Желудочно-кишечный тракт при критических состояниях: первый страдает, последний, кому уделяют внимание

В.А. Мазурок1, А.С. Головкин1, А.Е. Баутин1, И.И. Горелов1, В.Л. Беликов2, О.А. Сливин3

1 ФГБУ «СЗФМИЦ им. В.А. Алмазова» МЗ РФ, Санкт-Петербург

2 ФКУЗ «МСЧ МВД России по Санкт-Петербургу и Ленинградской области», Санкт-Петербург

3 ГБУЗ «Ленинградская областная клиническая больница», Санкт-Петербург

Для цитирования: Мазурок В.А., Головкин А.С., Баутин А.Е., Горелов И.И., Беликов В.Л., Сливин О.А. Желудочно-кишечный тракт при критических состояниях: первый страдает, последний, кому уделяют внимание. Вестник интенсивной терапии. 2016;2:28–37.


В публикации обсуждаются аспекты функционирования желудочно-кишечного тракта при критических состояниях. Отмечено, что особенности строения сосудистого русла стенки кишечника определяют высокую вероятность раннего развития его кислородного голодания как при синдроме малого сердечного выброса, так и при септических нарушениях микроциркуляции. Акцентировано внимание на том, что нарушение кровообращения кишечника приводит к нарушению его барьерной функции и повышенной проницаемости его стенки — известным механизмам формирования системного воспаления и полиорганной недостаточности. Приводятся существующие методы оценки функционального состояния кишечного барьера, а также анализируются известные и вероятные пути профилактики и коррекции нарушений проницаемости кишечника у критических пациентов. Отдельно отмечается, что интестинальная оксигенотерапия — введение кислорода в кишечник — может выступать в качестве инструмента коррекции расстройств кишечного барьера.

Ключевые слова: желудочно-кишечный тракт, проницаемость кишечника, кишечный барьер, кислород, энтеральная оксигенация

