Гипероксия в ОРИТ и что изменилось через 100 лет в тактике использования кислорода в медицине: обзор литературы
#2022-2
PDF_2022-2_80-94
HTML_2022-2_80-94

Ключевые слова

кислород
гипоксия
гипероксия
активные формы кислорода

Как цитировать

Орлов Ю.П., Говорова Н.В., Лукач В.Н., Кондратьев А.И., Какуля Е.Н., Клементьев А.В., Байтугаева Г.А., Глущенко А.В., Цилина С.В., Хиленко И.А. Гипероксия в ОРИТ и что изменилось через 100 лет в тактике использования кислорода в медицине: обзор литературы. Вестник интенсивной терапии имени А.И. Салтанова. 2022;(2):80–94. doi:10.21320/1818-474X-2022-2-80-94.

Статистика

Просмотров аннотации: 159
PDF_2022-2_80-94 загрузок: 42
HTML_2022-2_80-94 загрузок: 46
Статистика с 21.01.2023

Аннотация

АКТУАЛЬНОСТЬ. Кислород, открытый в XVIII в., является не только необходимым химическим элементом для нормального функционирования клеток и поддержания жизни, но и важным компонентом терапии широкого спектра критических состояний, протекающих с различными вариантами острой дыхательной недостаточности, лежащей в основе развития полиорганной недостаточности. Использование кислорода в медицине — это обязательный инструмент при различных критических ситуациях. ЦЕЛИ ИССЛЕДОВАНИЯ. Осветить в обзоре преимущественно токсические эффекты кислорода, а также существующие данные экспериментальных и фундаментальных исследований о потенцирующей роли гипероксии в процессах активации свободно-радикального окисления, приводящие к избыточному синтезу активных форм кислорода, которые, в свою очередь, являются ведущим фактором в патогенезе любого критического состояния, всегда сопряженного с гипоксией. МАТЕРИАЛЫ И МЕТОДЫ. В обзоре представлены данные экспериментальных исследований, метаанализов, рандомизированных клинических исследований, которые отражают вклад гипероксии в показатели смертности пациентов отделений реанимации и интенсивной терапии при широком спектре критических состояний. ВЫВОДЫ. Поддержание оксигенации тканей путем титрования концентраций кислорода до целевых уровней рО2 и SpO2 на фоне постоянного мониторинга параметров газообмена позволит избежать проявлений токсических эффектов кислорода (гипероксии) в условиях интенсивной терапии критических состояний.

https://doi.org/10.21320/1818-474X-2022-2-80-94
PDF_2022-2_80-94
HTML_2022-2_80-94

Библиографические ссылки

  1. Priestley J. An account of further discoveries in air. By the Rev. Joseph Priestley, LL.D. F.R.S. in Letters to Sir John Pringle, Bart. P.R.S. and the Rev. Dr. Price, F.R.S. Priestley. J Phil. Trans. 1775; 65: 384–94.
  2. Bean J.W. Effects of O2 at increased pressure. Physiol Rev. 1945; 25(1): 1–147.
  3. Ohlsson W.T.L. A study on O2 toxicity at atmospheric pressure with special reference to the pathogenesis of pulmonary damage and O2 Acta Med Scand. 1947; 190 (Suppl): 4–89.
  4. Smith J.L. The pathological effects due to increase of O2 tension in the air breathed. J Physiol. 1899; 24(1): 19–35.
  5. Bean J.W. Effects of O2 at increased pressure. Physiol Rev. 1945; 25(1): 1–147.
  6. Hill L. Caisson sickness and compressed air-1. Scientific American. 1911; 1868(Suppl): 270–1.
  7. Kallet R.H., Matthay M.A. Hyperoxic acute lung injury. Respir Care. 2013; 58 (1):123–141. DOI: 10.4187/respcare.01963
  8. Tretter V., Zach M.L., Böhme S., et al. Investigating Disturbances of Oxygen Homeostasis: From Cellular Mechanisms to the Clinical Practice. Front Physiol. 2020; 11(4): 947. DOI: 10.3389/fphys.2020.00947
  9. Haldane J., Smith J.L. The oxygen tension of arterial blood. J Physiol. 1896; 20: 497–520.
  10. Clark J.M., Lambertsen C.J. Pulmonary O2 toxicity: a review. Pharmacol Rev. 1971; 23(2): 37–133.
  11. Bhandari V., Choo-Wing R., Lee C.G., et al. Hyperoxia causes angiopoietin-2 mediated acute lung injury and necrotic cell death. Nat Med. 2006; 12 (11):1286–93.
