Clinical efficacy of metabolically active fluid therapy in patients with fat embolism syndrome


A.Yu. Yakovlev1, A.A. Pevnev1, M.S. Belous1, S.A. Tezyaeva3, D.V. Ryabikov2, S.I. Chistyakov1, T.A. Galanina1

1 Nizhniy Novgorod regional clinical hospital named after N.A. Semashko, Nizhniy Novgorod

2 Nizhny Novgorod clinical hospital 13, Nizhniy Novgorod

3 Nizhny Novgorod clinical hospital 5, Nizhniy Novgorod

For correspondence: Aleksey Y. Yakovlev — Sc. D., Associate Prof., ICU curator of “Nizhniy Novgorod regional clinical hospital named after N.A. Semashko”, Nizhniy Novgorod; е-mail:

For citation: Yakovlev AYu, Pevnev AA, Belous MS, et al. Clinical efficacy of metabolically active fluid therapy in patients with fat embolism syndrome. Alexander Saltanov Intensive Care Herald. 2018;2:51–6.

DOI: 10.21320/1818-474X-2018-2-51-56

The research tested changes of organ disorders in 22 patients with fat embolism syndrome in the early posttraumatic period. It was found that early multiple organ failure is related to traumatic shock. At Day 1 and thereafter, in patients with the severe combined injury, multiple organ failure was associated with manifesting fat embolism. We confirmed the efficacy of multiple substrate antihypoxant fluid to prevent multiple organ failure related to fat embolism manifesting in the early post-traumatic period.

Keywords: trauma, fat embolism, SOFA, methionine, succinate

Received: 29.12.2017

Read in PDF


  1. Доклад о безопасности дорожного движения в мире 2015 г. Резюме. Октябрь 2015 г. WHO, ed. (2015). «Global Status Report on Road Safety 2015» (PDF) (official report). Geneva, Switzerland: World Health Organisation (WHO). pp. vii, 1–14, 75ff (countries), 264–271 (table A2), 316–332 (table A10).
  2. Дерябин И.И., Насонкин О.С. Травматическая болезнь. Л.: Медицина, 1987. [Deryabin I.I., Nasonkin O.S. Travmaticheskaya boleznʼ. Leningrad: Meditsina, 1987. (In Russ)]
  3. Saigal R., Mittal M., Kansal A., et al. Fat embolism syndrome. J. Assoc. Phys. India. 2008; 56: 245–249.
  4. Szabó G., Magyar Z., Réffy A. The role of free fatty acids in pulmonary fat embolism. Injury. 1977; 8(4): 278–283.
  5. Crocker G., Jones J. Effects of oleic acid-induced lung injury on oxygen transport and aerobic capacity. Respiratory physiology and neurobiology. 2014; 196(1): 43–49.
  6. Shi S., Gao Y., et al. Elevated free fatty acid level is a risk factor for early postoperative hypoxemia after on-pump coronary artery bypass grafting: association with endothelial activation. J. Cardiothorac. Surg. 2015; 10: 122.
  7. Kwiatt M.E., Seamon M.J. Fat embolism syndrome. Int. J. Crit. Illn. Inj. Sci. 2013; 3: 64–68.
  8. БорисовМ.Б., Гаврилин С.В. Синдром жировой эмболии при тяжелых сочетанных травмах. Вестник хирургии имени И.И. Грекова. 2006; 165(5): 68–71. [Borisov M.B., Gavrilin S.V. The fat embolism syndrome in severe combined traumas. Vestnik khirurgii imeni I.I. Grekova. 2006; 165(5): 68–71. (In Russ)]
  9. Vincent J.L., Moreno R., Takala J., et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the working group on sepsis-related problems of the European society of intensive care medicine. Intensive Care Med. 1996; 22: 707–710.
  10. Antonelli M., Moreno R., Vincent J.L., et al. Application of SOFA score to trauma patients. Sequential Organ Failure Assessment. Intensive Care Med. 1999; 25: 389–394.
  11. Teasdale G., Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974; 2(7872): 81–84.
  12. ГерасимовЛ.В., Карпун Н.А., Пирожкова О.С. Избранные вопросы патогенеза и интенсивного лечения тяжелой сочетанной травмы. Общая реаниматология. 2012; 8(4): 111–117. [Gerasimov L.V., Karpun N.A., Pirozhkova O.S. Selected issues of the pathogenesis and intensive treatment of severe concomitant injury. Obshchaya reanimatologiya. 2012; 8(4): 111–117. (In Russ)].
  13. Ehinger J.R., Piel S., Ford R., et al. Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nat. Commun. 2016; 7: 12317.
  14. Leite L.N., Gonzaga N.A., Simplicio J.A., et al. Pharmacological characterization of the mechanisms underlying the vascular effects of succinate. Eur. J. Pharmacol. 2016; 789: 334–343.
  15. Adeva-Andany M.M., Calvo-Castro I., Fernández-Fernández C., et al. Significance of L-carnitine for human health. IUBMB Life. 2017; 69: 578–594.
  16. Weimann A., Felbinger T.W. Gastrointestinal dysmotility in the critically ill: A role for nutrition. Curr. Opin. Clin. Nutr. Metab. Care. 2016.
  17. Endo K., Tsuji A., Kondo S., et al. Carnitine is associated with fatigue following chemoradiotherapy for head and neck cancer. Acta Oto-Laryngol. 2015; 135: 846–852.
  18. Famularo G., De Simone C., Trinchieri V., Mosca L. Carnitines and its congeners: a metabolic pathway to the regulation of immune response and inflammation. Ann. N. Y. Acad. Sci. 2004; 1033: 132–138.
  19. Flanagan J.L. et al. Role of carnitine in disease. Nutrition & Metabolism. 2010; 7: 30.
  20. Jeevanandam M., Young D.H., Ramias L., Schiller W.R. Effect of major trauma on plasma free amino acid concentrations in geriatric patients. Am.J. Clin. Nutr. 1990; 51: 1040–1045.
  21. Яковлев А.Ю., Певнев А.А., Никольский В.О. и др. Метаболическая профилактика жировой эмболии. Анестезиология и реаниматология. 2016; 61(4): 280–283. [Yakovlev A.Yu., Pevnev А.А., Nikol’skiyV.O., et al. Metabolic prevention of fat embolism. Anesteziologiya i reanimatologiya. 2016; 61(4): 280–283. (In Russ)]