Поступила: 14.02.2016


Литература

  1. Swank G.M., Deitch E.A. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J. Surg. 1996; 20: 411–417.
  2. Norman K., Pirlich M., Schulzke J.D. et al. Increased intestinal permeability in malnourished patients with liver cirrhosis. Eur. J. Clin. Nutr. 2012; 66: 1116–1119.
  3. Boston U.S., Slater J.M., Orszulak T.A. et al. Hierarchy of regional oxygen delivery during cardiopulmonary bypass. Ann. Thorac. Surg. 2001; 71(1): 260–264.
  4. Leaphart C.L., Tepas J.J. The gut is a motor of organ system dysfunction. Surgery. 2007; 141: 563–569.
  5. Overhaus M., Togel S., Pezzone M.A. et al. Mechanisms of polymicrobial sepsis-induced ileus. Am. J. Physiol. Gastrointest. Liver Physiol. 2004; 287: G685.
  6. Camilleri M., Papathanasopoulos A., Odunsi S.T. Actions and therapeutic pathways of ghrelin for gastrointestinal disorders. Nat. Rev. Gastroenterol. Hepatol. 2009; 6(6): 343–352.
  7. Crona D., MacLaren R. Gastrointestinal hormone concentrations associated with gastric feeding in critically ill patients. Journal of Parenteral and Enteral Nutrition. 2012; 36( 2): 189–196.
  8. Nguyen N.Q., Fraser R.J., Bryant L.K. et al. The relationship between gastric emptying, plasma cholecystokinin, and peptide YY in critically ill patients. Crit. Care. 2007; 11: R132.
  9. Ohno T., Mochiki E., Kuwano H. The Roles of Motilin and Ghrelin in Gastrointestinal Motility. Int. J. Pept. 2010; Article ID 820794, 6 pages, 2010.
  10. Chapman M.J., Nguyen N.Q., Deane A.M. Gastrointestinal dysmotility: Evidence and clinical management. Curr. Opin. Clin. Nutr. Metab. Care. 2013; 16: 209–216.
  11. Chapman M.J., Fraser R.J., Matthews G. et al. Glucose absorption and gastric emptying in critical illness. Crit. Care. 2009; 13: R140.
  12. Bouin M., Savoye G., Herve S. et al. Does the supplementation of the formula with fibre increase the risk of gastro-oesophageal reflux during enteral nutrition? A human study. Clin. Nutr. 2001; 20(4): 307–132.
  13. Bowling T.E., Cliff B., Wright J.W. et al. The effects of bolus and continuous nasogastric feeding on gastro-oesophageal reflux and gastric emptying in healthy volunteers: a randomised three-way crossover pilot study. Clin. Nutr. 2008; 27(4): 608–613.
  14. MacLeod J.B., Lefton J., Houghton D. et a Prospective randomized control trial of intermittent versus continuous gastric feeds for critically ill trauma patients. J. Trauma. 2007; 63(1): 57–61.
  15. Steevens, E.C., Lipscomb, A.F., Poole, G.V., Sacks, G.S. Comparison of continuous vs intermittent nasogastric enteral feeding in trauma patients: perceptions and practice. Nutr. Clin. Pract. 2002; 17: 118–122.
  16. Cummings J.H., Edmond L.M., Magee E.A. Dietary carbohydrates and health: do we still need the fibre concept? Clin. Nutr. Suppl. 2004; 1: 5–17.
  17. Sato T., Vries R.G., Snippert H.J. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009; 459(7244): 262–265.
  18. Yen T.H., Wright N.A. The gastrointestinal tract stem cell niche. Stem. Cell. Rev. 2006; 2(3): 203–212.
  19. Bischoff S., Barbara G., Buurman W. et al. Intestinal permeability — a new target for disease prevention and therapy. BMC Gastroenterology. 2014; 14: 189;
  20. Fasano A., Not T., Wang W. et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet. 2000; 355: 1518–1519.
  21. Heyman M., Abed J., Lebreton C. et al. Intestinal permeability in coeliac disease: insight into mechanisms and relevance to pathogenesis. Gut. 2012; 61: 1355–1364.
  22. Bischoff S.C. Gut health: a new objective in medicine? BMC Med. 2011; 9: 24.
  23. Derikx J.P., van Waardenburg D.A., Granzen B. et al. Detection of chemotherapy-induced enterocyte toxicity with circulating intestinal fatty acid binding protein. J. Pediatr. Hematol. Oncol. 2006; 28: 267–269.
  24. Hanssen, S.J., Derikx, J.P., Vermeulen Windsant I.C. et al. Visceral Injury and Systemic Inflammation in Patients Undergoing Extracorporeal Circulation During Aortic Surgery. Ann. Surg. 2008; 248(1): 117–125.
  25. Derikx J.P., van Waardenburg D.A., Thuijls G. et al. New insight in loss of gut barrier during major non-abdominal surgery. PLoS One. 2008; 3: e3954.
  26. Derikx J.P., Bijker E.M., Vos G.D. et al. Gut mucosal cell damage in meningococcal sepsis in children: relation with clinical outcome. Crit. Care Med. 2010; 38(1): 133–137.
  27. De Haan J.J., Lubbers T., Derikx J.P. et al. Rapid development of intestinal cell damage following severe trauma: a prospective observational cohort study. Crit. Care. 2009; 13(3): R86.
  28. Roquilly A., Marret E., Abraham E. et al. Pneumonia prevention to decrease mortality in intensive care unit: a systematic review and meta-analysis. Clin. Infect. Dis. 2015; 60(1): 64–75.
