Gastrointestinal Tract in Clinical Illness: the First Who Suffers, and the Last Who Recieves the Attention


V.A. Mazurok1, A.S. Golovkin1, A.E. Bautin1, I.I. Gorelov1, V.L. Belikov2, О. Slivin3

1 FGBI «SZFMITS named by V.A. Almazov» Ministry of Health, St.-Petersburg

2 FKUZ «Ministry of Emergency Situations Ministry of Internal Affairs of Russia in St. Petersburg and Leningrad Region», St. Petersburg

3 GBUZ «Leningrad Regional Hospital», St. Petersburg

For citation: Mazurok VA, Golovkin AS, Bautin AE, Gorelov II, Belikov VL, Slivin ОА. Gastrointestinal Tract in Critical Illness: the First Who Suffers, and the Last Who Recieves the Attention. Intensive Care Herald. 2016;2:28–37.

Gastrointestinal tract functioning in critical illness is discussed. It is pointed out how specific construction of the intestinal wall microcirculation can put the gastrointestinal tract in highly vulnerable position with regard to early oxygen insufficiency development either in low cardiac output syndrome, or in the septic microcirculation disturbance. Especially stressed that failure of the intestinal microcirculation results to disorder of the intestinal permeability — well-known mechanism of systemic inflammation and multi-organ failure. Existent laboratory assays for evaluation of the gastrointestinal tract functioning are observed, as well as the common and possible prophylactic and treatment modalities for the intestinal permeability disorder in critical illness are analyzed. Especially marked that intestinal oxygenotherapy — insufflation of oxygen to the small intestine — may be a promising way for correction of the intestinal barrier disorder.

Keywords: gastrointestinal tract, intestinal permeability, intestinal barrier, oxygen, intestinal oxygenation

