Section and Topic | Item # | Checklist item | Location where item is reported |
---|---|---|---|
TITLE | |||
Title | 1 | Identify the report as a systematic review. | Title Page |
ABSTRACT | |||
Abstract | 2 | See the PRISMA 2020 for Abstracts checklist. | Abstract |
INTRODUCTION | |||
Rationale | 3 | Describe the rationale for the review in the context of existing knowledge. | Introduction |
Objectives | 4 | Provide an explicit statement of the objective(s) or question(s) the review addresses. | Introduction |
METHODS | |||
Eligibility criteria | 5 | Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses. | Inclusion criteria and trial selection |
Information sources | 6 | Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted. | Search strategy |
Search strategy | 7 | Present the full search strategies for all databases, registers and websites, including any filters and limits used. | Search strategy |
Selection process | 8 | Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process. | Inclusion criteria and trial selection |
Data collection process | 9 | Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process. | Data extraction and outcome assessment |
Data items | 10a | List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect. | Data extraction and outcome assessment |
10b | List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information. | Data extraction and outcome assessment | |
Study risk of bias assessment | 11 | Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process. | BIAS assessment |
Effect measures | 12 | Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results. | Data extraction and outcome assessment |
Synthesis methods | 13a | Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)). | Statistical analysis |
13b | Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions. | Data extraction and outcome assessment | |
13c | Describe any methods used to tabulate or visually display results of individual studies and syntheses. | Statistical analysis | |
13d | Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used. | Statistical analysis | |
13e | Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression). | Statistical analysis | |
13f | Describe any sensitivity analyses conducted to assess robustness of the synthesized results. | Statistical analysis | |
Reporting bias assessment | 14 | Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases). | BIAS assessment |
Certainty assessment | 15 | Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome. | BIAS assessment |
RESULTS | |||
Study selection | 16a | Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram. | Characteristics of the Studies |
16b | Cite studies that might appear to meet the inclusion criteria, but which were excluded, and explain why they were excluded. | Table D2 | |
Study characteristics | 17 | Cite each included study and present its characteristics. | Characteristics of the Studies; Table D3 |
Risk of bias in studies | 18 | Present assessments of risk of bias for each included study. | Table D5 |
Results of individual studies | 19 | For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval), ideally using structured tables or plots. | Figure 2; Table 2 |
Results of syntheses | 20a | For each synthesis, briefly summarise the characteristics and risk of bias among contributing studies. | Meta-analysis |
20b | Present results of all statistical syntheses conducted. If meta-analysis was done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect. | Meta-analysis | |
20c | Present results of all investigations of possible causes of heterogeneity among study results. | Subgroup Analysis; Meta-Regression | |
20d | Present results of all sensitivity analyses conducted to assess the robustness of the synthesized results. | Figure D1 | |
Reporting biases | 21 | Present assessments of risk of bias due to missing results (arising from reporting biases) for each synthesis assessed. | Table 3; Figures D2-D6 |
Certainty of evidence | 22 | Present assessments of certainty (or confidence) in the body of evidence for each outcome assessed. | BIAS assessment; Table D6 |
DISCUSSION | |||
Discussion | 23a | Provide a general interpretation of the results in the context of other evidence. | Discussion |
23b | Discuss any limitations of the evidence included in the review. | Discussion | |
23c | Discuss any limitations of the review processes used. | Discussion | |
23d | Discuss implications of the results for practice, policy, and future research. | Discussion | |
OTHER INFORMATION | |||
Registration and protocol | 24a | Provide registration information for the review, including register name and registration number, or state that the review was not registered. | Materials and methods |
24b | Indicate where the review protocol can be accessed, or state that a protocol was not prepared. | Materials and methods | |
24c | Describe and explain any amendments to information provided at registration or in the protocol. | Materials and methods | |