  29. Малкоч А.В., Бельмер С.В., Ардатская М.Д. Функциональные нарушения моторики желудочно-кишечного тракта и кишечная микрофлора. Педиатрическая фармакология. 2009; 5: 70–75.
  30. Малкоч А.В., Бельмер С.В. Кишечная микрофлора и значение пребиотиков для ее функционирования. Лечащий врач. 2006; 4: 60–65.
  31. Kiesslich R., Duckworth C.A., Moussata D. et al. Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut. 2012, 61: 1146–1153.
  32. Anderson A.D., Jain P.K., Fleming S. et al. Evaluation of a triple sugar test of colonic permeability in humans. Acta Physiol. Scand. 2004; 182: 171–177.
  33. Harris C.E., Griffiths R.D., Freestone N. et al. Intestinal permeability in the critically ill. Intensive Care Med. 1992; 18: 38–41.
  34. Ohri S.K., Somasundaram S., Koak Y. et al. The effect of intestinal hypoperfusion on intestinal absorption and permeability during cardiopulmonary bypass. Gastroenterology. 1994; 106: 318–323.
  35. Van Wijck K., Verlinden T.J., van Eijk H.M. et al. Novel multi-sugar assay for site-specific gastrointestinal permeability analysis: a randomized controlled crossover trial. Clin. Nutr. 2013; 32: 245–251.
  36. Solligard E., Juel I.S., Spigset O. et al. Gut luminal lactate measured by microdialysis mirrors permeability of the intestinal mucosa after ischemia. Shock. 2008; 29: 245–251.
  37. Grootjans J., Thuijls G., Verdam F. et al. Non-invasive assessment of barrier integrity and function of the human gut. World J. Gastrointest. Surg. 2010; 2: 61–69.
  38. Crenn P., Coudray-Lucas C., Thuillier F. et al. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology. 2000; 119: 1496–1505.
  39. Van Vliet M.J., Tissing W.J., Rings E.H. et al. Citrulline as a marker for chemotherapy induced mucosal barrier injury in pediatric patients. Pediatr. Blood Cancer. 2009; 53: 1188–1194.
  40. Lutgens L.C., Blijlevens N.M., Deutz N.E. et al. Monitoring myeloablative therapy-induced small bowel toxicity by serum citrulline concentration: a comparison with sugar permeability tests. Cancer. 2005; 103: 191–199.
  41. Relja B., Szermutzky M., Henrich D. et al. Intestinal-FABP and liver-FABP: novel markers for severe abdominal injury. Acad. Emerg. Med. 2010; 17: 729–735.
  42. Thuijls G., Derikx J.P., van Wijck K. et al. Non-invasive markers for early diagnosis and determination of the severity of necrotizing enterocolitis. Ann. Surg. 2010; 251: 1174–1180.
  43. Reisinger K.W., Derikx J.P., Thuijls G. et al. Noninvasive measurement of intestinal epithelial damage at time of refeeding can predict clinical outcome after necrotizing enterocolitis. Pediatr. Res. 2013; 73: 209–213.
  44. Monbaliu D., de Vries B., Crabbe T. et al. Liver fatty acid-binding protein: an early and sensitive plasma marker of hepatocellular damage and a reliable predictor of graft viability after liver transplantation from non-heart-beating donors. Transplant. Proc. 2005; 37: 413–416.
  45. Vreugdenhil A.C., Wolters V.M., Adriaanse M.P. et al. Additional value of serum I-FABP levels for evaluating celiac disease activity in children. Scand. J. Gastroenterol. 2011; 46: 1435–1441.
  46. Adriaanse M.P., Tack G.J., Passos V.L. et al. Serum I-FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment. Pharmacol. Ther. 2013; 37: 482–490.
  47. Delaney C.P., O’Neill S., Manning F. et al. Plasma concentrations of glutathione S-transferase isoenzyme are raised in patients with intestinal ischaemia. Br. J. Surg. 1999; 86: 1349–1353.
  48. Gearhart S.L., Delaney C.P., Senagore A.J. et al. Prospective assessment of the predictive value of alpha-glutathione S-transferase for intestinal ischemia. Am. Surg. 2003; 69: 324–329.
  49. Zeissig S., Burgel N., Gunzel D. et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007; 56: 61–72.
  50. Van Wijck K., Lenaerts K., van Loon L.J. et al. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One. 2011; 6: e22366.
  51. Van Wijck K., Lenaerts K., Grootjans J. et al. Physiology and pathophysiology of splanchnic hypoperfusion and intestinal injury during exercise: strategies for evaluation and prevention. Am. J. Physiol. Gastrointest. Liver Physiol. 2012; 303: G155–G168.
  52. Grootjans J., Hodin C.M., de Haan J.J. et al. Level of activation of the unfolded protein response correlates with Paneth cell apoptosis in human small intestine exposed to ischemia/reperfusion. Gastroenterology. 2011; 140: 529–539.
  53. Grootjans J., Hundscheid I.H., Lenaerts K. et al. Ischaemia-induced mucus barrier loss and bacterial penetration are rapidly counteracted by increased goblet cell secretory activity in human and rat colon. Gut. 2013; 62: 250–258.
