Predictive role of baroreflex sensitivity in the assessment of perioperative risk. Article
ISSN (print) 1726-9806     ISSN (online) 1818-474X
#2020-2
PDF_2020-02_49-62 (Russian)
HTML_2020-02_49-62 (Russian)

Keywords

baroreflex sensitivity
hemodynamic
anesthesia
perioperative period
postoperative complications
perioperative risk

How to Cite

1.
Zabolotskikh I.B., Trembach N.V. Predictive role of baroreflex sensitivity in the assessment of perioperative risk. Article. Annals of Critical Care. 2020;(2):49-62. doi:10.21320/1818-474X-2020-2-49-62

Statistic

Abstract Views: 123
PDF_2020-02_49-62 (Russian) Downloads: 47
HTML_2020-02_49-62 (Russian) Downloads: 104
Statistic from 01.07.2024

Language

English Русский

Social Networks

Abstract

Violation of baroreflex sensitivity often accompanies the progression of chronic diseases. Given the fact that baroreflex dysfunction has long been known as a long-term prognostic marker of adverse cardiovascular disease outcomes, interest in the role of baroreflex sensitivity assessment in determining perioperative risk has increased significantly over the past decades. An analysis of the literature showed that for the query “baroreflex” + “anesthesia”, an automatic search in the PubMed database allows you to select 592 research papers, of which only 28 are randomized controlled trials. A significant amount of experimental and clinical data has been accumulated, indicating an important role of baroreflex during the perioperative period. The conducted research allows us to state with confidence the fact that the sensitivity of the baroreflex, equal to 3 ms/mm Hg regardless of the method of its assessment, it is a critical value below which the baroreflex function is associated with an increase in the probability of an adverse outcome, including the development of perioperative complications. The pathophysiological mechanisms underlying the increase in risk with a decrease in baroreflex sensitivity include an increase in the frequency of hemodynamic critical incidents, a greater susceptibility to the negative effects of mechanical ventilation, an increase in the need for infusion-transfusion therapy, a more pronounced pain syndrome and a violation of the immune system. The negative effect of general anesthetics and neuroaxial anesthesia on baroreflex leads to a further increase in risk. Given the role of baroreflex in the pathogenesis of perioperative disorders, the assessment of baroreflex can be a key point of an individual approach to the management of the perioperative period.
PDF_2020-02_49-62 (Russian)
HTML_2020-02_49-62 (Russian)