Received: 14.02.2016


  1. Swank G.M., Deitch E.A. Role of the gut in multiple organ failure: bacterial translocation and permeability changes. World J. Surg. 1996; 20: 411–417.
  2. Norman K., Pirlich M., Schulzke J.D. et al. Increased intestinal permeability in malnourished patients with liver cirrhosis. Eur. J. Clin. Nutr. 2012; 66: 1116–1119.
  3. Boston U.S., Slater J.M., Orszulak T.A. et al. Hierarchy of regional oxygen delivery during cardiopulmonary bypass. Ann. Thorac. Surg. 2001; 71(1): 260–264.
  4. Leaphart C.L., Tepas J.J. The gut is a motor of organ system dysfunction. Surgery. 2007; 141: 563–569.
  5. Overhaus M., Togel S., Pezzone M.A. et al. Mechanisms of polymicrobial sepsis-induced ileus. Am. J. Physiol. Gastrointest. Liver Physiol. 2004; 287: G685.
  6. Camilleri M., Papathanasopoulos A., Odunsi S.T. Actions and therapeutic pathways of ghrelin for gastrointestinal disorders. Nat. Rev. Gastroenterol. Hepatol. 2009; 6(6): 343–352.
  7. Crona D., MacLaren R. Gastrointestinal hormone concentrations associated with gastric feeding in critically ill patients. Journal of Parenteral and Enteral Nutrition. 2012; 36( 2): 189–196.
  8. Nguyen N.Q., Fraser R.J., Bryant L.K. et al. The relationship between gastric emptying, plasma cholecystokinin, and peptide YY in critically ill patients. Crit. Care. 2007; 11: R132.
  9. Ohno T., Mochiki E., Kuwano H. The Roles of Motilin and Ghrelin in Gastrointestinal Motility. Int. J. Pept. 2010; Article ID 820794, 6 pages, 2010.
  10. Chapman M.J., Nguyen N.Q., Deane A.M. Gastrointestinal dysmotility: Evidence and clinical management. Curr. Opin. Clin. Nutr. Metab. Care. 2013; 16: 209–216.
  11. Chapman M.J., Fraser R.J., Matthews G. et al. Glucose absorption and gastric emptying in critical illness. Crit. Care. 2009; 13: R140.
  12. Bouin M., Savoye G., Herve S. et al. Does the supplementation of the formula with fibre increase the risk of gastro-oesophageal reflux during enteral nutrition? A human study. Clin. Nutr. 2001; 20(4): 307–132.
  13. Bowling T.E., Cliff B., Wright J.W. et al. The effects of bolus and continuous nasogastric feeding on gastro-oesophageal reflux and gastric emptying in healthy volunteers: a randomised three-way crossover pilot study. Clin. Nutr. 2008; 27(4): 608–613.
  14. MacLeod J.B., Lefton J., Houghton D. et a Prospective randomized control trial of intermittent versus continuous gastric feeds for critically ill trauma patients. J. Trauma. 2007; 63(1): 57–61.
  15. Steevens, E.C., Lipscomb, A.F., Poole, G.V., Sacks, G.S. Comparison of continuous vs intermittent nasogastric enteral feeding in trauma patients: perceptions and practice. Nutr. Clin. Pract. 2002; 17: 118–122.
  16. Cummings J.H., Edmond L.M., Magee E.A. Dietary carbohydrates and health: do we still need the fibre concept? Clin. Nutr. Suppl. 2004; 1: 5–17.
  17. Sato T., Vries R.G., Snippert H.J. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009; 459(7244): 262–265.
  18. Yen T.H., Wright N.A. The gastrointestinal tract stem cell niche. Stem. Cell. Rev. 2006; 2(3): 203–212.
  19. Bischoff S., Barbara G., Buurman W. et al. Intestinal permeability — a new target for disease prevention and therapy. BMC Gastroenterology. 2014; 14: 189;
  20. Fasano A., Not T., Wang W. et al. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet. 2000; 355: 1518–1519.
  21. Heyman M., Abed J., Lebreton C. et al. Intestinal permeability in coeliac disease: insight into mechanisms and relevance to pathogenesis. Gut. 2012; 61: 1355–1364.
  22. Bischoff S.C. Gut health: a new objective in medicine? BMC Med. 2011; 9: 24.
  23. Derikx J.P., van Waardenburg D.A., Granzen B. et al. Detection of chemotherapy-induced enterocyte toxicity with circulating intestinal fatty acid binding protein. J. Pediatr. Hematol. Oncol. 2006; 28: 267–269.
  24. Hanssen, S.J., Derikx, J.P., Vermeulen Windsant I.C. et al. Visceral Injury and Systemic Inflammation in Patients Undergoing Extracorporeal Circulation During Aortic Surgery. Ann. Surg. 2008; 248(1): 117–125.
  25. Derikx J.P., van Waardenburg D.A., Thuijls G. et al. New insight in loss of gut barrier during major non-abdominal surgery. PLoS One. 2008; 3: e3954.
  26. Derikx J.P., Bijker E.M., Vos G.D. et al. Gut mucosal cell damage in meningococcal sepsis in children: relation with clinical outcome. Crit. Care Med. 2010; 38(1): 133–137.
  27. De Haan J.J., Lubbers T., Derikx J.P. et al. Rapid development of intestinal cell damage following severe trauma: a prospective observational cohort study. Crit. Care. 2009; 13(3): R86.
  28. Roquilly A., Marret E., Abraham E. et al. Pneumonia prevention to decrease mortality in intensive care unit: a systematic review and meta-analysis. Clin. Infect. Dis. 2015; 60(1): 64–75.
