Гематоэнцефалический барьер с позиции анестезиолога-реаниматолога. Обзор литературы. Часть 2
#2020-3
PDF_2020-03_46-55
HTML_2020-03_46-55

Ключевые слова

гематоэнцефалический барьер
гипоксия головного мозга,
общая анестезия
старение
критические заболевания

Как цитировать

Горбачев В.И., Брагина Н.В. Гематоэнцефалический барьер с позиции анестезиолога-реаниматолога. Обзор литературы. Часть 2. Вестник интенсивной терапии имени А.И. Салтанова. 2020;(3):46–55. doi:10.21320/1818-474X-2020-3-46-55.

Статистика

Просмотров аннотации: 59
PDF_2020-03_46-55 загрузок: 12
HTML_2020-03_46-55 загрузок: 83
Статистика с 21.01.2023

Аннотация

В статье предоставлен обзор гистохимических и молекулярных механизмов, регулирующих структуру и функции гематоэнцефалического барьера (ГЭБ) в условиях анестезиологического пособия, а также при различных физиологических и патологических состояниях. Проанализированы изменения в процессе физиологического старения и при возрастных нейродегенеративных нарушениях. С позиции анестезиолога-реаниматолога рассмотрено, как дисфункция гематоэнцефалического барьера связана с хроническим неврологическим дефицитом и острыми церебральными нарушениями при инсульте, сепсисе, черепно-мозговой травме, повреждении спинного мозга и эпилепсии.
https://doi.org/10.21320/1818-474X-2020-3-46-55
PDF_2020-03_46-55
HTML_2020-03_46-55