References

  1. Coats A.J., Clark A.L., Piepoli M., et al. Symptoms and quality of life in heart failure: the muscle hypothesis. Br Heart J. 1994; 72(2 Suppl): S36–39. DOI: 10.1136/hrt.72.2_suppl.s36
  2. Piepoli M.F., Coats A.J. The ‘skeletal muscle hypothesis in heart failure’ revised. Eur Heart J. 2013; 34(7): 486–488. DOI: 10.1093/eurheartj/ehs463
  3. Eckberg D.L., Drabinsky M., Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med. 1971; 285: 877–883. DOI: 10.1056/NEJM197110142851602
  4. La Rovere M.T., Pinna G.D., Raczak G. Baroreflex sensitivity: measurement and clinical implications. Ann Noninvasive Electrocardiol. 2008; 13: 191–207. DOI: 10.1111/j.1542–474X.2008.00219.x
  5. Mortara A., La Rovere M.T., Pinna G.D., et al. Arterial baroreflex modulation of heart rate in chronic heart failure: clinical and hemodynamic correlates and prognostic implications. Circulation. 1997; 96: 3450–3458. DOI: 10.1161/01.cir.96.10.3450
  6. La Rovere M.T., Pinna G.D., Maestri R., et al. Prognostic implications of baroreflex sensitivity in heart failure patients in the beta-blocking era. J Am Coll Cardiol. 2009; 53: 193–199. DOI: 10.1016/j.jacc.2008.09.034
  7. Floras J.S., Jones J.V., Hassan M.O., Sleight P. Effects of acute and chronic beta-adrenoceptor blockade on baroreflex sensitivity in humans. J Auton Nerv Syst. 1988; 25: 87–94. DOI: 10.1016/0165-1838(88)90013-6
  8. Fletcher J., Buch A.N., Routledge H.C., et al. Acute aldosterone antagonism improves cardiac vagal control in humans. J Am Coll Cardiol. 2004; 43: 1270–1275. DOI: 10.1016/j.jacc.2003.10.058
  9. Ponikowski P., Voors A.A., Anker S.D., et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2016; 18: 891–975. DOI: 10.1002/ejhf.592
  10. Gademan M.G., van Bommel R.J., Borleffs C.J., et al. Biventricular pacing-induced acute response in baroreflex sensitivity has predictive value for midterm response to cardiac resynchronization therapy. Am J Physiol Heart Circ Physiol. 2009; 297: H233–237. DOI: 10.1152/ajpheart.00113.2009
  11. Paleczny B., Olesinska-Mader M., Siennicka A., et al. Assessment of baroreflex sensitivity has no prognostic value in contemporary, optimally managed patients with mild-to-moderate heart failure with reduced ejection fraction: a retrospective analysis of 5-year survival. Eur J Heart Fail. 2018; Sep 6. DOI: 10.1002/ejhf.1306
  12. Borisenko O., Muller-Ehmsen J., Lindenfeld J., et al. An early analysis of cost-utility of baroreflex activation therapy in advanced chronic heart failure in Germany. BMC Cardiovasc Disord. 2018; 18: 163. DOI: 10.1186/s12872-018-0898-x
  13. Zile M.R., Abraham W.T., Weaver F.A., et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction: safety and efficacy in patients with and without cardiac resynchronization therapy. Eur J Heart Fail. 2015; 17: 1066–1074. DOI: 10.1002/ejhf.299
  14. Abraham W.T., Zile M.R., Weaver F.A., et al. Baroreflex activation therapy for the treatment of heart failure with a reduced ejection fraction. JACC Heart Fail. 2015; 3: 487–496. DOI: 10.1016/j.jchf.2015.02.006
  15. Parati G., Ochoa J.E. Prognostic value of baroreflex sensitivity in heart failure. A 2018 reappraisal. Eur J Heart Fail. 2019; 21(1): 59–62. DOI: 10.1002/ejhf.1334
  16. Johansson M., Gao S.A., Friberg P., et al. Baroreflex effectiveness index and baroreflex sensitivity predict all-cause mortality and sudden death in hypertensive patients with chronic renal failure. J Hypertens. 2007; 25: 163–168. DOI: 10.1097/01.hjh.0000254377.18983.eb
  17. Heber M.E., Lahiri A., Thompson D., Raftery E.B. Baroreceptor, not left ventricular, dysfunction is the cause of hemodialysis hypotension. Clin Nephrol. 1989; 32: 79–86.
  18. Chesterton L.J., Selby N.M., Burton J.O., et al. Categorization of the hemodynamic response to hemodialysis: the importance of baroreflex sensitivity. Hemodial Int. 2010; 14: 18–28. DOI: 10.1111/j.1542-4758.2009.00403.x