  54. Grootjans J., Thuijls G., Derikx J.P. et al. Rapid lamina propria retraction and zipper-like constriction of the epithelium preserves the epithelial lining in human small intestine exposed to ischaemia-reperfusion. J. Pathol. 2011; 224: 411–419.
  55. Derikx J.P., Matthijsen R.A., de Bruine A.P. et al. A new model to study intestinal ischemia-reperfusion damage in man. J. Surg. Res. 2011; 166: 222–226.
  56. Thuijls G., van Wijck K., Grootjans J. et al. Early diagnosis of intestinal ischemia using urinary and plasma fatty acid binding proteins. Ann. Surg. 2011; 253: 303–308.
  57. Banupriya B., Biswal N., Srinivasaraghavan R., Narayanan P., Mandal J. Probiotic prophylaxis to prevent ventilator associated pneumonia (VAP) in children on mechanical ventilation: an open-label randomized controlled trial. Intensive Care Med. 2015; 41(4): 677–685.
  58. Morrow L.E. Probiotics in the intensive care unit. Curr. Opin. Crit. Care. 2009; 15: 144–148.
  59. Barraud D., Bollaert P.E., Gibot S. Impact of the Administration of Probiotics on Mortality in Critically Ill Adult Patients: a meta-analysis of randomized controlled trials. Chest. 2013; 143: 646–655.
  60. Larsen T.M., Dalskov S.M., van Baak M. et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 2010; 363: 2102–2113.
  61. Volynets V., Machann J., Kuper M.A. et al. A moderate weight reduction through dietary intervention decreases hepatic fat content in patients with non-alcoholic fatty liver disease (NAFLD): a pilot study. Eur. J. Nutr. 2013; 52: 527–535.
  62. Barrett J.S., Gearry R.B., Muir J.G. et al. Dietary poorly absorbed, short-chain carbohydrates increase delivery of water and fermentable substrates to the proximal colon. Aliment. Pharmacol. Ther. 2010; 31: 874–882.
  63. Mattila E., Uusitalo-Seppala R., Wuorela M. et al. Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection. Gastroenterology. 2012; 142: 490–496.
  64. Brandt L.J., Aroniadis O.C., Mellow M. et al. Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am. J. Gastroenterol. 2012; 107: 1079–1087.
  65. Rossen N.G., MacDonald J.K., de Vries E.M. et al. Fecal microbiota transplantation as novel therapy in gastroenterology: A systematic review. World Journal of Gastroenterology. 2015; 21(17): 5359–5371.
  66. Drekonja D., Reich J., Gezahegn S. et al. Fecal Microbiota Transplantation for Clostridium difficile Infection: A Systematic Review. Ann. Intern. Med. 2015; 162(9): 630–638.
  67. Matsuoka K., Mizuno S., Hayashi A. et al. Fecal microbiota transplantation for gastrointestinal diseases. Keio J. Med. 2014; 63(4): 69–74.
  68. Kelly C.R., Ihunnah C., Fischer M. et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am. J. Gastroenterol. 2014; 109(7): 1065–1071.
  69. Mazurok V.A., Belikov V.L., Slivin O.A. Intestinal insufflation of small volume of oxygen increases systemic oxygenation in acute respiratory distress syndrome patients. Eur. J. Anaesthesiol. 2015; 32: 507–508.
  70. Mazurok V.A., Belikov V.L., Slivin O.A. et al. Enteral oxygenation — an effective approach for the intestinal paresis resolve. Anaesthesiology Intensive Therapy. 2015; 47(Suppl. I): 32–33.
  71. Mazurok V., Belikov V., Slivin O. Non-lung oxygenation: revising the old idea. 2013; 30(Suppl. 51.): 80–81.
  72. Мазурок В.А., Беликов В.Л., Сливин О.А. и др. Внелегочная оксигенация современный взгляд на старые идеи. Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова. 2013; 5(3): 119–127.
  73. Беликов В.Л., Мазурок В.А., Сливин О.А. и др. К вопросу об интестинальной оксигенации. Вестник интенсивной терапии. 2014; 5: 66–69.; Мазурок В.А., Беликов В.Л., Сливин О.А., Лобач С.М. Возможности повышения системной оксигенации посредством энтеральной оксигенотерапии. Анестезиология и реаниматология. 2014; 59(5): 21–26.
  74. Беликов В.Л., Завойских Е.В., Мазурок В.А. и др. Энтеральная оксигенация в комплексной терапии анаэробного септического шока у родильницы. Анестезиология и реаниматология. 2014; 59(5): 74–77.
  75. Gross B.D., Sacristian E., Peura R.A. Supplemental systemic Oxygen using an intestinal intraluminal membrane oxygenator. Artificial Organs. 2000; 24(11): 864–869.
  76. Воротинцев С.И. Ентеральна оксегенація в інтенсивній терапії критичних станів: Дис. … канд. мед. наук. Запоріжжя, 2003.
  77. Stocker R., Burgi U. Nutrition in the Critically ill: Facts and Controversies. Critical Care International. 1999; 9(6): 10–14.
  78. Mangiante G., Marini F., Acerbi A. et al. Postoperative ischemic ileocolitis in the elderly. Suggested therapy with intraluminal administration of oxygen and glutamine. Chir. 1994; 46(6): 80–85.
  79. Гагарин В.В., Тимофеев В.Н. и др. Использование кишечного лаважа, энтеральной оксигенации и гемосорбции в лечении острых расстройств мезентериального кровотока. Клиническая хирургия. 1984; 2: 41.