Библиографические ссылки

  1. Liu X., Jing J., Guo-Qing Z. General anesthesia affecting on developing brain: evidence from animal to clinical research. Int. J. Anesthetics and Anesthesiology. 2019; 7: 101. DOI: 10.23937/2377-4630/1410101
  2. Tétrault S., Chever O., Sik A., Amzica F. Opening of the blood-brain barrier during isoflurane anaesthesia. European J. Neuroscience. 2008; 28(7): 1330–1341. DOI: 10.1111/j.1460-9568.2008.06443.x
  3. Heinemann U. New dangers of anesthesia: isoflurane induced opening of the blood-brain barrier (Commentary on Tétrault et al.). European J. Neuroscience. 2008; 28: 1329–1329. DOI: 10.1111/j.1460-9568.2008.06500.x
  4. Thal S.C., Luh C., Schaible E.V., et al. Volatile anesthetics influence blood-brain barrier integrity by modulation of tight junction protein expression in traumatic brain injury. PLOS ONE. 2012; 7(12): e50752. DOI: 10.1371/journal.pone.0050752
  5. Yang S., Gu C., Mandeville E.T., et al. Anesthesia and surgery impair blood-brain barrier and cognitive function in mice. Frontiers in Immunology. 2017; 12(10): 902. DOI: 10.3389/fimmu.2017.00902
  6. Restin T. Sevoflurane protects rat brain endothelial barrier structure and function after hypoxia-reoxygenation injury. PLOS ONE. 2012; 7(12): e0184973. DOI: 10.1371/journal.pone.0184973.
  7. Acharya N.K., Goldwaser E.L., Forsberg M.M., et al. Sevoflurane and Isoflurane induce structural changes in brain vascular endothelial cells and increase blood-brain barrier permeability: Possible link to postoperative delirium and cognitive decline. Brain Research. 2015; 1620: 29–41. DOI: 10.1016/j.brainres.2015.04.054
  8. Sharma H.S., Pontén E., GordhT., et al. Propofol promotes blood-brain barrier breakdown and heat shock protein (HSP 72kd) activation in the developing mouse brain. CNS & neurological disorders drug targets. 2014; 13(9): 1595–603. DOI: 10.2174/1871527313666140806122906
  9. Erdő F., Denes L., de Lange E. Age-associated physiological and pathological changes at the blood-brain barrier: A review. J. Cerebral Blood Flow &Metabolism. 2017; 37(1): 4–24. DOI: 10.1177/0271678X16679420
  10. Jiang X., Andjelkovic A.V., Zhu L., et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Progress in Neurobiology. 2018; 163–164: 144–171. DOI: 10.1016/j.pneurobio.2017.10.001
  11. Bake S., Friedman J.A., Sohrabji F. Reproductive age-related changes in the blood brain barrier: expression of IgG and tight junction proteins. Microvascular Research. 2009; 78: 413–424. DOI: 10.1016/j.mvr.2009.06.009
  12. De Reuck J.L. Histopathological stainings and definitions of vascular disruptions in the elderly brain. Experimental Gerontology. 2012; 47: 834–837. DOI: 10.1016/j.exger.2012.03.012
  13. Van Dyken P., Lacoste B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood–Brain Barrier. Frontiers Neuroscience. 2018; 12: 930. DOI: 10.3389/fnins.2018.00930
  14. Gomez-Gonzalez B., Hurtado-Alvarado G., Esqueda-Leon E., et al. REM sleep loss and recovery regulates blood-brain barrier function. Current neurovascular research. 2013; 10: 197–207. DOI: 10.2174/15672026113109990002
  15. He J., Hsuchou H., He Y., et al. Sleep restriction impairs blood-brain barrier function. J. Neuroscience. 2015; 34: 14697–14706. DOI: 10.1523/JNEUROSCI.2111-14.2014
  16. Keaney J., Campbell M. The dynamic bloodbrain barrier. The FEBS Journal. 2015; 282: 4067–4079. DOI: 10.1111/febs.13412
  17. Раевский О.А., Солодова С.Л., Лагунин А.А., Поройков В.В. Компьютерное моделирование проницаемости физиологически активных веществ через гематоэнцефалический барьер. Биомедицинская химия. 2014; 60(2): 161–181. DOI: 10.18097/PBMC20146002161 [Raevskij O.A., Solodova S.L., Lagunin A.A., Porojkov V.V. Computer modeling of blood brain barrier permeability of physiologically active compounds. Biomedicinskaja himija. 2014; 60(2): 161–181. (In Russ)]
  18. Блинов Д.В. Современные представления о роли нарушения резистентности гематоэнцефалического барьера в патогенезе заболеваний ЦНС. Часть 2: функции и механизмы повреждения гематоэнцефалического барьера. Эпилепсия и пароксизмальные состояния. 2014; 6(1): 70–84. [Blinov D.V. Sovremennye predstavleniya o roli narusheniya rezistentnosti gematoencefalicheskogo bar’era v patogeneze zabolevanij CNS. CHast’ 2: funkcii i mekhanizmy povrezhdeniya gematoencefalicheskogo bar’era. Jepilepsija i paroksizmal’nye sostojanija. 2014; 6(1): 70–84. (In Russ)]
  19. Блинов Д.В. Современные представления о роли нарушения резистентности гематоэнцефалического барьера в патогенезе заболеваний ЦНС. Часть 1: Строение и формирование гематоэнцефалического барьера. Эпилепсия и пароксизмальные состояния. 2013; 5(3): 65–75. [Blinov D.V. Sovremennye predstavleniya o roli narusheniya rezistentnosti gematoencefalicheskogo bar’era v patogeneze zabolevanij CNS. CHast’ 1: Stroenie i formirovanie gematoencefalicheskogo bar’era. Jepilepsija i paroksizmal’nye sostojanija. 2013; 5(3): 65–75. (In Russ)]
  20. Persidsky Y., Ramirez S.H., Haorah J., Kanmogne G.D. Blood-brain barrier: Structural components and function under physiologic and pathologic conditions. J. Neuroimmune Pharmacology. 2006; 1(3): 223–236. DOI: 10.1007/s11481-006-9025-3
  21. Sweeney M.D., Zhao Z., Montagne A., et al. Blood-Brain Barrier: From Physiology to Disease and Back. Physiological Reviews. 2019; 99(1): 21–78. DOI: 10.1152/physrev.00050.2017