  12. Sahni M., Bhandari V. Patho-mechanisms of the origins of bronchopulmonary dysplasia. Mol Cell Pediatr. 2021; 8(1): 21. DOI: 10.1186/s40348-021-00129-5
  13. Kaplan H.P., Robinson F.R., Kapanci Y., Weibel E.R. Pathogenesis and reversibility of the pulmonary lesions of O2 toxicity and monkeys. Lab Invest. 1969; 20(1): 94–9.
  14. Crapo J.D., Barry B.E., Froscue H.A., Shelburne J. Structural and biochemical changes in rat lungs occurring during exposures to lethal and adaptive doses of oxygen. Am Rev Respir Dis. 1980; 122(1): 123–43.
  15. Robinson F.R., Harper D.T., Thomas A.A., Kaplan H.P. Proliferative pulmonary lesions and monkeys exposed to high concentrations of O2. Aerosp Med. 1967; 38(5): 481–6.
  16. Wolfe W.G., Robinson L.A., Moran F., Lowe J.E. Reversible pulmonary O2 toxicity in the primate. Ann Surg. 1978; 188(4): 530–43.
  17. Hyde R.W., Rawson A.J. Unintentional iatrogenic O2 pneumonitis: response to therapy. Ann Intern Med. 1969; 71(3): 517–31.
  18. Yano H., Kuroda A., Okada H., et al. Ultrastructural alteration of pulmonary tissue under conditions of high oxygen concentration. Int J Clin Exp Pathol. 2020; 13(12): 3004–12.
  19. Orbegozo Cortés D., Puflea F., Donadello K., et al. Normobaric hyperoxia alters the microcirculation in healthy volunteers. Microvasc Res. 2015; 98: 23–8. DOI: 10.1016/j.mvr.2014.11.006
  20. Damiani E., Casarotta E., Orlando F., et al. Effects of Normoxia, Hyperoxia, and Mild Hypoxia on Macro-Hemodynamics and the Skeletal Muscle Microcirculation in Anesthetised Rats. Front Med (Lausanne). 2021; 8: 672257. DOI: 10.3389/fmed.2021.672257
  21. Donati A., Damiani E., Zuccari S., et al. Effects of short-term hyperoxia on erythropoietin levels and microcirculation in critically Ill patients: a prospective observational pilot study. BMC anesthesiology. 2017; 17(1): 49. DOI: 10.1186/s12871-017-0342-2
  22. Liu M. Evolution of the apparatus of oxygen therapy. Anesthesia. 1974; 29(4): 462–85.
  23. Sekhar K., Rao S.C. John Scott Haldane: The father of oxygen therapy. Indian J Anaesth. 2014; 58(3): 350–2. DOI: 10.4103/0019-5049.135087
  24. Hafner S., Beloncle F., Koch A., et al. Hyperoxia in intensive care, emergency, and peri-operative medicine: Dr. Jekyll or Mr. Hyde? A 2015 update. Ann. Intensive Care. 2015; 5(1): 42. DOI: 10.1186/s13613-015-0084-6
  25. Asfar P., Singer M., Radermacher P. Understanding the benefits and harms of oxygen therapy. Intensive Care Med. 2015; 41: 1118–21. DOI: 10.1007/s00134-015-3670-z
  26. Hadanny A., Efrati S. The Hyperoxic-Hypoxic Paradox. Biomolecules. 2020; 10(6): 958. DOI: 10.3390/biom10060958
  27. Hirota K. Basic Biology of Hypoxic Responses Mediated by the Transcription Factor HIFs and its Implication for Medicine. Biomedicines. 2020; 8(2) :32. DOI: 10.3390/biomedicines8020032
  28. Holland H.D. The oxygenation of the atmosphere and oceans. Philos Trans R Soc Lond B Biol Sci. 2006; 361(1470): 903–15.
