Iron metabolismin conditions of infection. Review
#2020-1
HTML_2020-01_90-99 (Русский)
PDF_2020-01_90-99 (Русский)

Keywords

iron exchange
infection
sepsis
iron and sepsis
iron and bacteria
siderophores

How to Cite

Orlov YP, Govorova NV, Lukach VN, Baitugaeva GA, Klementyev AV, Kakulya EN Iron metabolismin conditions of infection. Review. Annals of Critical Care. 2021;(1):90–99. doi:10.21320/1818-474X-2020-1-90-99.

Statistic

Abstract Views: 58
HTML_2020-01_90-99 (Русский) Downloads: 3
PDF_2020-01_90-99 (Русский) Downloads: 3
Plum Analytics

Language

English Русский

Social Networks

Keywords

Up

Abstract

The purpose of writing the review. Analysis of publications on the role of iron metabolism in the manifestation of the septic process and the dependence of bacterial flora activity on the conditions of their access to iron. Methods. More than 200 publications in pubmed, Medline, EMBASE medical literature databases were analyzed between 2000 and 2018 using the search words: iron and infection, iron and sepsis, iron exchange, iron and bacteria — including and available works in domestic (e-library) literature. Results. The review uses materials from 61 publications that meet the challenges of the search and reflect both the relationship between iron exchange and the development of the septic process and the importance for the medical community of understanding the identified relationships in the search for future therapeutic approaches. Conclusion. The review provides evidence of direct iron involvement in the manifestation of the septic process caused by various bacterial (q/-) and fungal flora. Introduction of iron-hesing agents and ciderophon — conjugate drugs to infected patients today seems to be a biologically acceptable approach as an auxiliary therapy in the treatment of septic process caused by pathogens dependent on iron supply (many bacterial and fungal pathogens), but the problem that is being raised certainly requires further experimental and clinical research.
https://doi.org/10.21320/1818-474X-2020-1-90-99
HTML_2020-01_90-99 (Русский)
PDF_2020-01_90-99 (Русский)