Support | 25 | Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review. | Meta-analysis |
Competing interests | 26 | Declare any competing interests of review authors. | Meta-analysis |
Availability of data, code and other materials | 27 | Report which of the following are publicly available and where they can be found: template data collection forms; data extracted from included studies; data used for all analyses; analytic code; any other materials used in the review. | Meta-analysis |
Reason for Exclusion | Study |
---|---|
No CVP Assessment |
|
Inappropriate Gold Standard (Not a Fluid Challenge Test) |
|
Non-Cardiac Parameters in Fluid Challenge Test |
|
Retrospective Study |
|
№ | Study | Sample size (N. of obser-s) | N. of patients | Patient Cohort | GS parameter | Infusion Solution | Test: cut-off | Infusion volume | Type GS | Method of determination | GS: cut-off | Mean age (years) | Male, % | BMI, kg/m2 | APACHE II, mean. | MV, N | Type of breathing | AUROC (mean±SD) | Se | Sp |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Albano BBP (2021) [1] | 101 | 101 | C. ICU | ∆SV или ∆CI (%) | Cryst. | 6,0 | 8 ml/kg | FC | TPTD | 0,15 | 55,8 | 74,3 | ND | ND | 101 | MV | 0,40 ± 0,56 | 0,83 | 0,51 |
2 | Angappan S (2015) [2] | 45 | 45 | Shock | ∆CI (%) | Coll. | ND | 500 | FC | PPWA | 0,15 | 45,2 | 80,0 | ND | ND | 45 | MV | 0,56 ± 0,50 | ND | ND |
3 | Baker AK (2013) [3] | 25 | 25 | Shock | ∆SV (%) | Coll. | ND | 500 | FC | EchoCG | 0,15 | 60,3 | 68,0 | ND | ND | 25 | MV | 0,66 ± 0,55 | ND | ND |
4 | Barbier C (2004) [4] | 20 | 20 | Shock | ∆CI (%) | Coll. | 12 | 7 ml/kg | FC | EchoCG | 0,15 | 63,0 | 75,0 | ND | ND | 20 | MV | 0,57 ± 0,57 | 0,90 | 0,30 |
5 | Berg JM (2021) [5] | 56 | 56 | CS | ∆SVI (%) | Cryst. | ND | 5 ml/kg | FC | TPTD | 0,15 | ND | ND | ND | ND | 56 | MV | 0,48 ± 0,97 | ND | ND |
6 | Berkenstadt H (2001) [6] | 140 | 15 | NCS | ∆SV (%) | Coll. | ND | 100 | mini-FC | TPTD | 0,05 | 55,0 | 40,0 | ND | ND | 140 | MV | 0,49 ± 0,58 | ND | ND |
7 | Biais M (2008) [7] | 35 | 35 | NC. ICU | ∆CO (%) | Coll. | 3,0 | 20 ml * ИМТ | FC | EchoCG | 0,15 | 51,0 | 65,7 | 23,0 | ND | 35 | MV | 0,64 ± 0,49 | ND | ND |
8 | Botros JM (2023) [8] | 48 | 48 | NCS | ∆SVI (%) | Cryst. | ND | 6 ml/kg | FC | EchoCG | 0,1 | 53,1 | 21,0 | 26,2 | ND | 48 | MV | 0,41 ± 0,59 | ND | ND |
9 | Bubenek-Turconi ŞI (2019) [9] | 266 | 40 | CS | ∆CI (%) | Coll. | ND | 500 | FC | PPWA | 0,11 | 63,0 | 77,5 | ND | ND | 266 | MV | 0,53 ± 0,54 | 0,55 | 0,61 |
10 | Cannesson M (2007) [10] | 25 | 25 | CS | ∆CI (%) | Coll. | ND | 500 | FC | TPTD | 0,15 | 69,0 | 72,0 | ND | ND | 25 | MV | 0,57 ± 0,12 | ND | ND |
11 | Cannesson M (2008)-1 [11] | 25 | 25 | CS | ∆CI (%) | Coll. | 3,5 | 500 | FC | TPTD | 0,15 | 65,0 | 60,0 | ND | ND | 25 | MV | 0,75 ± 0,11 | 0,77 | 0,63 |
12 | Cannesson M (2008)-2 [12] | 25 | 25 | CS | ∆CI (%) | Coll. | 12,5 | 500 | FC | TPTD | 0,15 | 65,0 | 64,0 | ND | ND | 25 | MV | 0,42 ± 0,57 | 0,44 | 0,78 |
13 | Cannesson M (2009) [13] | 25 | 25 | CS | ∆CI (%) | Coll. | ND | 500 | FC | TPTD | 0,15 | 67,0 | 80,0 | ND | ND | 25 | MV | 0,53 ± 0,12 | ND | ND |
14 | Cannesson M (2011) [14] | 413 | 413 | NCS | ∆CO (%) | Coll. | ND | 500 | FC | TPTD, PPWA или EchoCG | 0,15 | 65,0 | 74,3 | ND | ND | 413 | MV | 0,57 ± 0,26 | ND | ND |
15 | Cecconi M (2012) [15] | 31 | 31 | NC. ICU | ∆SV (%) | Coll. | ND | 250 | mini-FC | PPWA | 0,15 | 65,0 | 74,2 | ND | ND | 31 | MV | 0,62 ± 0,56 | ND | ND |
16 | de Oliveira OH (2016) [16] | 20 | 20 | NC. ICU | ∆VTI (%) | Cryst. | 10,0 | 500 | FC | EchoCG | 0,15 | 50,0 | 40,0 | ND | ND | 20 | MV | 0,65 ± 0,13 | 0,55 | 0,78 |
17 | de Waal EE (2009) [17] | 22 | 22 | CS | ∆SVI (%) | Coll. | ND | 10 ml/kg | FC | TPTD | 0,12 | 66,0 | 81,8 | 26,3 | ND | 22 | MV | 0,64 ± 0,55 | ND | ND |
18 | Dépret F (2018) [18] | 28 | 28 | Shock | ∆CI (%) | Cryst. | ND | 500 | FC | TPTD | 0,15 | 66,5 | ND | ND | ND | 28 | MV | 0,51 ± 0,12 | ND | ND |
19 | Desgranges FP (2011) [19] | 28 | 28 | CS | ∆CI (%) | Coll. | 8,0 | 500 | FC | TPTD | 0,15 | 62,0 | 82,1 | ND | ND | 28 | MV | 0,58 ± 0,65 | 0,58 | 0,33 |
20 | Fu Q (2012) [20] | 51 | 51 | NCS | ∆SVI (%) | Coll. | 7,5 | 8 ml/kg | FC | PPWA | 0,1 | 48,7 | 51,0 | ND | ND | 51 | MV | 0,61 ± 0,59 | 0,61 | 0,64 |
21 | Fu Q (2014) [21] | 30 | 30 | OV | ∆CI (%) | Coll. | ND | 8 ml/kg | FC | PPWA | 0,1 | 52,4 | 70,0 | ND | ND | 30 | MV | 0,56 ± 0,58 | 0,93 | 0,44 |
22 | Geerts BF (2011) [22] | 24 | 24 | C. ICU | ∆CO (%) | Coll. | 9,0 | 500 | FC | TPTD | 0,1 | 64,0 | 79,12 | ND | ND | 24 | MV | 0,69 ± 0,48 | 0,71 | 0,57 |
23 | Giraud R (2018) [23] | 20 | 20 | NC. ICU | ∆CO (%) | Cryst. | ND | 500 | FC | TPTD | 0,15 | 62,2 | 45,0 | ND | ND | 20 | MV | 0,54 ± 0,56 | ND | ND |
24 | Guarracino F (2014) [24] | 50 | 50 | Shock | ∆CI (%) | Cryst. | 8,0 | 7 ml/kg | FC | PPWA | 0,15 | 66,3 | 64,0 | ND | ND | 50 | MV | 0,68 ± 0,53 | 0,33 | 1,00 |
25 | Haas S (2012) [25] | 22 | 18 | C. ICU | ∆CI (%) | Coll. | ND | 4 ml/kg | mini-FC | TPTD | 0,1 | 67,5 | 72,2 | ND | ND | 22 | MV | 0,81 ± 0,43 | ND | ND |