  29. Circu M.L., Aw T.Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med. 2010; 48(6): 749–62. DOI: 10.1016/j.freeradbiomed.2009.12.022
  30. Goud P.T., Bai D., Abu-Soud H.M. A Multiple-Hit Hypothesis Involving Reactive Oxygen Species and Myeloperoxidase Explains Clinical Deterioration and Fatality in COVID-19. Int J Biol Sci. 2021; 17(1): 62–72. DOI: 10.7150/ijbs.51811
  31. Alayash A.I. The Impact of COVID-19 Infection on Oxygen Homeostasis: A Molecular Perspective. Front Physiol. 2021; 12: 711976. DOI: 10.3389/fphys.2021.711976
  32. Bellotti D., Remelli M. Deferoxamine B: A Natural, Excellent and Versatile Metal Chelator. Molecules. 2021; 26(11): 3255. DOI: 10.3390/molecules26113255
  33. Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med. 2009; 47: 469–84.
  34. Berlett B.S., Stadtman E.R. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997; 272: 20313–6.
  35. Nathan C., Cunningham-Bussel A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol. 2013; 13: 349–61.
  36. Turrens J.F. Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997; 17(1): 3–8.
  37. Bast A., Weseler A.R., Haenen G.R., den Hartog G.J. Oxidative stress and antioxidants in interstitial lung disease. Curr Opin Pul Med. 2010; 16(5): 516–20.
  38. Ciencewicki J., Trivedia S., Kleeberger S.R. Oxidants in the pathogenesis of lung diseases. J Allergy Clin Immunol. 2008; 122(3): 456–68.
  39. Zou D., Li J., Fan Q., et al. Reactive oxygen and nitrogen species induce cell apoptosis via a mitochondria-dependent pathway in hyperoxia lung injury. J Cell Biochem. 2019; 120(4): 4837–50. DOI: 10.1002/jcb.27382
  40. Buonocore G., Perrone S., Tataranno M.L. Oxygen toxicity: chemistry and biology of reactive oxygen species. Semin Fetal Neonatal Med. 2010; 15(4): 186–90. DOI: 10.1016/j.siny.2010.04.003
  41. Das K.C., Wasnick J.D. Biphasic response of checkpoint control proteins in hyperoxia: exposure to lower levels of oxygen induces genome maintenance genes in experimental baboon BPD. Mol Cell Biochem. 2014; 395(1–2): 187–98. DOI: 10.1007/s11010-014-2124-1
  42. Li Y.X., Luo X.P., Liao L.J., et al. Apoptosis in neonatal rat lung exposed to hyperoxia. Zhonghua Er Ke Za Zhi. 2005; 43(8): 585–90.
  43. Lellouche F., L’Her E. Hyperoxemia: The Poison Is in the Dose. Am J Respir Crit Care Med. 2020; 201(4): 498. DOI: 10.1164/rccm.201910-1898LE
  44. Kazzaz J.A., Xu J., Palaia T.A., et al. Cellular oxygen toxicity. Oxidant injury without apoptosis. J Biol Chem. 1996; 271(25): 15182–6. DOI: 10.1074/jbc.271.25.15182
  45. García-Laorden M.I., Rodríguez-González R., Martín-Barrasa J.L., et al. Systemic Effects Induced by Hyperoxia in a Preclinical Model of Intra-abdominal Sepsis. Mediators Inflamm. 2020; 2020: 5101834. DOI: 10.1155/2020/5101834
  46. Curtis B.R., Rak K.J., Richardson A., et al. Perceptions of Hyperoxemia and Conservative Oxygen Therapy in the Management of Acute Respiratory Failure. Ann Am Thorac Soc. 2021; 18(8): 1369–79. DOI: 10.1513/AnnalsATS.202007-802OC
  47. de Graaff A.E., Dongelmans D.A., Binnekade J.M., de Jonge E. Clinicians’ response to hyperoxia in ventilated patients in a Dutch ICU depends on the level of FiO2. Intensive Care Med. 2011; 37(1): 46–51. DOI: 10.1007/s00134-010-2025-z
  48. Suzuki S., Eastwood G.M., Peck L., et al. Current oxygen management in mechanically ventilated patients: a prospective observational cohort study. J Crit Care. 2013; 28(5): 647–54. DOI: 10.1016/j.jcrc.2013.03.010