References

  1. Słomka A., Zekanowska E., Piotrowska K., Kwapisz J. Iron metabolism and maternal-fetal iron circulation. Postepy Hig Med Dosw (Online). 2012; 66: 876–887. DOI: 10.5604/17322693.1019651
  2. Tandara L., Salamunic I. Iron metabolism: current facts and future directions. Biochem. Med. (Zagreb). 2012; 22 (3): 311–328.
  3. Anderson G.J., Fraser D.M. Current understanding of iron homeostasis. Am J ClinNutr. 2017; 106(6): 1559S–1566S. DOI: 10.3945/ajcn.117.155804
  4. Zhang D.L., Ghosh M.C., Rouault T.A. The physiological functions of iron regulatory proteins in iron homeostasis — an update. Front. Pharmacol. 2014; 5: 124. DOI: 10.3389/fphar.2014.00124
  5. Kohgo Y., Ikuta K., Ohtake T., et al. Body iron metabolism and pathophysiology of iron overload. Int J Hematol. 2008; 88(1): 7–15. DOI: 10.1007/s12185-008-0120-5
  6. Schmidt P.J. Regulation of Iron Metabolism by Hepcidin under Conditions of Inflammation. J Biol Chem. 2015; 290(31):18975–18983. DOI: 10.1074/jbc.R115.650150
  7. Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation. Blood. 2003; 102(3): 783–788.
  8. Nemeth E., Ganz T. Regulation of iron metabolism by hepcidin. Annu Rev Nutr. 2006; 26: 323–342.
  9. Nemeth E., Tuttle M.S., Powelson J., et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science. 2004; 306(5704): 2090–2093.
  10. Imam M.U., Zhang S., Ma J., et al. Antioxidants Mediate Both Iron Homeostasis and Oxidative Stress. Nutrients. 2017; 9(7): pii: E671. DOI: 10.3390/nu9070671
  11. Olsson M.G., Allhorn M., Bülow L., et al. Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for α(1)-microglobulin. Redox Signal. 2012; 17(5): 813–846. DOI: 10.1089/ars.2011.4282
  12. Runyen-Janecky L.J. Role and regulation of heme iron acquisition in gram-negative pathogens. Front. CellInfect. Microbiol. 2013; 3: 55. DOI: 10.3389/fcimb.2013.00055
  13. Dinkla S., van Eijk L.T., Fuchs B., et al. Inflammation-associated changes in lipid composition and the organization of the erythrocyte membrane. BBA Clin. 2016; 5: 186–192.
  14. Dutra F.F., Bozza M.T. Heme on innate immunity and inflammation. Front Pharmacol. 2014; 5: 115. DOI: 10.3389/fphar.2014.00115
  15. Gozzelino R., Arosio P. Iron Homeostasis in Health and Disease. Int. J. Mol. Sci. 2016; 17(1): 130. DOI: 10.3390/ijms17010130
  16. Spitalnik S.L. Stored red blood cell transfusions: iron, inflammation, immunity, and infection. Transfusion. 2014; 54(10): 2365–2371. DOI: 10.1111/trf.12848
  17. Bullen J.J. The significance of iron in infection. Rev Infect Dis. 1981; 3(6): 1127–1138.
  18. Cassat J.E., Skaar E.P. Iron in infection and immunity. Cell Host Microbe. 2013; 13: 509–519. DOI: 10.1016/j.chom.2013.04.010
  19. Орлов Ю.П., Лукач В.Н., Долгих В.Т. и др. Критические состояния как логическая и закономерная цепь событий в нарушении метаболизма железа (обобщение экспериментальных исследований). Биомедицинская химия. 2013; 59(6): 700–709.[Orlov Yu.P., Lukach V.N., Dolgih V.T., et al. Kriticheskie sostoyaniya kak logicheskaya i zakonomernaya tsep sobyitiy v narushenii metabolizma zheleza (obobschenie eksperimentalnyih issledovaniy). Biomeditsinskaya himiya. 2013; 59(6): 700–709. (InRuss)]
  20. Saito H. Storage Iron Turnover from a New Perspective. Acta Haematol. 2019; 141(4): 201–208. DOI: 10.1159/000496324
  21. Becker K.W., Skaar E.P. Metal limitation and toxicity at the interface between host and pathogen. FEMS Microbiol Rev. 2014; 38(6): 1235–1249. DOI: 10.1111/1574-6976.12087
  22. Weiss G., Carver P.L. Role of divalent metals in infectious disease susceptibility and outcome. Clin Microbiol Infect. 2018; 24(1): 16–23. DOI: 10.1016/j.cmi.2017.01.018
  23. Agranoff D., Krishna S. Metal ion transport and regulation in Mycobacterium tuberculosis. Front Biosci. 2004; 9: 2996–3006.
  24. Schmitt M.P., Holmes R.K. Iron-dependent regulation of diphtheria toxin and siderophore expression by the cloned Corynebacterium diphtheriae repressor gene dtxR in C. diphtheriae C7 strains. Infect Immun. 1991; 59(6): 1899–1904.
  25. Torres V.J., Attia A.S., Mason W.J, et al. Staphylococcus aureus fur regulates the expression of virulence factors that contribute to the pathogenesis of pneumonia. Infect Immun. 2010; 78(4): 1618–1628. DOI: 10.1128/IAI.01423-09
  26. Mazmanian S.K., Skaar E.P., Gaspar A.H., et al. Passage of heme-iron across the envelope of Staphylococcus aureus. Science. 2003; 299(5608): 906–909.
