Stress response during combined anaesthesia xenon and dexmedetomidine in radical surgery for gastric cancer
ISSN (print) 1726-9806     ISSN (online) 1818-474X
#2018-2
PDF_2018-2_40-45 (Russian)

Keywords

xenon
dexmedetomidine
a cytokine
surgical stress
stomach cancer

How to Cite

1.
Faltin V.V., Avdeev S.V., Afanasiev S.G., Shalygina K.V., Puteev I.P. Stress response during combined anaesthesia xenon and dexmedetomidine in radical surgery for gastric cancer. Annals of Critical Care. 2018;(2):40-45. doi:10.21320/1818-474X-2018-2-40-45

Statistic

Abstract Views: 71
PDF_2018-2_40-45 (Russian) Downloads: 30
Statistic from 01.07.2024

Language

English Русский

Social Networks

Abstract

The prospective randomized study included 53 patients with operable II–III stage gastric cancer. The age range was from 26 to 75 years. The patients underwent gastrectomy (n = 21) and subtotal distal gastrectomy (n = 32). The study group comprised 27 patients who received anesthesia with xenon and dexmedetomidine combined with epidural analgesia. The control group consisted of 26 patients who received anesthesia with sevoflurane in combination with epidural analgesia. The effectiveness of the compared methods of anesthesia was assessed by the parameters of hemodynamic, oxygenation, hormone level and cytokine profile. In the perioperative period, the combination of xenon and dexmedetomidine in combination with epidural analgesia was characterized by significant inhibition of systemic inflammatory reactions and a lower release of stress hormones as components of a surgical stress response. The use of the combination of xenon and dexmedetomidine during surgery for gastric cancer provides a more adequate course of the perioperative period.
PDF_2018-2_40-45 (Russian)

References

  1. Desborough J.P. The stress response to trauma and surgery. British Journal of Anaesthesia. 2000; 85(1): 109–117.
  2. Fahlenkamp A.V., Coburn M., Rossaint R., et al. Comparison of the effects of xenon and sevoflurane anaesthesia on leucocyte function in surgical patients: a randomized trial. British Journal of Anaesthesia. 2014; 112(2): 272–280.
  3. Kvarnström A., Swartling T., Kurlberg G., et al. Pro-inflammatory cytokine release in rectal surgery: comparison between laparoscopic and open surgical techniques. Archivum Immunologiae et Therapiae Experimentalis. 2013; 61(5): 407–411.
  4. Chattopadhyay U., Mallik S., Ghosh S., et al. Comparison between propofol and dexmedetomidine on depth of anesthesia: A prospective randomized trial. Journal of Anaesthesiology, Clinical Pharmacology. 2014; 30(4): 550–554.
  5. Gutierrez T., Hornigold R., Pearce A. The systemic response to surgery. Surgery (Oxford). 2011; 29(2): 93–96.
  6. Bugada D., Ghisi D., Mariano E.R. Continuous regional anesthesia: a review of perioperative outcome benefits. Minerva Anestesiologica. 2017; 83: 1089–1100.
  7. Soliz J.M., Ifeanyi I.C., Katz M.H., et al. Comparing Postoperative Complications and Inflammatory Markers Using Total Intravenous Anesthesia Versus Volatile Gas Anesthesia for Pancreatic Cancer Surgery. Anesthesiology and Pain Medicine. 2017; 7(4): e13879.
  8. Franks N.P. Molecular targets underlying general anesthesia. British Journal of Anaesthesia. 2006; 147(1): 72–81.
  9. Куликов А.Ю., Кулешов О.В., Лебединский К.М. Влияние анестезии ксеноном на гемодинамику: что нам известно к 2015 г. Анестезиология и реаниматология. 2015; 60(6): 71–74. [Kulikov A.Y., Kuleshov O.V., Lebedinskii K.M. Effects of xenon anesthesia on hemodynamics: what do we know until 2015? Anesteziologiia i reanimatologiia. 2015; 60(6): 71–74. (In Russ)]
  10. Cruickshank A.M., Fraser W.D., Burns H.J., et al. Response of serum interleukin-6 in patients undergoing elective surgery of varying severity. Clinical Science. 1990; 79: 161–165.
  11. Vacas S., Degos V., Feng X., et al. The neuroinflammatory response of postoperative cognitive decline. British Medicine Bulletin. 2013; 106: 161–178.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2018 ANNALS OF CRITICAL CARE