  49. Leitch P., Hudson A.L., Griggs J.E., et al. Air Ambulance Kent Surrey Sussex. Incidence of hyperoxia in trauma patients receiving pre-hospital emergency anaesthesia: results of a 5-year retrospective analysis. Scand J Trauma Resusc Emerg Med. 2021; 29(1): 134. DOI: 10.1186/s13049-021-00951-w
  50. Palmer E., Post B., Klapaukh R., et al. The Association between Supraphysiologic Arterial Oxygen Levels and Mortality in Critically Ill Patients. A Multicenter Observational Cohort Study. American journal of respiratory and critical care medicine. 2019; 200(11), 1373–80. DOI: 10.1164/rccm.201904-0849OC
  51. Asfar P., Schortgen F., Boisrame-Helms J., et al. Hyperoxia and hypertonic saline in patients with septic shock (HYPERS2S): a two-by-two factorial, multicentre, randomised, clinical trial. Lancet Respir Med. 2017; 5; 180–90. DOI: 10.1016/S2213-2600(17)30046-2
  52. Weiss S.L., Fitzgerald J.C., Pappachan J., et al. Sepsis Prevalence, Outcomes, and Therapies (SPROUT) Study Investigators and Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes, and therapies study. Am J Respir Crit Care Med. 2015; 191(10): 1147–57. DOI: 10.1164/rccm.201412-2323OC
  53. Chu D., Kim L., Young P., Zamiri N., et al. Mortality and morbidity in acutely ill adults treated with liberal versus conservative oxygen therapy (IOTA): a systematic review and meta-analysis. Lancet. 2018; 391(10131): 1693–705. DOI: 10.1016/S0140-6736(18)30479-3
  54. Llitjos J.F., Mira J.P., Duranteau J., Cariou A. Hyperoxia toxicity after cardiac arrest: What is the evidence? Ann Intensive Care. 2016; 6(1): 23. DOI: 10.1186/s13613-016-0126-8
  55. Yamamoto R , Yoshizawa J. Oxygen administration in patients recovering from cardiac arrest: a narrative review. J Intensive Care. 2020; 8: 60. DOI: 10.1186/s40560-020-00477-w
  56. Janz D.R., Hollenbeck R.D., Pollock J.S., et al. Hyperoxia is associated with increased mortality in patients treated with mild therapeutic hypothermia after sudden cardiac arrest. Crit Care Med. 2012; 40(12): 3135–9 DOI: 10.1097/CCM.0b013e3182656976
  57. Patel J.K., Kataya A., Parikh P.B. Association between intra- and post-arrest hyperoxia on mortality in adults with cardiac arrest: A systematic review and meta-analysis. Resuscitation. 2018; 127: 83–8. DOI: 10.1016/j.resuscitation.2018.04.008
  58. Bellomo R., Bailey M., Eastwood G.M., et al. Study of Oxygen in Critical Care (SOCC) Group. Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest. Crit Care. 2011; 15(2): R90. DOI: 10.1186/cc10090
  59. Roberts B.W., Kilgannon J.H., Hunter B.R., et al. Association Between Early Hyperoxia Exposure After Resuscitation From Cardiac Arrest and Neurological Disability: Prospective Multicenter Protocol-Directed Cohort Study. Circulation. 2018; 137(20): 2114–24. DOI: 10.1161/CIRCULATIONAHA.117.032054
  60. Rincon F., Kang J., Maltenfort M., et al. Association between hyperoxia and mortality after stroke: a multicenter cohort study. Crit Care Med. 2014; 42(2): 387–96. DOI: 10.1097/CCM.0b013e3182a27732
  61. Leon S.B., Choi H.A., Badjatia N., et al. Hyperoxia may be related to delayed cerebral ischemia and poor outcome after subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry. 2014; 85(12): 1301–7. DOI: 10.1136/jnnp-2013-307314