  29. Малкоч А.В., Бельмер С.В., Ардатская М.Д. Функциональные нарушения моторики желудочно-кишечного тракта и кишечная микрофлора. Педиатрическая фармакология. 2009; 5: 70–75.
  30. Малкоч А.В., Бельмер С.В. Кишечная микрофлора и значение пребиотиков для ее функционирования. Лечащий врач. 2006; 4: 60–65.
  31. Kiesslich R., Duckworth C.A., Moussata D. et al. Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut. 2012, 61: 1146–1153.
  32. Anderson A.D., Jain P.K., Fleming S. et al. Evaluation of a triple sugar test of colonic permeability in humans. Acta Physiol. Scand. 2004; 182: 171–177.
  33. Harris C.E., Griffiths R.D., Freestone N. et al. Intestinal permeability in the critically ill. Intensive Care Med. 1992; 18: 38–41.
  34. Ohri S.K., Somasundaram S., Koak Y. et al. The effect of intestinal hypoperfusion on intestinal absorption and permeability during cardiopulmonary bypass. Gastroenterology. 1994; 106: 318–323.
  35. Van Wijck K., Verlinden T.J., van Eijk H.M. et al. Novel multi-sugar assay for site-specific gastrointestinal permeability analysis: a randomized controlled crossover trial. Clin. Nutr. 2013; 32: 245–251.
  36. Solligard E., Juel I.S., Spigset O. et al. Gut luminal lactate measured by microdialysis mirrors permeability of the intestinal mucosa after ischemia. Shock. 2008; 29: 245–251.
  37. Grootjans J., Thuijls G., Verdam F. et al. Non-invasive assessment of barrier integrity and function of the human gut. World J. Gastrointest. Surg. 2010; 2: 61–69.
  38. Crenn P., Coudray-Lucas C., Thuillier F. et al. Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology. 2000; 119: 1496–1505.
  39. Van Vliet M.J., Tissing W.J., Rings E.H. et al. Citrulline as a marker for chemotherapy induced mucosal barrier injury in pediatric patients. Pediatr. Blood Cancer. 2009; 53: 1188–1194.
  40. Lutgens L.C., Blijlevens N.M., Deutz N.E. et al. Monitoring myeloablative therapy-induced small bowel toxicity by serum citrulline concentration: a comparison with sugar permeability tests. Cancer. 2005; 103: 191–199.
  41. Relja B., Szermutzky M., Henrich D. et al. Intestinal-FABP and liver-FABP: novel markers for severe abdominal injury. Acad. Emerg. Med. 2010; 17: 729–735.
  42. Thuijls G., Derikx J.P., van Wijck K. et al. Non-invasive markers for early diagnosis and determination of the severity of necrotizing enterocolitis. Ann. Surg. 2010; 251: 1174–1180.
  43. Reisinger K.W., Derikx J.P., Thuijls G. et al. Noninvasive measurement of intestinal epithelial damage at time of refeeding can predict clinical outcome after necrotizing enterocolitis. Pediatr. Res. 2013; 73: 209–213.
  44. Monbaliu D., de Vries B., Crabbe T. et al. Liver fatty acid-binding protein: an early and sensitive plasma marker of hepatocellular damage and a reliable predictor of graft viability after liver transplantation from non-heart-beating donors. Transplant. Proc. 2005; 37: 413–416.
  45. Vreugdenhil A.C., Wolters V.M., Adriaanse M.P. et al. Additional value of serum I-FABP levels for evaluating celiac disease activity in children. Scand. J. Gastroenterol. 2011; 46: 1435–1441.
  46. Adriaanse M.P., Tack G.J., Passos V.L. et al. Serum I-FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment. Pharmacol. Ther. 2013; 37: 482–490.
  47. Delaney C.P., O’Neill S., Manning F. et al. Plasma concentrations of glutathione S-transferase isoenzyme are raised in patients with intestinal ischaemia. Br. J. Surg. 1999; 86: 1349–1353.
  48. Gearhart S.L., Delaney C.P., Senagore A.J. et al. Prospective assessment of the predictive value of alpha-glutathione S-transferase for intestinal ischemia. Am. Surg. 2003; 69: 324–329.
  49. Zeissig S., Burgel N., Gunzel D. et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007; 56: 61–72.
  50. Van Wijck K., Lenaerts K., van Loon L.J. et al. Exercise-induced splanchnic hypoperfusion results in gut dysfunction in healthy men. PLoS One. 2011; 6: e22366.
  51. Van Wijck K., Lenaerts K., Grootjans J. et al. Physiology and pathophysiology of splanchnic hypoperfusion and intestinal injury during exercise: strategies for evaluation and prevention. Am. J. Physiol. Gastrointest. Liver Physiol. 2012; 303: G155–G168.
  52. Grootjans J., Hodin C.M., de Haan J.J. et al. Level of activation of the unfolded protein response correlates with Paneth cell apoptosis in human small intestine exposed to ischemia/reperfusion. Gastroenterology. 2011; 140: 529–539.
  53. Grootjans J., Hundscheid I.H., Lenaerts K. et al. Ischaemia-induced mucus barrier loss and bacterial penetration are rapidly counteracted by increased goblet cell secretory activity in human and rat colon. Gut. 2013; 62: 250–258.
  54. Grootjans J., Thuijls G., Derikx J.P. et al. Rapid lamina propria retraction and zipper-like constriction of the epithelium preserves the epithelial lining in human small intestine exposed to ischaemia-reperfusion. J. Pathol. 2011; 224: 411–419.