  22. Shi S., Qi Z., Ma Q., et al. Normobaric Hyperoxia Reduces Blood Occludin Fragments in Acute Ischemic Stroke Rats and Patients. Stroke. 2017; 48(10): 2848–2854. DOI: 10,1161 / STROKEAHA.117.017713
  23. Jiang X., Andjelkovic A.V., Zhu L., et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Progress in Neurobiology. 2018; 163–164: 144–171. DOI: 10.1016/j.pneurobio.2017.10.001
  24. Cechmanek B.K., Tuor U.I., Rushforth D., Barber P.A. Very mild hypothermia (35 degrees C) postischemia reduces infarct volume and blood-brain barrier breakdown following tPA treatment in the mouse. Therapeutic Hypothermia and Temperature Management. 2015; 5: 203–208. DOI: 10.1089/ther.2015.0010
  25. Zarisfi M., Allahtavakoli F., Hassanipour M., et al. Transient brain hypothermia reduces the reperfusion injury of delayed tissue plasminogen activator and extends its therapeutic time window in a focal embolic stroke model. The Brain Research Bulletin. 2017; 134: 85–90. DOI: 10.1016/j.brainresbull.2017.07.007
  26. Yongchang L., Wei Z., Zheng J., Xiangqi T. New progress in the approaches for blood-brain barrier protection in acute ischemic stroke. The Brain Research Bulletin. 2019; 144: 46–57. DOI: 10.1016/j.brainresbull.2018.11.006
  27. Huang L., Wong S., Snyder E.Y., et al. Human neural stem cells rapidly ameliorate symptomatic inflammation in early-stage ischemic-reperfusion cerebral injury. Stem Cell Research & Therapy. 2014; 5: 129. DOI: 10.1186/scrt519
  28. Cao C., Yu X., Liao Z., et al. Hypertonic saline reduces lipopolysaccharide-induced mouse brain edema through inhibiting aquaporin 4 expression. Critical Care. 2012; 16: 186. DOI: 10.1186/cc11670
  29. Ji F.T., Liang J.J., Miao L.P., et al. Propofol post-conditioning protects the blood brain barrier by decreasing matrix metalloproteinase-9 and aquaporin-4 expression and improves the neurobehavioral outcome in a rat model of focal cerebral ischemia-reperfusion injury. Molecular Medicine Reports. 2015; 12: 2049–2055. DOI: 10.3892/mmr.2015.3585
  30. Щербак Н.С., Галагудза М.М., Нифонтов Е.М. Ишемическое посткондиционирование головного мозга. Трансляционная медицина. 2015; (1): 5–14. DOI: 10.18705/2311-4495-2015-0-1-5-14 [Shherbak N.S., Galagudza M.M., Nifontov E.M. Ishemicheskoe postkondicionirovanie golovnogo mozga. Transljacionnaja medicina. 2015; (1): 5–14. (In Russ)]
  31. Esmaeeli-Nadimi A., Kennedy D., Allahtavakoli M. Opening the window: ischemic postconditioning reduces the hyperemic response of delayed tissue plasminogen activator and extends its therapeutic time window in an embolic stroke model. The European J. Pharmacology. 2015; 764: 55–62. DOI: 10.1016/j.ejphar.2015.06.043
  32. Han D., Zhang S., Fan B., et al. Ischemic postconditioning protects the neurovascular unit after focal cerebral ischemia/reperfusion injury. J. Molecular Neuroscience. 2014; 53: 50–58. DOI: 10.1007/s12031-013-0196-0
  33. Краснов А.В. Астроцитарные белки головного мозга: структура, функции, клиническое значение. Неврологический журнал. 2012; 1: 37–42. [Krasnov A.V. Astrocitarnye belki golovnogo mozga: struktura, funkcii, klinicheskoe znachenie. Nevrologicheskij zhurnal. 2012; 1: 37–42. (In Russ)]
  34. Sweeney M.D., Zhao Z., Montagne A., et al. Blood-brain barrier: from physiology to disease and back. Physiological Reviews. 2019; 99: 21–78. DOI: 10.1152/physrev.00050.2017
  35. Thal S.C., Neuhaus W. The blood-brain barrier as a target in traumatic brain injury treatment. Archives of Medical Research. 2014; 45(8): 698–710. DOI: 10.1016/j.arcmed.2014.11.006
  36. Mietani K., Sumitani M., Ogata T., et al. Dysfunction of the blood-brain barrier in postoperative delirium patients, referring to the axonal damage biomarker phosphorylated neurofilament heavy subunit. PLOS ONE. 2019; 14(10): e0222721. DOI: 10.1371/journal.pone.0222721
  37. Sonneville R., Verdonk F., Rauturier C., et al. Understanding brain dysfunction in sepsis. Annals of Intensive Care. 2013; 3: 15. DOI: 10.1186/2110-5820-3-15
  38. Iwashyna T.J., Burke J.F., Sussman J.B., et al. Implications of heterogeneity of treatment effect for reporting and analysis of randomized trials in critical care. American J. Respiratory and Critical Care Medicine. 2015; 192(9): 1045–1051. DOI: 10.1164/rccm.201411-2125CP
  39. Kuperberg S.J., Wadgaonkar R. Sepsis-associated encephalopathy: the blood-brain barrier and the sphingolipid rheostat. Frontiers of Immunology. 2017; 8: 597. DOI: 10.3389/fimmu.2017.00597
  40. Nwafor D.C., Brichacek A.L., Mohammad A.S., et al. Targeting the blood-brain barrier to prevent sepsis-associated cognitive impairment. J. Central Nervous System Disease. 2019; 11: 1–14. DOI: 10.1177/1179573519840652
  41. Аббасова К.Р., Зыбина А.М., Куличенкова К.Н., Солодков Р.В. Роль гематоэнцефалического барьера при развитии детских фебрильных приступов и височной эпилепсии. Физиология Человека. 2016; 42(5): 1–7. [Abbasova K.R., Zybina A.M., Kulichenkova K.N., Solodkov R.V. Rol’ gematoencefalicheskogo bar’era pri razvitii detskih febril’nyh pristupov i visochnoj epilepsii. Fiziologija Cheloveka. 2016; 42(5): 1–7. (In Russ)]
  42. Rhea E.M., Banks W.A. Role of the blood-brain barrier in central nervous system insulin resistance. Frontiers in Neuroscience. 2019; 13: 521. DOI: 10.3389/fnins.2019.00521
  43. Shukla V., Shakya A.K., Perez-Pinzon M.A., Dave K.R. Cerebral ischemic damage in diabetes: an inflammatory perspective. J. Neuroinflammation. 2017; 14: 21. DOI: 10.1186/s12974-016-0774-5
Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.