  62. Stolmeijer R., Bouma H.R., Zijlstra J.G., et al. A Systematic Review of the Effects of Hyperoxia in Acutely Ill Patients: Should We Aim for Less? Biomed Res Int. 2018:7841295. DOI: 10.1155/2018/7841295
  63. Davis D.P., Meade W., Sise M.J., et al. Both hypoxemia and extreme hyperoxemia may be detrimental in patients with severe traumatic brain injury. J Neurotrauma. 2009; 26(12): 2217–23. DOI: 10.1089/neu.2009.0940
  64. Rincon F., Kang J., Vibbert M., et al. Significance of arterial hyperoxia and relationship with case fatality in traumatic brain injury: a multicentre cohort study. J Neurol Neurosurg Psychiatry. 2014; 85(7): 799–805. DOI: 10.1136/jnnp-2013-305505
  65. Tretter V., Zach M.L., Böhme S., et al. Investigating Disturbances of Oxygen Homeostasis: From Cellular Mechanisms to the Clinical Practice. Front Physiol. 2020; 11: 947. DOI: 10.3389/fphys.2020.00947
  66. Parra R.S., Lopes A.H., Carreira E.U., et al. Hyperbaric oxygen therapy ameliorates TNBS-induced acute distal colitis in rats. Med Gas Res. 2015; 5: 6. DOI: 10.1186/s13618-015-0026-2
  67. Iezzi L.E., Feitosa M.R., Medeiros B.A., Aquino J.C., et al. Crohn’s disease and hyperbaric oxygen therapy. Acta Cir Bras. 2011; 26(2): 129–32.
  68. Yang W., Liu Y., Zhang Y., et al. Effect of intra-operative high inspired oxygen fraction on surgical site infection: a meta-analysis of randomized controlled trials. J Hosp Infect. 2016; 4: 329–38.
  69. Global guidelines for the prevention of surgical infections. The World Health Organization; Geneva, Switzerland: 2016.
  70. Akcha O., Ball L., Belda F.J., Biro P., et al. Who needs a high FIO2? Turk. J. Anesthesiol. Reanim. 2017; 45: 181–92. DOI: 10.5152 / TJAR.2017.250701
  71. Sway A., Solomkin J.S., Pittet D., Kilpatrick C. Methodology and Background for the World Health Organization Global Guidelines on the Prevention of Surgical Site Infection. Surg Infect (Larchmt). 2018; 19(1): 33–9. DOI: 10.1089/sur.2017.076
  72. Meyhoff C.S., Wetterslev J., Jorgensen L.N., et al. PROXI Trial Group. Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA. 2009; 302(14): 1543–50. DOI: 10.1001/jama.2009.1452
  73. Six S., Jaffal K., Ledoux G., et al. Hyperoxemia as a risk factor for ventilator-associated pneumonia. Crit Care. 2016; 20(1): 195.
  74. Nußbaum B., Radermacher P., Asfar P., Hartmann C. Does hyperoxia enhance susceptibility to secondary pulmonary infection in the ICU? Crit Care. 2016; 20(1): 239. DOI: 10.1186/s13054-016-1427-x
  75. Martin D.S., Grocott M.P. III. Oxygen therapy in anaesthesia: the yin and yang of O2. Br J Anaesth 2013; 111: 867–71. DOI: 10.1093/bja/aet291
  76. Sjöberg F., Singer M. The medical use of oxygen: a time for critical reappraisal. J Internal Med. 2013; 274(6): 505–28. DOI: 10.1111/joim.12139
  77. Singer M., Young P.J., Laffey J.G., et al. Dangers of hyperoxia. Crit Care. 2021; 25, 440. DOI: 10.1186/s13054-021-03815-y
  78. Smit B., Smulders Y.M., van der Wouden J.C., et al. Hemodynamic effects of acute hyperoxia: systematic review and meta-analysis. Crit Care. 2018; 22(1): 45.
  79. Vincent J.L., De Backer D. Circulatory shock. N Engl J Med. 2013; 369(18): 1726–34.
  80. Barbateskovic M., Schjørring O.L., Krauss S.R., et al. Higher vs lower oxygenation strategies in acutely ill adults: a systematic review with meta-analysis and trial sequential analysis. Chest. 2021; 159(1): 154–73.
