraventricular Nucleus of the Hypothalamus: Electrophysiological Findings in db/db Mice. J. Neurosci. 2017; 37(46): 11140–11150.
  74. Isaacs D., Prasad-Reddy L., Srivastava S.B. Role of glucagon-like peptide 1 receptor agonists in management of obesity. Am. J. Health Syst. Pharm. 2016; 73(19): 1493–1507.
  75. Khound R., Taher J., Baker C.,et al. GLP-1 Elicits an Intrinsic Gut-Liver Metabolic Signal to Ameliorate Diet-Induced VLDL Overproduction and Insulin Resistance. Arterioscler. Thromb. Vasc. Biol. 2017; 37(12): 2252–2259.
  76. Poher A.L., Tschöp M.H., Müller T.D. Ghrelin regulation of glucose metabolism. Peptides. 2018; 100: 236–242.
  77. Prates K.V., de Oliveira J.C., Malta A.,et al. Sympathetic innervation is essential for metabolic homeostasis and pancreatic beta cell function in adult rats. Mol. Cell. Endocrinol. 2017: pii: S0303-7207(17)30516-6.
  78. Wang W., Meng X., Yang C.,et al. Brown adipose tissue activation in a rat model of Parkinson’s disease. Am. J. Physiol. Endocrinol. Metab. 2017; 313(6): E731–E736.
  79. Almundarij T.I., Gavini C.K., Novak C.M. Suppressed sympathetic outflow to skeletal muscle, muscle thermogenesis, and activity energy expenditure with calorie restriction. Physiol. Rep. 2017; 5(4): pii: e13171.
  80. Vaughn A.C., Cooper E.M., DiLorenzo P.M.,et al. Energy-dense diet triggers changes in gut microbiota, reorganization of gut brain vagal communication and increases body fat accumulation. Acta Neurobiol. Exp. (Wars). 2017; 77(1): 18–30.
  81. Brzozowski B., Mazur-Bialy A., Pajdo R.,et al. Mechanisms by which Stress Affects the Experimental and Clinical Inflammatory Bowel Disease (IBD): Role of Brain-Gut Axis. Curr. Neuropharmacol. 2016; 14(8): 892–900.
  82. Halmos T., Suba I. Physiological patterns of intestinal microbiota. The role of dysbacteriosis in obesity, insulin resistance, diabetes and metabolic syndrome. Orv. Hetil. 2016; 157(1): 13–22.
  83. Houlden A., Goldrick M., Brough D.,et al. Brain injury induces specific changes in the caecal microbiota of mice via altered autonomic activity and mucoprotein production. Brain Behav. Immun. 2016; 57: 10–20.
  84. Sen T., Cawthon C.R., Ihde B.T.,et al. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiol. Behav. 2017; 173:305–317.
  85. Kigerl K.A., Mostacada K., Popovich P.G. Gut Microbiota Are Disease-Modifying Factors After Traumatic Spinal Cord Injury. Neurotherapeutics. 2018; 15(1): 60–67.
  86. Toledo C., Andrade D.C., Lucero C.,et al. Contribution of peripheral and central chemoreceptors to sympatho-excitation in heart failure. J. Physiol. 2017; 595(1): 43–51.
  87. Moreira T.S., Takakura A.C., Czeisler C., Otero J.J. Respiratory and autonomic dysfunction in congenital central hypoventilation syndrome. J. Neurophysiol. 2016; 116(2): 742–752.
  88. Iturriaga R. Translating carotid body function into clinical medicine. J. Physiol. 2017.
  89. Prabhakar N.R., Peng Y.J. Oxygen Sensing by the Carotid Body: Past and Present. Adv. Exp. Med. Biol. 2017; 977: 3–8.
  90. Kouakam C., Stephan-Blanchard E., Léké A.,et al. The hypoxic test in preterm neonates reinvestigated. Pediatr. Pulmonol. 2018; 53(4): 483–491.
  91. Tubek S., Niewinski P., Reczuch K.,et al. Effects of selective carotid body stimulation with adenosine in conscious humans. J. Physiol. 2016; 594(21): 6225–6240.
  92. Niewinski P., Janczak D., Rucinski A.,et al. Carotid body resection for sympathetic modulation in systolic heart failure: results from first-in-man study. Eur. J. Heart Fail. 2017; 19(3): 391–400.
  93. Mansukhani M.P., Wang S., Somers V.K. Chemoreflex physiology and implications for sleep apnoea: insights from studiesin humans. Exp. Physiol. 2015; 100(2): 130–135.
  94. Schultz H.D., Marcus N.J., Del Rio R. Role of the Carotid Body Chemoreflex in the Pathophysiology of Heart Failure: A Perspective from Animal Studies. Adv. Exp. Med. Biol. 2015; 860: 167–185.
  95. Miller A.J., Sauder C.L., Cauffman A.E.,et al. Endurance training attenuates the increase in peripheral chemoreflex sensitivity with intermittent hypoxia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017; 312(2):R223–R228.
  96. Geraldes V., Carvalho M., Goncalves-Rosa N.,et al. Lead toxicity promotes autonomic dysfunction with increased chemoreceptor sensitivity. Neurotoxicology. 2016; 54: 170–177.
  97. Trembach N., Zabolotskikh I. Recruitment Maneuver in Elderly Patients with Different Peripheral Chemoreflex Sensitivity during Major Abdominal Surgery. Biomed. Res. Int. 2016; 2016: 2974852.
  98. Mirizzi G., Giannoni A., Ripoli A.,et al. Prediction of the Chemoreflex Gain by Common Clinical Variables in Heart Failure. PLoS One. 2016; 11(4): e0153510.