  27. Орлов Ю.П., Долгих В.Т., Глущенко А.В. Может ли свободный гемоглобин быть маркером тяжести общего состояния при сепсисе? Вестник интенсивной терапии имени А.И. Салтанова. 2018; 1: 48–54. [Orlov Yu.P., Dolgih V.T., Gluschenko A.V. Mozhet li svobodnyiy gemoglobin byit markerom tyazhesti obschego sostoyaniya pri sepsise? Vestnik intensivnoy terapii imeni A.I. Saltanova. 2018; 1; 48–54. (In Russ)]
  28. Bonneau A., Roche B., Schalk I.J. Iron acquisition in Pseudomonas aeruginosa by the siderophorepyoverdine: an intricate interacting network including periplasmic and membrane proteins. Sci Rep. 2020; 10(1): 120. DOI: 10.1038/s41598-019-56913-x
  29. Wilson B.R., Bogdan A.R., Miyazawa M., et al. Siderophores in Iron Metabolism: From Mechanism to Therapy Potential. Trends Mol Med. 2016; 22(12): 1077–1090. DOI: 10.1016/j
  30. Li N., Zhang C., Li B., et al. Unique iron coordination in iron-chelating molecule vibriobactin helps Vibrio cholerae evade mammalian siderocalin-mediated immune response. J Biol Chem. 2012; 287(12): 8912–8919. DOI: 10.1074/jbc.M111. 316034
  31. Behnsena J., Raffatellu M. Siderophores: More than Stealing Iron. mBio. 2016; 7(6): e01906– e01916. DOI: 10.1128/mBio.01906-16
  32. Hartmann H., Eltzschig H.K., Wurz H., et al. Hypoxia-independent activation of HIF-1 by enterobacteriaceae and their siderophores. Gastroenterology. 2008; 134: 756–767. DOI: 10.1053/j.gastro.2007.12.008/
  33. Holden V.I., Bachman M.A. Diverging roles of bacterial siderophores during infection. Metallomics. 2015; 7: 986–995. DOI: 10.1039/c4mt00333k
  34. Butt A.T., Thomas M.S. Iron Acquisition Mechanisms and Their Role in the Virulence of Burkholderia Species. Front. Cell. Infect. Microbiol. 2017; 7: 460. DOI: 10.3389/fcimb.2017.00460
  35. Ali M.K., Kim R.Y., Karim R., et al. Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol. 2017; 88: 181–195. DOI: 10.1016/j.biocel.2017.05.003
  36. Jiang Y., Jiang F., Kong F., et al. Inflammatory anemia-associated parameters are related to 28-day mortality in patients with sepsis admitted to the ICU: a preliminary observational study. Ann. Intensive Care. 2019; 9: 67. DOI: 10.1186/s13613-019-0542-7
  37. Darveau M., Denault A.Y., Blais N., NotebaertE. Bench-to-bedside review: iron metabolism in critically ill patients. Crit Care. 2004; 8(5): 356–362. DOI: 10.1186/cc2862
  38. Tacke F., Nuraldeen R., Koch A., et al. Iron parameters determine the prognosis of critically Ill patients. Crit Care Med. 2016; 44(6): 1049–1058. DOI: 10.1097/CCM.0000000000001607
  39. Boshuizen M., Binnekade J.M., Nota B., et al. Iron metabolism in critically ill patients developing anemia of inflammation: a case control study. Ann Intensive Care. 2018; 8(1): 56. DOI: 10.1186/s13613-018-0407-5
  40. Weiss G., Ganz T., Goodnough L.T. Anemia of inflammation. Blood. 2019; 133(1): 40–50. DOI: 10.1182/blood-2018-06-856500
  41. Lasocki S., Lefebvre T., Mayeur C., et al. Iron deficiency diagnosed using hepcidin on critical care discharge is an independent risk factor for death and poor quality of life at one year: an observational prospective study on 1161 patients. Crit Care. 2018; 22(1): 314. DOI: 10.1186/s13054-018-2253-0
  42. Lasocki S., Baron G., Driss F., et al. Diagnostic accuracy of serum hepcidin for iron deficiency in critically ill patients with anemia. Intensive Care Med. 2010; 36(6): 1044–1048. DOI: 10.1007/s00134-010-1794-8
  43. Claessens Y.E., Fontenay M., Pene F., et al. Erythropoiesis abnormalities contribute to early-onset anemia in patients with septic shock. Am J Respir Crit Care Med. 2006; 174(1): 51–57. DOI: 10.1164/rccm.200504–561OC
  44. Van Iperen C.E., Gaillard C.A., Kraaijenhagen R.J., et al. Response of erythropoiesis and iron metabolism to recombinant human erythropoietin in intensive care unit patients. Crit Care Med. 2000; 28(8): 2773–2778. DOI: 10.1097/00003246-200008000-00015
  45. Ganz T. Erythropoietic regulators of iron metabolism. Free Radic Biol Med. 2019; 133: 69–74. DOI: 10.1016/j.freeradbiomed.2018.07.003
  46. Rogiers P., Zhang H., Leeman M., et al. Erythropoietin response is blunted in critically ill patients. Intensive Care Med. 1997; 23(2): 159–162. DOI: 10.1007/s001340050310
  47. Elliot J.M., Virankabutra T., Jones S., et al. Erythropoietin mimics the acute phase response in critical illness. Crit Care. 2003; 7(3): R35–R40. DOI: 10.1186/cc2185