  81. Scheeren T.W.L., Belda F.J., Perel A. The oxygen reserve index (ORI): a new tool to monitor oxygen therapy. J Clin MonitComput. 2018; 32(3): 379–89. DOI: 10.1007/s10877-017-0049-4
  82. de Jonge E., Peelen L., Keijzers P.J., et al. Association between administered oxygen, arterial partial oxygen pressure and mortality in mechanically ventilated intensive care unit patients. Crit Care. 2008; 12(6): R156. DOI: 10.1186/cc7150
  83. Horncastle E., Lumb A.B. Hyperoxia in anaesthesia and intensive care. BJA. 2019; 19(6): 176–82. DOI: 10.1016/j.bjae.2019.02.005
  84. Nishimoto K., Umegaki T., Ohira S., et al. Impact of Permissive Hypoxia and Hyperoxia Avoidance on Clinical Outcomes in Septic Patients Receiving Mechanical Ventilation: A Retrospective Single-Center Study. Biomed Res Int. 2021; 2021: 7332027. DOI: 10.1155/2021/7332027
  85. Kim T.Y., Kim D.H., Kim S.C., et al. Impact of early hyperoxia on 28-day in-hospital mortality in patients with myocardial injury. PLoS One. 2018; 13(8): e0201286. DOI: 10.1371/journal.pone.0201286
  86. Gelissen H., de Grooth H., Smulders Y., et al. Effect of Low-Normal vs High-Normal Oxygenation Targets on Organ Dysfunction in Critically Ill Patients: A Randomized Clinical Trial. JAMA. 2021; 326(10): 940–8. DOI: 10.1001/jama.2021.13011
  87. Lassen M.L., Risgaard B., Baekgaard J.S., Rasmussen L.S. Determining a safe upper limit of oxygen supplementation for adult patients: a systematic review. BMJ Open. 2021; 11(7): e045057. DOI: 10.1136/bmjopen-2020-045057
  88. Ярошецкий А.И., Грицан А.И., Авдеев С.Н. и др. Диагностика и интенсивная терапия острого респираторного дистресс-синдрома. Анестезиология и реаниматология. 2020; 2: 5–39. DOI: 17116/anaesthesiology20200215 [Yaroshetsky A.I., Gritsan A.I., Avdeev S.N., et al. Diagnostics and intensive therapy of Acute Respiratory Distress Syndrome (Clinical guidelines of the Federation of Anesthesiologists and Reanimatologists of Russia). Russian Journal of Anaesthesiology and Reanimatology. 2020; 2: 5–39. DOI: 10.17116/anaesthesiology20200215 (In Russ)]
  89. Власенко А.В., Евдокимов Е.А., Родионов Е.П. Современные принципы коррекции гипоксии при ОРДС различного генеза. Часть Вестник анестезиологии и реаниматологии. 2020; 17(3): 61–78. DOI: 10.21292/2078-5658-2020-17-3-61-78 [Vlasenko А.V., Evdokimov E.А., Rodionov E.P. Contemporary principles of hypoxia management in case of ARDS of various origin. Part 1. Messenger of Anesthesiology and Resuscitation. 2020; 17(3): 61–78. DOI: 10.21292/2078-5658-2020-17-3-61-78 (In Russ)]
  90. Власенко А.В., Евдокимов Е.А., Родионов Е.П. Современные алгоритмы респираторной поддержки при ОРДС различного генеза (лекция). Вестник анестезиологии и реаниматологии. 2020; 17(4): 41–58. DOI: 10.21292/2078-5658-2020-17-4-41-58 [Vlasenko А.V., Evdokimov E.А., Rodionov E.P. Contemporary procedure for respiratory support in acute respiratory distress syndrome of various genesis (lecture). Messenger of Anesthesiology and Resuscitation. 2020; 17(4): 41–58. DOI: 10.21292/2078-5658-2020-17-4-41-58
  91. Соколова М.М., Кузьков В.В., Родионова Л.Н., Киров М.Ю. Кислород в интенсивной терапии и анестезиологии — друг или враг? Вестник анестезиологии и реаниматологии. 2015; 12(3): 56–64. [Sokolova M.M., Kuz’kov V.V., Rodionova L.N., Kirov M.Yu. Oxygen in Intensive Care and Anesthesiology — Friend or Foe? Messenger of Anesthesiology and Resuscitation. 2015; 12(3): 56–64. (In Russ)]