26 | Hahn RG (2016) [26] | 80 | 80 | NCS | ∆SVI (%) | Coll. | 6,5 | 9 ml/kg | FC | PPWA | 0,1 | 56,0 | 65,0 | ND | ND | 80 | MV | 0,74 ± 0,49 | 0,68 | 0,75 |
27 | Hikasa Y (2023) [27] | 61 | 24 | NCS | ∆SVI (%) | Coll. | 19,0 | 200 | mini-FC | PPWA | 0,15 | 66,0 | 75,0 | 22,3 | ND | 61 | MV | 0,58 ± 0,64 | 0,25 | 0,95 |
28 | Hofer CK (2005) [28] | 35 | 35 | CS | ∆SVI (%) | Coll. | ND | 10 ml/kg | FC | TPTD | 0,25 | 62,0 | ND | 27,0 | ND | 35 | MV | 0,54 ± 0,57 | ND | ND |
29 | Hofer CK (2018) [29] | 34 | 34 | C. ICU | ∆SV (%) | Coll. | ND | 500 | FC | TPTD | 0,15 | 65,8 | 82,4 | 27,9 | ND | 34 | MV | 0,55 ± 0,60 | ND | ND |
30 | Høiseth LØ (2011) [30] | 34 | 25 | NCS | ∆SV (%) | Coll. | ND | 250 | mini-FC | EchoCG | 0,15 | 61,0 | 48,0 | ND | ND | 34 | MV | 0,58 ± 0,50 | ND | ND |
31 | Huang CC (2008) [31] | 22 | 22 | NC. ICU | ∆CI (%) | Coll. | ND | 500 | FC | PPWA | 0,15 | 54,0 | 72,7 | ND | 21,8 | 22 | MV | 0,43 ± 0,38 | 0,55 | 0,44 |
32 | Ibarra-Estrada MÁ (2015) [32] | 59 | 19 | Shock | ∆SVI (%) | Cryst. | ND | 7 ml/kg | FC | EchoCG | 0,15 | 49,2 | 62,7 | ND | ND | 59 | MV | 0,52 ± 0,52 | ND | ND |
33 | Ikeda K (2016) [33] | 75 | 35 | C. ICU | ∆CI (%) | Mix. | ND | 574 (SD: 361) | non-classified | TPTD | 0,15 | ND | ND | ND | ND | 75 | MV | 0,49 ± 0,67 | ND | ND |
34 | Ishihara H (2013) [34] | 43 | 43 | NC. ICU | ∆CI (%) | Coll. | 6,5 | 250 | mini-FC | TPTD | 0,15 | 65,0 | 97,7 | ND | ND | 43 | MV | 0,69 ± 0,54 | 0,60 | 0,74 |
35 | Kim SY (2013) [35] | 66 | 66 | CS | ∆SVI (%) | Coll. | ND | 500 | FC | PPWA | 0,12 | ND | 74,2 | ND | ND | 66 | MV | 0,53 ± 0,57 | ND | ND |
36 | Kramer A (2004) [36] | 21 | 21 | C. ICU | ∆CO (%) | Аутокровь | ND | 500 | FC | TPTD | 0,12 | 64,7 | 71,4 | ND | ND | 21 | MV | 0,49 ± 0,69 | ND | ND |
37 | Kumar N (2021) [37] | 50 | 50 | Shock | ∆CI (%) | Cryst. | 7,5 | 10 ml/kg | FC | PPWA | 0,1 | 44,9 | 64,0 | ND | ND | 50 | MV | 0,56 ± 0,55 | 0,63 | 0,50 |
38 | Kurtz P (2014) [38] | 57 | 10 | NC. ICU | ∆CI (%) | Coll. | ND | 250 | mini-FC | PPWA | 0,1 | 52,7 | 40,0 | ND | 25,0 | 57 | MV | 0,61 ± 0,62 | ND | ND |
39 | Lakhal K (2010) [39] | 102 | 102 | Shock | ∆CO (%) | Coll. | ND | 500 | FC | TPTD | 0,1 | 59,0 | 70,6 | ND | ND | 102 | MV | 0,61 ± 0,53 | ND | ND |
40 | Lakhal K (2011) [40] | 65 | 65 | Shock | ∆CO (%) | Coll. | ND | 500 | FC | TPTD | 0,1 | 59,0 | 69,2 | ND | ND | 65 | MV | 0,63 ± 0,50 | ND | ND |
41 | Lanspa MJ (2012) [41] | 34 | 25 | Shock | ∆CI (%) | Cryst. или Coll. | 8,0 | 10 ml/kg | FC | EchoCG | 0,15 | 62,1 | 32,4 | ND | 20,0 | 19 | Mixed | 0,73 ± 0,59 | ND | ND |
42 | Lee JH (2007) [42] | 20 | 20 | NCS | ∆SVI (%) | Coll. | ND | 7 ml/kg | FC | EchoCG | 0,1 | 49,0 | 40,0 | 24,0 | ND | 20 | MV | 0,54 ± 0,13 | ND | ND |
43 | Lee JH (2011) [43] | 35 | 35 | CS | ∆CI (%) | Coll. | ND | 10 ml/kg | FC | TPTD | 0,15 | 63,0 | 57,1 | 25,0 | ND | 35 | MV | 0,70 ± 0,47 | ND | ND |
44 | Li J (2012) [44] | 157 | 48 | NCS | ∆SV (%) | Cryst. | ND | 200 | mini-FC | PPWA | 0,1 | 44,0 | 58,3 | ND | ND | 157 | MV | 0,54 ± 0,06 | ND | ND |
45 | Lu N (2017) [45] | 49 | 49 | Shock | ∆CI (%) | Cryst. | 6,5 | 200 | mini-FC | TPTD | 0,1 | 55,4 | 67,3 | 24,9 | 26,8 | 49 | MV | 0,68 ± 0,59 | 0,65 | 0,70 |
46 | Ma GG (2018) [46] | 70 | 70 | C. ICU | ∆SV (%) | Coll. | 11 | 500 | FC | PPWA | 0,15 | 61,0 | 62,9 | 22,0 | 9,0 | 70 | MV | 0,70 ± 0,48 | 0,60 | 0,77 |
47 | Ma Q (2022) [47] | 56 | 56 | NC. ICU | ∆CO (%) | Cryst. | 4 | 5 ml/kg | FC | EchoCG | 0,15 | 57,4 | 55,4 | ND | ND | 0 | Spontaneous Breathing | 0,64 ± 0,49 | 0,82 | 0,47 |
48 | Mallat J (2022) [48] | 270 | 270 | Shock | ∆CI (%) | Cryst. | ND | 500 | FC | EchoCG или TPTD | 0,15 | 67,0 | 63,0 | 27,5 | ND | 270 | MV | 0,59 ± 0,63 | ND | ND |
49 | Mohamed ZU (2017) [49] | 30 | 30 | Shock | ∆CI (%) | Coll. | ND | 500 | FC | TPTD | 0,15 | 57,5 | 40,0 | ND | ND | 30 | MV | 0,75 ± 0,46 | ND | ND |
50 | Monge García MI (2008) [50] | 30 | 30 | NC. ICU | ∆SVI (%) | Coll. | ND | 500 | FC | PPWA | 0,15 | 60,0 | 63,0 | ND | 11,0 | 0 | Spontaneous Breathing | 0,51 ± 0,11 | ND | ND |
51 | Monge García MI (2009) [51] | 38 | 38 | Shock | ∆SVI (%) | Coll. | ND | 500 | FC | PPWA | 0,15 | 56,2 | 50,0 | ND | ND | 38 | MV | 0,64 ± 0,09 | ND | ND |
52 | Moretti R (2010) [52] | 29 | 29 | NC. ICU | ∆CI (%) | Coll. | ND | 7 ml/kg | FC | TPTD | 0,15 | 51,8 | 55,2 | ND | ND | 29 | MV | 0,67 ± 0,47 | ND | ND |
53 | Muller L (2008) [53] | 35 | 35 | NC. ICU | ∆SVI (%) | Coll. | 9,0 | 250 or 500 | non-classified | TPTD | 0,15 | 64,6 | 60,0 | ND | 20,0 | 35 | MV | 0,68 ± 0,48 | 0,61 | 0,82 |
54 | Muller L (2009) [54] | 33 | 33 | Shock | ∆SVI (%) | Mix. | 7,0 | 250 or 500 | non-classified | TPTD | 0,15 | 71,4 | 63,6 | ND | 23,3 | 33 | MV | 0,77 ± 0,10 | 0,54 | 1,00 |
55 | Muller L (2010) [55] | 57 | 57 | Shock | ∆SVI (%) | Mix. | 9,0 | 250 or 500 | non-classified | TPTD | 0,15 | 70,3 | 68,4 | ND | 22,9 | 57 | MV | 0,76 ± 0,47 | 0,68 | 0,81 |
56 | Muller L (2011) [56] | 39 | 39 | Shock | ∆VTI (%) | Coll. | ND | 500 | FC | EchoCG | 0,15 | 66,0 | 76,9 | ND | 19,0 | 39 | MV | 0,61 ± 0,59 | ND | ND |