  55. Derikx J.P., Matthijsen R.A., de Bruine A.P. et al. A new model to study intestinal ischemia-reperfusion damage in man. J. Surg. Res. 2011; 166: 222–226.
  56. Thuijls G., van Wijck K., Grootjans J. et al. Early diagnosis of intestinal ischemia using urinary and plasma fatty acid binding proteins. Ann. Surg. 2011; 253: 303–308.
  57. Banupriya B., Biswal N., Srinivasaraghavan R., Narayanan P., Mandal J. Probiotic prophylaxis to prevent ventilator associated pneumonia (VAP) in children on mechanical ventilation: an open-label randomized controlled trial. Intensive Care Med. 2015; 41(4): 677–685.
  58. Morrow L.E. Probiotics in the intensive care unit. Curr. Opin. Crit. Care. 2009; 15: 144–148.
  59. Barraud D., Bollaert P.E., Gibot S. Impact of the Administration of Probiotics on Mortality in Critically Ill Adult Patients: a meta-analysis of randomized controlled trials. Chest. 2013; 143: 646–655.
  60. Larsen T.M., Dalskov S.M., van Baak M. et al. Diets with high or low protein content and glycemic index for weight-loss maintenance. N. Engl. J. Med. 2010; 363: 2102–2113.
  61. Volynets V., Machann J., Kuper M.A. et al. A moderate weight reduction through dietary intervention decreases hepatic fat content in patients with non-alcoholic fatty liver disease (NAFLD): a pilot study. Eur. J. Nutr. 2013; 52: 527–535.
  62. Barrett J.S., Gearry R.B., Muir J.G. et al. Dietary poorly absorbed, short-chain carbohydrates increase delivery of water and fermentable substrates to the proximal colon. Aliment. Pharmacol. Ther. 2010; 31: 874–882.
  63. Mattila E., Uusitalo-Seppala R., Wuorela M. et al. Fecal transplantation, through colonoscopy, is effective therapy for recurrent Clostridium difficile infection. Gastroenterology. 2012; 142: 490–496.
  64. Brandt L.J., Aroniadis O.C., Mellow M. et al. Long-term follow-up of colonoscopic fecal microbiota transplant for recurrent Clostridium difficile infection. Am. J. Gastroenterol. 2012; 107: 1079–1087.
  65. Rossen N.G., MacDonald J.K., de Vries E.M. et al. Fecal microbiota transplantation as novel therapy in gastroenterology: A systematic review. World Journal of Gastroenterology. 2015; 21(17): 5359–5371.
  66. Drekonja D., Reich J., Gezahegn S. et al. Fecal Microbiota Transplantation for Clostridium difficile Infection: A Systematic Review. Ann. Intern. Med. 2015; 162(9): 630–638.
  67. Matsuoka K., Mizuno S., Hayashi A. et al. Fecal microbiota transplantation for gastrointestinal diseases. Keio J. Med. 2014; 63(4): 69–74.
  68. Kelly C.R., Ihunnah C., Fischer M. et al. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am. J. Gastroenterol. 2014; 109(7): 1065–1071.
  69. Mazurok V.A., Belikov V.L., Slivin O.A. Intestinal insufflation of small volume of oxygen increases systemic oxygenation in acute respiratory distress syndrome patients. Eur. J. Anaesthesiol. 2015; 32: 507–508.
  70. Mazurok V.A., Belikov V.L., Slivin O.A. et al. Enteral oxygenation — an effective approach for the intestinal paresis resolve. Anaesthesiology Intensive Therapy. 2015; 47(Suppl. I): 32–33.
  71. Mazurok V., Belikov V., Slivin O. Non-lung oxygenation: revising the old idea. 2013; 30(Suppl. 51.): 80–81.
  72. Мазурок В.А., Беликов В.Л., Сливин О.А. и др. Внелегочная оксигенация современный взгляд на старые идеи. Вестник Северо-Западного государственного медицинского университета им. И.И. Мечникова. 2013; 5(3): 119–127.
  73. Беликов В.Л., Мазурок В.А., Сливин О.А. и др. К вопросу об интестинальной оксигенации. Вестник интенсивной терапии. 2014; 5: 66–69.; Мазурок В.А., Беликов В.Л., Сливин О.А., Лобач С.М. Возможности повышения системной оксигенации посредством энтеральной оксигенотерапии. Анестезиология и реаниматология. 2014; 59(5): 21–26.
  74. Беликов В.Л., Завойских Е.В., Мазурок В.А. и др. Энтеральная оксигенация в комплексной терапии анаэробного септического шока у родильницы. Анестезиология и реаниматология. 2014; 59(5): 74–77.
  75. Gross B.D., Sacristian E., Peura R.A. Supplemental systemic Oxygen using an intestinal intraluminal membrane oxygenator. Artificial Organs. 2000; 24(11): 864–869.
  76. Воротинцев С.И. Ентеральна оксегенація в інтенсивній терапії критичних станів: Дис. … канд. мед. наук. Запоріжжя, 2003.
  77. Stocker R., Burgi U. Nutrition in the Critically ill: Facts and Controversies. Critical Care International. 1999; 9(6): 10–14.
  78. Mangiante G., Marini F., Acerbi A. et al. Postoperative ischemic ileocolitis in the elderly. Suggested therapy with intraluminal administration of oxygen and glutamine. Chir. 1994; 46(6): 80–85.
  79. Гагарин В.В., Тимофеев В.Н. и др. Использование кишечного лаважа, энтеральной оксигенации и гемосорбции в лечении острых расстройств мезентериального кровотока. Клиническая хирургия. 1984; 2: 41.