  92. Cashen K., Reeder R., Dalton H.J., et al. Eunice Kennedy Shriver National Institute of Child Health and Human Development Collaborative Pediatric Critical Care Research Network (CPCCRN). Hyperoxia and Hypocapnia During Pediatric Extracorporeal Membrane Oxygenation: Associations With Complications, Mortality, and Functional Status Among Survivors. Pediatr Crit Care Med. 2018; 3: 245–53. DOI:1097/PCC.0000000000001439
  93. Кузьков В.В., Лапин К.С., Фот Е.В., Киров М.Ю. Вентилятор-ассоциированное повреждение легких в отделении интенсивной терапии и операционной — что нового? Вестник анестезиологии и реаниматологии. 2020; 17(5): 47–61. DOI: 10.21292/2078-5658-2020-17-5-47-61 [Kuzkov V.V., Lapin K.S., Fot E.V., Kirov M.Yu. Ventilator-associated lung injury in the intensive care unit and operating room — what’s new? Messenger of Anesthesiology and Resuscitation. 2020; 17(5): 47–61. DOI: 10.21292/2078-5658-2020-17-5-47-61 (In Russ)]
  94. Barrot L., Asfar P., Mauny F., et al. Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress Syndrome. N Engl J Med. 2020; 382(11): 999–1008. DOI: 10.1056/NEJMoa1916431
  95. Авдеев С.Н., Белоцерковский Б.З., Дехнич А.В. и др. Современные подходы к диагностике, лечению и профилактике тяжелой внебольничной пневмонии у взрослых: обзор литературы. Вестник интенсивной терапии им. А.И. Салтанова. 2021; 3: 27–46. DOI: 21320/1818-474X-2021-3-27-46 [Avdeev S.N., Belotserkovskiy B.Z., Dehnich A.V., et al. Modern approaches to the diagnostics, treatment and prevention of severe community-acquired pneumonia in adults: a review. Annals of Critical Care. 2021; 3: 27–46. DOI: 10.21320/1818-474X-2021-3-27-46 (In Russ)]
  96. Дац А.В., Дац Л.С., Хмельницкий И.В. Дефекты оказания медицинской помощи пациентам с острой дыхательной недостаточностью. Общая реаниматология. 2017; 13(4): 64–72. DOI: 10.15360/1813-9779-2017-4-64-72 [Dats A.V., Dats L.S., Khmel’nitskii I.V. Insufficiency of Medical Care for Patients with Acute Respiratory Failure. General Reanimatology. 2017;13(4): 64–72. DOI: 10.15360/1813-9779-2017-4-64-72 (In Russ)]
  97. Young P.J., Frei D. Oxygen therapy for critically Ill and post-operative patients. J Anesth. 2021; 35(6): 928–38. DOI: 10.1007/s00540-021-02996-8
  98. Young P.J., Bellomo R. The risk of hyperoxemia in ICU patients: much Ado about O2. Am J Respir Crit Care Med. 2019; 200: 1333. DOI: 10.1164/rccm.201909-1751ED
  99. Mackle D.M., Bailey M.J., Beasley R.W., et al. Australian and New Zealand Intensive Care Society Clinical Trials Group. Protocol summary and statistical analysis plan for the intensive care unit randomised trial comparing two approaches to oxygen therapy (ICU-ROX). Crit Care Resusc. 2018; 20: 22–32.
  100. Schjørring O.L., Perner A., Wetterslev J., et al. HOT-ICU Investigators. Handling Oxygenation Targets in the Intensive Care Unit (HOT-ICU)-protocol for a randomised clinical trial comparing a lower vs a higher oxygenation target in adults with acute hypoxaemic respiratory failure. Acta Anaesthesiol Scand. 2019; 63: 956–65
Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.

Copyright (c) 2022 ВЕСТНИК ИНТЕНСИВНОЙ ТЕРАПИИ имени А.И. САЛТАНОВА