57 | Myatra SN (2017) [57] | 30 | 20 | Shock | ∆CI (%) | Cryst. | ND | 7 ml/kg | FC | TPTD | 0,15 | 53,0 | 50,0 | ND | 24,0 | 30 | MV | 0,48 ± 0,56 | ND | ND |
58 | Oliveira-Costa CD (2012) [58] | 37 | 37 | Shock | ∆CI (%) | Cryst. | ND | 1000 | FC | TPTD | 0,15 | 54,0 | 54,0 | ND | 28,0 | 37 | MV | 0,57 ± 0,57 | ND | ND |
59 | Pei S (2014) [59] | 32 | 32 | NCS | ∆SVI (%) | Coll. | 4,5 | 250 | mini-FC | PPWA | 0,1 | 54,8 | 56,25 | 23,0 | ND | 32 | MV | 0,73 ± 0,45 | 0,46 | 1,00 |
60 | Peng S (2013) [60] | 54 | 32 | Shock | ∆SV (%) | Cryst. | ND | 250 | mini-FC | PPWA | 0,1 | 67,0 | 62,5 | ND | 21,0 | 54 | MV | 0,59 ± 0,57 | 0,60 | 0,63 |
61 | Preisman S (2005) [61] | 70 | 18 | C. ICU | ∆SVI (%) | Coll. | ND | 250 | mini-FC | PPWA | 0,15 | 66,2 | 88,9 | ND | ND | 70 | MV | 0,61 ± 0,59 | ND | ND |
62 | Reuter DA (2002) [62] | 20 | 20 | C. ICU | ∆SVI (%) | Coll. | ND | 20 ml * ИМТ | FC | TPTD | 0,15 | ND | ND | ND | ND | 20 | MV | 0,42 ± 0,61 | ND | ND |
63 | Reuter DA (2003) [63] | 12 | 12 | C. ICU | ∆SVI (%) | Coll. | 6,0 | 10 ml * ИМТ | non-classified | TPTD | 0,05 | 61,0 | ND | ND | ND | 12 | MV | 0,71 ± 0,33 | 0,50 | 0,90 |
64 | Roy S (2013) [64] | 37 | 37 | CS | ∆SVI (%) | Coll. | ND | 500 | FC | TPTD | 0,15 | 60,2 | 81,0 | ND | ND | 37 | MV | 0,61 ± 0,52 | ND | ND |
65 | Saugel B (2013) [65] | 24 | 24 | NC. ICU | ∆CI (%) | Cryst. | 12,0 | 7 ml/kg | FC | TPTD | 0,15 | 58,8 | 71,0 | ND | ND | 5 | Mixed | 0,63 ± 0,45 | 0,86 | 0,41 |
66 | Shim JK (2014) [66] | 34 | 34 | CS | ∆SVI (%) | Coll. | ND | 6 ml/kg | FC | TPTD | 0,12 | 59,0 | 94,1 | 24,3 | ND | 34 | MV | 0,58 ± 0,50 | ND | ND |
67 | Shin YH (2011) [67] | 33 | 33 | NCS | ∆CI (%) | Coll. | ND | 10 ml/kg | FC | TPTD | 0,15 | 53,5 | 87,9 | 24,4 | ND | 33 | MV | 0,58 ± 0,50 | ND | ND |
68 | Soliman RA (2015) [68] | 25 | 25 | Shock | ∆CI (%) | Coll. | ND | 500 | FC | EchoCG | 0,15 | 52,8 | 60,0 | ND | ND | 25 | MV | 0,59 ± 0,26 | ND | ND |
69 | Song Y (2014) [69] | 40 | 40 | CS | ∆SVI (%) | Coll. | ND | 6 ml/kg | FC | PPWA | 0,15 | 64,6 | 67,5 | 25,2 | ND | 40 | MV | 0,68 ± 0,53 | ND | ND |
70 | Suehiro K (2012) [70] | 80 | 80 | NC. ICU | ∆CI (%) | Cryst. | ND | 500 | FC | PPWA | 0,15 | 58,6 | 65,0 | ND | ND | 80 | MV | 0,56 ± 0,48 | ND | ND |
71 | Taccheri T (2021) [71] | 30 | 30 | NC. ICU | ∆CI (%) | Cryst. | ND | 500 | FC | TPTD | 0,1 | 66,5 | 76,7 | ND | ND | 30 | MV | 0,56 ± 0,11 | ND | ND |
72 | Thiel SW (2009) [72] | 102 | 89 | NC. ICU | ∆SV (%) | Cryst. | ND | 500 | FC | EchoCG | 0,15 | 59,4 | 56,9 | 31,0 | 18,5 | 67 | Mixed | 0,52 ± 0,08 | ND | ND |
73 | Trof RJ (2011) [73] | 12 | 12 | C. ICU | ∆SVI (%) | Coll. | ND | 200-1800 | non-classified | TPTD | 0,1 | 66,0 | 75,0 | ND | 9,0 | ND | ND | 0,89 ± 0,30 | ND | ND |
74 | Vistisen ST (2009) [74] | 23 | 30 | C. ICU | ∆VI (%) | Coll. | 8,0 | 500 | FC | TPTD | 0,15 | 71,0 | ND | ND | ND | 23,00 | MV | 0,68 ± 0,56 | 0,35 | 1,00 |
75 | Vistisen ST (2016) [75] | 30 | 23 | C. ICU | ∆SV (%) | Mix. | ND | 500 | FC | PPWA | 0,15 | 66,5 | 76,7 | ND | ND | 27 | Mixed | 0,54 ± 0,58 | 1,00 | 0,26 |
76 | Wang Y (2018) [76] | 18 | 18 | OV | ∆CI (%) | Coll. | 11,0 | 7 ml/kg | FC | TPTD | 0,15 | 54,1 | 55,56 | ND | ND | 18 | MV | 0,60 ± 0,57 | 0,33 | 1,00 |
77 | Wyffels PA (2007) [77] | 32 | 32 | C. ICU | ∆CI (%) | Coll. | ND | 500 | FC | TPTD | 0,15 | 66,0 | 68,75 | ND | ND | 32 | MV | 0,60 ± 0,87 | ND | ND |
78 | Xu B (2016) [78] | 40 | 40 | Shock | ∆CI (%) | Mix. | 11,0 | 500 | FC | TPTD | 0,1 | 60,0 | 75,0 | ND | 27,0 | 37 | Mixed | 0,56 ± 0,56 | 0,56 | 0,55 |
79 | Xu LY (2019) [79] | 75 | 75 | CS | ∆VTI (%) | Cryst. | 7,0 | 6 ml/kg | FC | EchoCG | 0,15 | 63,5 | 82,67 | 24,5 | ND | 75 | MV | 0,49 ± 0,57 | 0,57 | 0,45 |
80 | Xu Y (2022) [80] | 76 | 76 | NC. ICU | ∆CI (%) | Cryst. | 9,0 | 250 | mini-FC | TPTD | 0,15 | 55,0 | 50,0 | 25,0 | 26,0 | 76 | MV | 0,68 ± 0,48 | 0,48 | 0,80 |
81 | Yazigi A (2012) [81] | 60 | 60 | C. ICU | ∆SVI (%) | Coll. | ND | 7 ml/kg | FC | TPTD | 0,15 | 75,3 | 63,3 | ND | ND | 60 | MV | 0,43 ± 0,58 | ND | ND |
82 | Zhang X (2016) [82] | 40 | 40 | NCS | ∆SVI (%) | Coll. | 6,5 | 7 ml/kg | FC | PPWA | 0,15 | 46,0 | 60,0 | ND | ND | 40 | MV | 0,63 ± 0,59 | 0,89 | 0,36 |
83 | Zhao F (2015) [83] | 25 | 25 | NCS | ∆SVI (%) | Coll. | 7,0 | 250 | mini-FC | PPWA | 0,1 | 54,8 | 60,0 | 23,0 | ND | 25 | MV | 0,52 ± 0,50 | 0,50 | 0,62 |
84 | Zimmermann M (2010) [84] | 20 | 20 | NCS | ∆SVI (%) | Coll. | 10,5 | 7 ml/kg | FC | PPWA | 0,15 | 53,0 | 65,0 | 26,1 | ND | 20 | MV | 0,55 ± 0,60 | 0,66 | 0,40 |
Fig. D1. Leave-One-Out Method: Mean AUROC Values with 95% Confidence Intervals. The trend line is at 0.596
Parameter | Studies, N | Univariate Analysis | ||
---|---|---|---|---|
Coefficient | SE | p-value | ||
Mean age, years | 80 | 0,002 | 0,002 | 0,129 |
Male, % | 77 | -0,00026 | 0,001 | 0,757 |
BMI, kg/m2 | 20 | -0,013 | 0,006 | 0,053 |
Meta-regression helps identify study characteristics that may influence the results of a meta-analysis. In the context of our study, meta-regression was used to determine which study parameters might affect the AUROC value for CVP in comparison to the fluid challenge test.