  48. Ganz T., Nemeth E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol. 2015; 15(8): 500–510. DOI: 10.1038/nri3863
  49. Rodriguez R.M., Corwin H.L., Gettinger A., et al. Nutritional deficiencies and blunted erythropoietin response as causes of the anemia of critical illness. J Crit Care 2001; 16(1): 36–41.
  50. Shah A., Roy N.B., McKechnie S., et al. Iron supplementation to treat anaemia in adult critical care patients: a systematic review and meta-analysis. Crit Care. 2016; 20(1): 306. DOI: 10.1186/s13054-016-1486-z
  51. Weiss G., Ganz T., Goodnough L.T. Anemia of inflammation. Blood. 2019; 133(1): 40–50. DOI: 10.1182/blood-2018-06-856500
  52. Shah A., Roy N.B., McKechnie S., et al. Iron supplementation to treat anaemia in adult critical care patients: a systematic review and meta-analysis. Crit Care. 2016; 20(1): 306. DOI: 10.1186/s13054-016-1486-z
  53. Vincent J.L., Baron J.F., Reinhart K., et al. Anemia and blood transfusion in critically ill patients. JAMA. 2002; 288(12): 1499–1507. DOI: 10.1001/jama.288.12.1499
  54. Islam S., Jarosch S., Zhou J., et al. Anti-inflammatory and anti-bacterial effects of iron chelation in experimental sepsis. J SurgRes. 2016; 200(1): 266–273. DOI: 10.1016/j.jss.2015.07.001
  55. Xia Y., Farah N., Maxan A., et al. Therapeutic iron restriction in sepsis. Med Hypotheses. 2016; 89: 37–39. DOI: 10.1016/j.mehy.2016.01.018
  56. Lan P., Pan K.H., Wang S.J., et al. High Serum Iron level is Associated with Increased Mortality in Patients with Sepsis. Sci Rep. 2018; 8(1): 11072. DOI: 10.1038/s41598-018-29353-2
  57. Gomes A.C., Moreira A.C., Mesquita G., Gomes M.S. Modulation of Iron Metabolism in Response to Infection: Twists for All TastesPharmaceuticals (Basel). 2018; 11(3). DOI: 10.3390/ph11030084
  58. Ang M.T.C., Gumbau-Brisa R., Allan D.S., et al. DIBI, a 3-hydroxypyridin-4-one chelator iron-binding polymer with enhanced antimicrobial activity. Medchemcomm. 2018; 9(7): 1206–1212. DOI: 10.1039/c8md00192h
  59. Thorburn T., Aali M., Kostek L., et al. Anti-inflammatory effects of a novel iron chelator, DIBI, in experimental sepsis. Clin Hemorheol Microcirc. 2017; 67(3–4): 241–250. DOI: 10.3233/CH-179205
  60. Savage K.A., del Carmen Parquet M., Allan D.S., et al. Iron Restriction to Clinical Isolates of Candida albicans by the Novel Chelator DIBI Inhibits Growth and Increases Sensitivity to Azoles In Vitro and In Vivo in a Murine Model of Experimental Vaginitis. Antimicrob Agents Chemother. 2018; 62. DOI: 10.1128/AAC.02576-17
  61. Richter K., Thomas N., Zhang G., et al. Deferiprone and Gallium-Protoporphyrin Have the Capacity to Potentiate the Activity of Antibiotics in Staphylococcus aureus Small Colony Variants. Front. Cell. Infect. Microbiol. 2017; 7: 280. DOI: 10.3389/fcimb.2017.00280
  62. Islam S., Jarosch S., Zhou J., et al. Anti-inflammatory and anti-bacterial effects of iron chelation in experimental sepsis. J. Surg. Res. 2016; 200: 266–273. DOI: 10.1016/j.jss.2015.07.001.j.jinorgbio.2013 .01.002
  63. Dupuis C., Sonneville R., Adrie C., et al. Impact of transfusion on 2017. Ann Intensive Care. 2017; 7(1): 5. DOI: 10.1186/s13613-016-0226-5
  64. Rodriguez R.M., Corwin H.L., Gettinger A., et al. Nutritional deficiencies and blunted erythropoietin response as causes of the anemia of critical illness. J CritCare 2001; 16(1): 36–41.
  65. Salisbury A.C., Reid K.J., Alexander K.P., et al. Diagnostic blood loss from phlebotomy and hospital-acquired anemia during acute myocardial infarction. Archivesofinternal medicine. 2011; 171(18): 1646–1653. DOI: 10.1001/archinternmed.2011.361
  66. Kristof K., Büttner B., Grimm A., et al. Anaemia requiring red blood cell transfusion is associated with unfavourable 90-day survival in surgical patients with sepsis. BMC Res Notes. 2018; 11(1): 879. DOI: 10.1186/s13104-018-3988-z
  67. Nielsen N.D., Martin-Loeches I., Wentowski C. The Effects of red Blood Cell Transfusion on Tissue Oxygenation and the Microcirculation in the Intensive Care Unit: A Systematic Review. Transfus Med Rev. 2017; 31(4): 205–222. DOI: 10.1016/j.tmrv.2017.07.003
  68. Dupuis C., Sonneville R., Adrie C., et al. Review Impact of transfusion on patients with sepsis admitted in intensive care unit: a systematic review and meta-analysis. Ann Intensive Care. 2017; 7(1):5.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Downloads

Download data is not yet available.