Fig. D2. Funnel plot for all 84 studies included in the meta-analysis
Fig. D3. Funnel Plots by Patient Cohorts
Fig. D4. Funnel Plots by Type of Gold Standard
Fig. D5. Funnel Plots by Type of Breathing
Fig. D6. Funnel Plots by Year of Publication
Study | Test parameter | Test cutoff | Risk of bias (QUADAS-2) | OVERALL bias | Applicability concerns (QUADAS-2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P | I | R | FT | P | I | R | |||||
1 | Albano BBP (2021) | CVP (mmHg) | 6 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
2 | Angappan S (2015) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
3 | Baker AK (2013) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
4 | Barbier C (2004) | CVP (mmHg) | 12 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
5 | Berg JM (2021) | CVP | ND | ✗ (not detailed description of the study population) | ✗ (ND for cut-off) | ✓ | ✓ | High | ✓ | ✓ | ✓ |
6 | Berkenstadt H (2001) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✗ (low value of gold standard cut-off) | ✓ | High | ✓ | ✓ | ✓ |
7 | Biais M (2008) | CVP (mmHg) | 3 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
8 | Botros JM (2023) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
9 | Bubenek-Turconi ŞI (2019) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
10 | Cannesson M (2007) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
11 | Cannesson M (2008)-1 | CVP (mmHg) | 3,5 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
12 | Cannesson M (2008)-2 | CVP (mmHg) | 12,5 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
13 | Cannesson M (2009) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
14 | Cannesson M (2011) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
15 | Cecconi M (2012) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
16 | de Oliveira OH (2016) | CVP (mmHg) | 10 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
17 | de Waal EE (2009) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
18 | Dépret F (2018) | CVP (mmHg) | ND | ✗ (not detailed description of the study population) | ✗ (ND for cut-off) | ✓ | ✓ | High | ✓ | ✓ | ✓ |
19 | Desgranges FP (2011) | CVP (mmHg) | 8 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
20 | Fu Q (2012) | CVP (mmHg) | 7,5 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
21 | Fu Q (2014) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
22 | Geerts BF (2011) | CVP (mmHg) | 9 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
23 | Giraud R (2018) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
24 | Guarracino F (2014) | CVP (mmHg) | 8 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
25 | Haas S (2012) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
26 | Hahn RG (2016) | CVP (mmHg) | 6,5 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
27 | Hikasa Y (2023) | CVP (cmH2O) | 19 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
28 | Hofer CK (2005) | CVP | ND | ✗ (not detailed description of the study population) | ✗ (ND for cut-off) | ✓ | ✓ | High | ✓ | ✓ | ✓ |
29 | Hofer CK (2018) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
30 | Høiseth LØ (2011) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
31 | Huang CC (2008) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✗ (not all patients including in analysis) | High | ✓ | ✓ | ✓ |
32 | Ibarra-Estrada MÁ (2015) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
33 | Ikeda K (2016) | CVP | ND | ✗ (not detailed description of the study population and study enroument depence on clinical decision) | ✗ (ND for cut-off) | ✗ (inaccurate values volume of FC) | ✓ | Very High | ✓ | ✓ | ✓ |
34 | Ishihara H (2013) | CVP (mmHg) | 6,5 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
35 | Kim SY (2013) | CVP (mmHg) | ND | ✗ (not detailed description of the study population) | ✗ (ND for cut-off) | ✓ | ✓ | High | ✓ | ✓ | ✓ |
36 | Kramer A (2004) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
37 | Kumar N (2021) | CVP (mmHg) | 7,5 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
38 | Kurtz P (2014) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
39 | Lakhal K (2010) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
40 | Lakhal K (2011) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
41 | Lanspa MJ (2012) | CVP (mmHg) | 8 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
42 | Lee JH (2007) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
43 | Lee JH (2011) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
44 | Li J (2012) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
45 | Lu N (2017) | CVP (mmHg) | 6,5 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
46 | Ma GG (2018) | CVP (mmHg) | 11 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
47 | Ma Q (2022) | CVP (mmHg) | 4 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
48 | Mallat J (2022) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
49 | Mohamed ZU (2017) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
50 | Monge García MI (2008) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
51 | Monge García MI (2009) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
52 | Moretti R (2010) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
53 | Muller L (2008) | CVP (mmHg) | 9 | ✓ | ✓ | ✗ (inaccurate values volume of FC) | ✓ | Moderate | ✓ | ✓ | ✓ |
54 | Muller L (2009) | CVP (mmHg) | 7 | ✓ | ✓ | ✗ (inaccurate values volume of FC) | ✓ | Moderate | ✓ | ✓ | ✓ |
55 | Muller L (2010) | CVP (mmHg) | 9 | ✓ | ✓ | ✗ (inaccurate values volume of FC) | ✓ | Moderate | ✓ | ✓ | ✓ |
56 | Muller L (2011) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
57 | Myatra SN (2017) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
58 | Oliveira-Costa CD (2012) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
59 | Pei S (2014) | CVP (mmHg) | 4,5 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
60 | Peng S (2013) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
61 | Preisman S (2005) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
62 | Reuter DA (2002) | CVP (mmHg) | ND | ✗ (not detailed description of the study population) | ✗ (ND for cut-off) | ✓ | ✓ | High | ✓ | ✓ | ✓ |
63 | Reuter DA (2003) | CVP (mmHg) | 6 | ✗ (not detailed description of the study population) | ✓ | ✗ (inaccurate values volume of FC and low value of gold standard cut-off) | ✓ | High | ✓ | ✓ | ✓ |
64 | Roy S (2013) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
65 | Saugel B (2013) | CVP (mmHg) | 12 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
66 | Shim JK (2014) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
67 | Shin YH (2011) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
68 | Soliman RA (2015) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
69 | Song Y (2014) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
70 | Suehiro K (2012) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
71 | Taccheri T (2021) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
72 | Thiel SW (2009) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
73 | Trof RJ (2011) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✗ (inaccurate values volume of FC) | ✓ | High | ✓ | ✓ | ✓ |
74 | Vistisen ST (2009) | CVP (mmHg) | 8 | ✗ (not detailed description of the study population) | ✓ | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
75 | Vistisen ST (2016) | CVP | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
76 | Wang Y (2018) | CVP (mmHg) | 11 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
77 | Wyffels PA (2007) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
78 | Xu B (2016) | CVP (mmHg) | 11 | ✓ | ✓ | ✗(saline or gel) | ✓ | Moderate | ✗(CVP) was no less than 8 mmHg | ✓ | ✓ |
79 | Xu LY (2019) | CVP (mmHg) | 7 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
80 | Xu Y (2022) | CVP (mmHg) | 9 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
81 | Yazigi A (2012) | CVP (mmHg) | ND | ✓ | ✗ (ND for cut-off) | ✓ | ✓ | Moderate | ✓ | ✓ | ✓ |
82 | Zhang X (2016) | CVP (mmHg) | 6,5 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
83 | Zhao F (2015) | CVP (mmHg) | 7 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
84 | Zimmermann M (2010) | CVP (mmHg) | 10,5 | ✓ | ✓ | ✓ | ✓ | Low | ✓ | ✓ | ✓ |
Statement | Number of Patients and Studies | bias | Inconsistency | Indirectness | Imprecision | Publication bias | Upgrade Factors | Certainty of Evidence |
---|---|---|---|---|---|---|---|---|
Diagnostic Accuracy Statement: Central venous pressure demonstrates low diagnostic accuracy for assessing fluid responsiveness. AUROC 0.596 (0.575; 0.618); I2 = 81.09% |
3729, 84 studies |
No concerns (0) | Statistical heterogeneity (-1) |
No concerns (0) | No concerns (0) | No concerns (0) | No (0) | ⚫ ⚫ ⚫ ⚪ Moderate |
[1] Albano B., Habana L.M. Prediction of fluid responsiveness in the immediate post-operative period of cardiac surgery. J Anesth Crit Care Open Access. 2021; 13: 35–45. DOI: 10.15406/jaccoa.2021.13.00467
[2] Angappan S., Parida S., Vasudevan A., et al. The comparison of stroke volume variation with central venous pressure in predicting fluid responsiveness in septic patients with acute circulatory failure. Indian J Crit care Med peer-reviewed, Off Publ Indian Soc Crit Care Med. 2015 Jul; 19(7): 394–400. DOI: 10.4103/0972-5229.160278
[3] Baker A.K., Partridge R.J.O., Litton E., et al. Assessment of the plethysmographic variability index as a predictor of fluid responsiveness in critically ill patients: a pilot study. Anaesth Intensive Care. 2013 Nov; 41(6): 736–41. DOI: 10.1177/0310057X1304100608
[4] Barbier C., Loubières Y., Schmit C., et al. Respiratory changes in inferior vena cava diameter are helpful in predicting fluid responsiveness in ventilated septic patients. Intensive Care Med. 2004 Sep; 30(9): 1740–6. DOI: 10.1007/s00134-004-2259-8
[5] Berg J.M., Nielsen D.V., Abromaitiene V., et al. Changes in arterial blood pressure characteristics following an extrasystolic beat or a fast 50 ml fluid challenge do not predict fluid responsiveness during cardiac surgery. J Clin Monit Comput. 2022 Jun; 36(3): 889–900. DOI: 10.1007/s10877-021-00722-z
[6] Berkenstadt H., Margalit N., Hadani M., et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001 Apr; 92(4): 984–9. DOI: 10.1097/00000539-200104000-00034
[7] Biais M., Nouette-Gaulain K., Cottenceau V., et al. Uncalibrated pulse contour-derived stroke volume variation predicts fluid responsiveness in mechanically ventilated patients undergoing liver transplantation. Br J Anaesth. 2008 Dec; 101(6): 761–8. DOI: 10.1093/bja/aen277
[8] Botros J.M., Salem Y.S.M., Khalil M., et al. Effects of tidal volume challenge on the reliability of plethysmography variability index in hepatobiliary and pancreatic surgeries: a prospective interventional study. J Clin Monit Comput. 2023 Oct; 37(5): 1275–85. DOI: 10.1007/s10877-023-00977-8
[9] Bubenek-Turconi S.I., Hendy A., Baila S., et al. The value of a superior vena cava collapsibility index measured with a miniaturized transoesophageal monoplane continuous echocardiography probe to predict fluid responsiveness compared to stroke volume variations in open major vascular surgery: a prospe. J Clin Monit Comput. 2020 Jun; 34(3): 491–9. DOI: 10.1007/s10877-019-00346-4
[10] Cannesson M., Attof Y., Rosamel P., et al. Respiratory variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness in the operating room. Anesthesiology. 2007 Jun; 106(6): 1105–11. DOI: 10.1097/01.anes.0000267593.72744.20
[11] Cannesson M., Slieker J., Desebbe O., et al. The ability of a novel algorithm for automatic estimation of the respiratory variations in arterial pulse pressure to monitor fluid responsiveness in the operating room. Anesth Analg. 2008 Apr; 106(4): 1195–200, table of contents. DOI: 10.1213/01.ane.0000297291.01615.5c
[12] Cannesson M., Desebbe O., Rosamel P., et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008 Aug; 101(2): 200–6. DOI: 10.1093/bja/aen133
[13] Cannesson M., Musard H., Desebbe O., et al. The ability of stroke volume variations obtained with Vigileo/FloTrac system to monitor fluid responsiveness in mechanically ventilated patients. Anesth Analg. 2009 Feb; 108(2): 513–7. DOI: 10.1213/ane.0b013e318192a36b
[14] Cannesson M., Le Manach Y., Hofer C.K., et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “gray zone” approach. Anesthesiology. 2011 Aug; 115(2): 231–41. DOI: 10.1097/ALN.0b013e318225b80a
[15] Cecconi M., Monti G., Hamilton M.A., et al. Efficacy of functional hemodynamic parameters in predicting fluid responsiveness with pulse power analysis in surgical patients. Minerva Anestesiol. 2012 May; 78(5): 527–33.
[16] de Oliveira O.H., Freitas F.G.R de., Ladeira RT., et al. Comparison between respiratory changes in the inferior vena cava diameter and pulse pressure variation to predict fluid responsiveness in postoperative patients. J Crit Care. 2016 Aug; 34: 46–9. DOI: 10.1016/j.jcrc.2016.03.017
[17] de Waal E.E.C., Rex S., Kruitwagen C.L.J.J., et al. Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions. Crit Care Med. 2009 Feb; 37(2): 510–5. DOI: 10.1097/CCM.0b013e3181958bf7
[18] Depret F., Jozwiak M., Teboul J.L., et al. Esophageal Doppler Can Predict Fluid Responsiveness Through End-Expiratory and End-Inspiratory Occlusion Tests. Crit Care Med. 2019 Feb; 47(2): e96–102. DOI: 10.1097/CCM.0000000000003522
[19] Desgranges F.P., Desebbe O., Ghazouani A., et al. Influence of the site of measurement on the ability of plethysmographic variability index to predict fluid responsiveness. Br J Anaesth. 2011 Sep; 107(3): 329–35. DOI: 10.1093/bja/aer165
[20] Fu Q., Mi W.D., Zhang H. Stroke volume variation and pleth variability index to predict fluid responsiveness during resection of primary retroperitoneal tumors in Hans Chinese. Biosci Trends. 2012 Feb; 6(1): 38–43. DOI: 10.5582/bst.2012.v6.1.38
[21] Fu Q., Zhao F., Mi W., et al. Stroke volume variation fail to predict fluid responsiveness in patients undergoing pulmonary lobectomy with one-lung ventilation using thoracotomy. Biosci Trends. 2014 Feb; 8(1): 59–63. DOI: 10.5582/bst.8.59
[22] Geerts B.F., Maas J., de Wilde R.B.P., et al. Arm occlusion pressure is a useful predictor of an increase in cardiac output after fluid loading following cardiac surgery. Eur J Anaesthesiol. 2011 Nov; 28(11): 802–6. DOI: 10.1097/EJA.0b013e32834a67d2
[23] Giraud R., Abraham P.S., Brindel P., et al. Respiratory changes in subclavian vein diameters predicts fluid responsiveness in intensive care patients: a pilot study. J Clin Monit Comput. 2018 Dec; 32(6): 1049–55. DOI: 10.1007/s10877-018-0103-x
[24] Guarracino F., Ferro B., Forfori F., et al. Jugular vein distensibility predicts fluid responsiveness in septic patients. Crit Care. 2014 Dec; 18(6): 647. DOI: 10.1186/s13054-014-0647-1
[25] Haas S., Trepte C., Hinteregger M., et al. Prediction of volume responsiveness using pleth variability index in patients undergoing cardiac surgery after cardiopulmonary bypass. J Anesth. 2012 Oct; 26(5): 696–701. DOI: 10.1007/s00540-012-1410-x
[26] Hahn R.G., He R., Li Y. Central venous pressure as an adjunct to flow-guided volume optimisation after induction of general anaesthesia. Anaesthesiol Intensive Ther. 2016; 48(2): 110–5. DOI: 10.5603/AIT.a2015.0066
[27] Hikasa Y., Suzuki S., Tanabe S., et al. Stroke volume variation and dynamic arterial elastance predict fluid responsiveness even in thoracoscopic esophagectomy: a prospective observational study. J Anesth. 2023 Dec; 37(6): 930–7. DOI: 10.1007/s00540-023-03256-7
[28] Hofer C.K., Muller S.M., Furrer L., et al. Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest. 2005 Aug; 128(2): 848–54. DOI: 10.1378/chest.128.2.848
[29] Hofer C.K., Geisen M., Hartnack S., et al. Reliability of Passive Leg Raising, Stroke Volume Variation and Pulse Pressure Variation to Predict Fluid Responsiveness During Weaning From Mechanical Ventilation After Cardiac Surgery: A Prospective, Observational Study. Turkish J Anaesthesiol Reanim. 2018 Apr; 46(2): 108–15. DOI: 10.5152/TJAR.2018.29577
[30] Hoiseth L.O., Hoff I.E., Skare O., et al. Photoplethysmographic and pulse pressure variations during abdominal surgery. Acta Anaesthesiol Scand. 2011 Nov; 55(10): 1221–30. DOI: 10.1111/j.1399-6576.2011.02527.x
[31] Huang C.C., Fu J.Y., Hu H.C., et al. Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end-expiratory pressure. Crit Care Med. 2008 Oct; 36(10): 2810–6. DOI: 10.1097/CCM.0b013e318186b74e
[32] Ibarra-Estrada M.A., Lopez-Pulgarin J.A., Mijangos-Mendez J.C., et al. Respiratory variation in carotid peak systolic velocity predicts volume responsiveness in mechanically ventilated patients with septic shock: a prospective cohort study. Crit Ultrasound J. 2015 Dec; 7(1): 29. DOI: 10.1186/s13089-015-0029-1
[33] Ikeda K., Smith G., Renehan J., et al. Multiparameter Predictor of Fluid Responsiveness in Cardiac Surgical Patients Receiving Tidal Volumes Less Than 10 mL/kg. Semin Cardiothorac Vasc Anesth. 2016 Sep; 20(3): 188–96. DOI: 10.1177/1089253216654765
[34] Ishihara H., Hashiba E., Okawa H., et al. Neither dynamic, static, nor volumetric variables can accurately predict fluid responsiveness early after abdominothoracic esophagectomy. Perioper Med (London, England). 2013 Feb; 2(1): 3. DOI: 10.1186/2047-0525-2-3
[35] Kim S.Y., Song Y., Shim J.K., et al. Effect of pulse pressure on the predictability of stroke volume variation for fluid responsiveness in patients with coronary disease. J Crit Care. 2013 Jun; 28(3): 318.e1–7. DOI: 10.1016/j.jcrc.2012.09.011
[36] Kramer A., Zygun D., Hawes H., et al. Pulse pressure variation predicts fluid responsiveness following coronary artery bypass surgery. Chest. 2004 Nov; 126(5): 1563–8. DOI: 10.1378/chest.126.5.1563
[37] Kumar N., Malviya D., Nath S.S., et al. Comparison of the Efficacy of Different Arterial Waveform-derived Variables (Pulse Pressure Variation, Stroke Volume Variation, Systolic Pressure Variation) for Fluid Responsiveness in Hemodynamically Unstable Mechanically Ventilated Critically Ill Patie. Indian J Crit care Med peer-reviewed, Off Publ Indian Soc Crit Care Med. 2021 Jan; 25(1): 48–53. DOI: 10.5005/jp-journals-10071-23440
[38] Kurtz P., Helbok R., Ko S.B., et al. Fluid responsiveness and brain tissue oxygen augmentation after subarachnoid hemorrhage. Neurocrit Care. 2014 Apr; 20(2): 247–54. DOI: 10.1007/s12028-013-9910-6
[39] Lakhal K., Ehrmann S., Runge I., et al. Central venous pressure measurements improve the accuracy of leg raising-induced change in pulse pressure to predict fluid responsiveness. Intensive Care Med. 2010 Jun; 36(6): 940–8. DOI: 10.1007/s00134-010-1755-2
[40] Lakhal K., Ehrmann S., Benzekri-Lefevre D., et al. Respiratory pulse pressure variation fails to predict fluid responsiveness in acute respiratory distress syndrome. Crit Care. 2011; 15(2): R85. DOI: 10.1186/cc10083
[41] Lanspa M.J., Brown S.M., Hirshberg E.L., et al. Central venous pressure and shock index predict lack of hemodynamic response to volume expansion in septic shock: a prospective, observational study. J Crit Care. 2012 Dec; 27(6): 609–15. DOI: 10.1016/j.jcrc.2012.07.021
[42] Lee J.H., Kim J.T., Yoon S.Z., et al. Evaluation of corrected flow time in oesophageal Doppler as a predictor of fluid responsiveness. Br J Anaesth. 2007 Sep; 99(3): 343–8. DOI: 10.1093/bja/aem179
[43] Lee J.H., Jeon Y., Bahk J.H., et al. Pulse-pressure variation predicts fluid responsiveness during heart displacement for off-pump coronary artery bypass surgery. J Cardiothorac Vasc Anesth. 2011 Dec; 25(6): 1056–62. DOI: 10.1053/j.jvca.2011.07.013
[44] Li J., Ji F.H., Yang J.P. Evaluation of stroke volume variation obtained by the FloTrac/Vigileo system to guide preoperative fluid therapy in patients undergoing brain surgery. J Int Med Res. 2012; 40(3): 1175–81. DOI: 10.1177/147323001204000338
[45] Lu N., Xi X., Jiang L., et al. Exploring the best predictors of fluid responsiveness in patients with septic shock. Am J Emerg Med. 2017 Sep; 35(9): 1258–61. DOI: 10.1016/j.ajem.2017.03.052
[46] Ma G.G., Hao G.W., Yang X.M., et al. Internal jugular vein variability predicts fluid responsiveness in cardiac surgical patients with mechanical ventilation. Ann Intensive Care. 2018 Jan; 8(1): 6. DOI: 10.1186/s13613-017-0347-5
[47] Ma Q., Shi X., Ji J., et al. The diagnostic accuracy of inferior vena cava respiratory variation in predicting volume responsiveness in patients under different breathing status following abdominal surgery. BMC Anesthesiol. 2022 Mar; 22(1): 63. DOI: 10.1186/s12871-022-01598-5
[48] Mallat J., Fischer M.O., Granier M., et al. Passive leg raising-induced changes in pulse pressure variation to assess fluid responsiveness in mechanically ventilated patients: a multicentre prospective observational study. Br J Anaesth. 2022 Sep; 129(3): 308–16. DOI: 10.1016/j.bja.2022.04.031
[49] Mohamed Z.U. Dynamic Parameters do not Predict Fluid Responsiveness in Ventilated Patients with Severe Sepsis or Septic Shock. In 2017.
[50] Monge Garcia M.I., Gil Cano A., Diaz Monrove J.C. Arterial pressure changes during the Valsalva maneuver to predict fluid responsiveness in spontaneously breathing patients. Intensive Care Med. 2009 Jan; 35(1): 77–84. DOI: 10.1007/s00134-008-1295-1
[51] Monge Garcia M.I., Gil Cano A., Diaz Monrove J.C. Brachial artery peak velocity variation to predict fluid responsiveness in mechanically ventilated patients. Crit Care. 2009; 13(5): R142. DOI: 10.1186/cc8027
[52] Moretti R., Pizzi B. Inferior vena cava distensibility as a predictor of fluid responsiveness in patients with subarachnoid hemorrhage. Neurocrit Care. 2010 Aug; 13(1): 3–9. DOI: 10.1007/s12028-010-9356-z
[53] Muller L., Louart G., Bengler C., et al. The intrathoracic blood volume index as an indicator of fluid responsiveness in critically ill patients with acute circulatory failure: a comparison with central venous pressure. Anesth Analg. 2008 Aug; 107(2): 607–13. DOI: 10.1213/ane.0b013e31817e6618
[54] Muller L., Louart G., Teboul J.L., et al. Could B-type Natriuretic Peptide (BNP) plasma concentration be useful to predict fluid responsiveness [corrected] in critically ill patients with acute circulatory failure? Ann Fr Anesth Reanim. 2009 Jun; 28(6): 531–6. DOI: 10.1016/j.annfar.2009.04.003
[55] Muller L., Louart G., Bousquet P.J., et al. The influence of the airway driving pressure on pulsed pressure variation as a predictor of fluid responsiveness. Intensive Care Med. 2010 Mar; 36(3): 496–503. DOI: 10.1007/s00134-009-1686-y
[56] Muller L., Toumi M., Bousquet P.J., et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011 Sep; 115(3): 541–7. DOI: 10.1097/ALN.0b013e318229a500
[57] Myatra S.N., Prabu N.R., Divatia J.V., et al. The Changes in Pulse Pressure Variation or Stroke Volume Variation After a “Tidal Volume Challenge” Reliably Predict Fluid Responsiveness During Low Tidal Volume Ventilation. Crit Care Med. 2017 Mar; 45(3): 415–21. DOI: 10.1097/CCM.0000000000002183
[58] Oliveira-Costa CDA de., Friedman G., Vieira SRR., et al. Pulse pressure variation and prediction of fluid responsiveness in patients ventilated with low tidal volumes. Clinics (Sao Paulo). 2012 Jul; 67(7): 773–8. DOI: 10.6061/clinics/2012(07)12
[59] Pei S., Yuan W., Mai H., et al. Efficacy of dynamic indices in predicting fluid responsiveness in patients with obstructive jaundice. Physiol Meas. 2014 Mar; 35(3): 369–82. DOI: 10.1088/0967-3334/35/3/369
[60] Peng S., Zhang L., Zhong M.M., et al. The value of stroke volume variation in prediction of responsiveness to fluid resuscitation in patients with septic shock. Chinese J Emerg Med. 2013; 22: 1260–4. DOI: 10.3760/cma.j.issn.1671-0282.2013.11.013
[61] Preisman S., Kogan S., Berkenstadt H., et al. Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth. 2005 Dec; 95(6): 746–55. DOI: 10.1093/bja/aei262
[62] Reuter D.A., Felbinger T.W., Kilger E., et al. Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke volume variations. Comparison with aortic systolic pressure variations. Br J Anaesth. 2002 Jan; 88(1): 124–6. DOI: 10.1093/bja/88.1.124
[63] Reuter D.A., Kirchner A., Felbinger T.W., et al. Usefulness of left ventricular stroke volume variation to assess fluid responsiveness in patients with reduced cardiac function. Crit Care Med. 2003 May; 31(5): 1399–404. DOI: 10.1097/01.CCM.0000059442.37548.E1
[64] Roy S., Couture P., Qizilbash B., et al. Hemodynamic pressure waveform analysis in predicting fluid responsiveness. J Cardiothorac Vasc Anesth. 2013 Aug; 27(4): 676–80. DOI: 10.1053/j.jvca.2012.11.002
[65] Saugel B., Kirsche S.V., Hapfelmeier A., et al. Prediction of fluid responsiveness in patients admitted to the medical intensive care unit. J Crit Care. 2013 Aug; 28(4): 537.e1–9. DOI: 10.1016/j.jcrc.2012.10.008
[66] Shim J.K., Song J.W., Song Y., et al. Pulse pressure variation is not a valid predictor of fluid responsiveness in patients with elevated left ventricular filling pressure. J Crit Care. 2014 Dec; 29(6): 987–91. DOI: 10.1016/j.jcrc.2014.07.005
[67] Shin Y.H., Ko J.S., Gwak M.S., et al. Utility of uncalibrated femoral stroke volume variation as a predictor of fluid responsiveness during the anhepatic phase of liver transplantation. Liver Transplant Off Publ Am Assoc Study Liver Dis Int Liver Transplant Soc. 2011 Jan; 17(1): 53–9. DOI: 10.1002/lt.22186
[68] Soliman R.A., Samir S., el Naggar A., et al. Stroke volume variation compared with pulse pressure variation and cardiac index changes for prediction of fluid responsiveness in mechanically ventilated patients. Egypt J Crit Care Med [Internet]. 2015; 3(1): 9–16. DOI: https://doi.org/10.1016/j.ejccm.2015.02.002
[69] Song Y., Kwak Y.L., Song J.W., et al. Respirophasic carotid artery peak velocity variation as a predictor of fluid responsiveness in mechanically ventilated patients with coronary artery disease. Br J Anaesth. 2014 Jul; 113(1): 61–6. DOI: 10.1093/bja/aeu057
[70] Suehiro K., Rinka H., Ishikawa J., et al. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing airway pressure release ventilation. Anaesth Intensive Care. 2012 Sep; 40(5): 767–72. DOI: 10.1177/0310057X1204000503
[71] Taccheri T., Gavelli F., Teboul J.L.L., et al. Do changes in pulse pressure variation and inferior vena cava distensibility during passive leg raising and tidal volume challenge detect preload responsiveness in case of low tidal volume ventilation? Crit Care. 2021 Mar; 25(1): 110. DOI: 10.1186/s13054-021-03515-7
[72] Thiel S.W., Kollef M.H., Isakow W. Non-invasive stroke volume measurement and passive leg raising predict volume responsiveness in medical ICU patients: an observational cohort study. Crit Care. 2009; 13(4): R111. DOI: 10.1186/cc7955
[73] Trof R.J., Danad I., Reilingh M.W.L., et al. Cardiac filling volumes versus pressures for predicting fluid responsiveness after cardiovascular surgery: the role of systolic cardiac function. Crit Care. 2011; 15(1): R73. DOI: 10.1186/cc10062
[74] Vistisen S.T., Struijk J.J., Larsson A. Automated pre-ejection period variation indexed to tidal volume predicts fluid responsiveness after cardiac surgery. Acta Anaesthesiol Scand. 2009 Apr; 53(4): 534–42. DOI: 10.1111/j.1399-6576.2008.01893.x
[75] Vistisen S.T. Using extra systoles to predict fluid responsiveness in cardiothoracic critical care patients. J Clin Monit Comput. 2017 Aug; 31(4): 693–9. DOI: 10.1007/s10877-016-9907-8
[76] Wang Y., Jiang Y., Wu H., et al. Assessment of fluid responsiveness by inferior vena cava diameter variation in post-pneumonectomy patients. Echocardiography. 2018 Dec; 35(12): 1922–5. DOI: 10.1111/echo.14172
[77] Wyffels P.A.H., Durnez P.J., Helderweirt J., et al. Ventilation-induced plethysmographic variations predict fluid responsiveness in ventilated postoperative cardiac surgery patients. Anesth Analg. 2007 Aug; 105(2): 448–52. DOI: 10.1213/01.ane.0000267520.16003.17
[78] Xu B., Yang X., Wang C., et al. Changes of central venous oxygen saturation define fluid responsiveness in patients with septic shock: A prospective observational study. J Crit Care. 2017 Apr; 38: 13–9. DOI: 10.1016/j.jcrc.2016.09.030
[79] Xu L.Y., Tu G.W., Cang J., et al. End-expiratory occlusion test predicts fluid responsiveness in cardiac surgical patients in the operating theatre. Ann Transl Med. 2019 Jul; 7(14): 315. DOI: 10.21037/atm.2019.06.58
[80] Xu Y., Guo J., Wu Q., et al. Efficacy of using tidal volume challenge to improve the reliability of pulse pressure variation reduced in low tidal volume ventilated critically ill patients with decreased respiratory system compliance. BMC Anesthesiol. 2022 May; 22(1): 137. DOI: 10.1186/s12871-022-01676-8
[81] Yazigi A., Khoury E., Hlais S., et al. Pulse pressure variation predicts fluid responsiveness in elderly patients after coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2012 Jun; 26(3): 387–90. DOI: 10.1053/j.jvca.2011.09.014
[82] Zhang X., Feng J., Zhu P., et al. Ultrasonographic measurements of the inferior vena cava variation as a predictor of fluid responsiveness in patients undergoing anesthesia for surgery. J Surg Res. 2016 Jul; 204(1): 118–22. DOI: 10.1016/j.jss.2016.03.036
[83] Zhao F., Wang P., Pei S., et al. Automated stroke volume and pulse pressure variations predict fluid responsiveness in mechanically ventilated patients with obstructive jaundice. Int J Clin Exp Med. 2015; 8(11): 20751–9.
[84] Zimmermann M., Feibicke T., Keyl C., et al. Accuracy of stroke volume variation compared with pleth variability index to predict fluid responsiveness in mechanically ventilated patients undergoing major surgery. Eur J Anaesthesiol. 2010 Jun; 27(6): 555–61. DOI: 10.1097/EJA.0b013e328335fbd1