  19. Chesterton L.J., Sigrist M.K., Bennett T., et al. Reduced baroreflex sensitivity is associated with increased vascular calcification and arterial stiffness. Nephrol Dial Transplant. 2005; 20: 1140–1147. DOI: 10.1093/ndt/gfh808
  20. Lin C.H., Yen C.C., Hsu Y.T., et al. Baroreceptor Sensitivity Predicts Functional Outcome and Complications after Acute Ischemic Stroke. J Clin Med. 2019; 8(3): pii: E300. DOI: 10.3390/jcm8030300
  21. Robinson T.G., James M., Youde J., et al. Cardiac baroreceptor sensitivity is impaired after acute stroke. Stroke. 1997; 28(9): 1671–1676. DOI: 10.1161/01.str.28.9.1671
  22. Huang C.C., Wu Y.S., Chen T., et al. Long-term effects of baroreflex function after stenting in patients with carotid artery stenosis. Autonomic Neuroscience: Basic and Clinical. 2010; 158(1–2): 100–104. DOI: 10.1016/j.autneu.2010.06.009
  23. Cersosimo M.G., Benarroch E.E. Central control of autonomic function and involvement in neurodegenerative disorders. Handbook of Clinical Neurology. 2013; 117: 45–57. DOI: 10.1016/B978-0-444-53491-0.00005-5
  24. Parati G., DiRienzo M., Mancia G. How to measure baroreflex sensitivity: from the cardiovascular laboratory to daily life. Journal of Hypertension. 2000; 18(1): 7–19. DOI: 10.1097/00004872-200018010-00003
  25. Malberg H., Wessel N., Hasart A., et al. Advanced analysis of spontaneous baroreflex sensitivity, blood pressure and heart rate variability in patients with dilated cardiomyopathy. Clinical Science. 2002; 102(4): 465–473. DOI: 10.1042/cs1020465
  26. Pinna G.D., Maestri M., La Rovere, M.T. Assessment of baroreflex sensitivity from spontaneous oscillations of blood pressure and heart rate: proven clinical value? Physiol. Meas. 2015; 36: 741–753. DOI: 10.1088/0967-3334/36/4/741
  27. La Rovere M.T., Bigger J.T. Jr., Marcus F.I., et al. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. Lancet. 1998; 351 (9101): 478–84. DOI: 10.1016/s0140-6736(97)11144-8
  28. De Ferrari, GM, Sanzo A., Bertoletti A., et al. Baroreflex sensitivity predicts long-term cardiovascular mortality after myocardial infarction even in patients with preserved left ventricular function. J Am Coll Cardiol. 2007; 50(24): 2285–2290. DOI: 10.1016/j.jacc.2007.08.043
  29. Hartikainen J., Mantysaari M., Mussalo H., et al. Baroreflex sensitivity in ¨men with recent myocardial infarction: impact of age. Eur Heart J. 1994; 15(11): 1512–1529. DOI: 10.1093/oxfordjournals.eurheartj.a060423
  30. Klingenheben T., Ptaszynski P., Hohnloser S.H. Heart rate turbulence and other autonomic risk markers for arrhythmia risk stratification in dilated cardiomyopathy. J Electrocardiol. 2008; 41(4): 306–311. DOI: 10.1016/j.jelectrocard.2007.10.004
  31. Pinna G.D., Maestri R., Capomolla S., et al. Applicability and clinical relevance of the transfer function method in the assessment of baroreflex sensitivity in heart failure patients. J Am Coll Cardiol. 2005 4; 46(7): 1314–1321. DOI: 10.1016/j.jacc.2005.06.062
  32. La Rovere M.T., Maestri R., Robbi E., et al. Comparison of the prognostic values of invasive and noninvasive assessments of baroreflex sensitivity in heart failure. J Hypertens. 2011; 29(8): 1546–1552. DOI: 10.1097/HJH.0b013e3283487827
  33. Raczak G., Pinna G.D., Maestri R., Daniłowicz-Szymanowicz L. Different predictive values of electrophysiological testing and autonomic assessment in patients surviving a sustained arrhythmic episode. Circ J. 2004; 68(7): 634–638. DOI: 10.1253/circj.68.634
  34. Gouveia S., Scotto M.G., Pinna G.D., Maestri R. Spontaneous baroreceptor reflex sensitivity for risk stratification of heart failure patients: optimal cut-off and age effects Clinical Science. 2015; 129: 1163–1172. DOI: 10.1042/CS20150341
  35. Toner N., Jenkins G.L., Ackland G.L., et al. Baroreflex impairment and morbidity after major surgery. Br J Anaesth. 2016; 117(3): 324–331. DOI: 10.1093/bja/aew257
  36. Wulsin L.R., Horn P.S., Perry J.L., et al. Autonomic imbalance as a predictor of metabolic risks, cardiovascular disease, diabetes, and mortality. J Clin Endocrinol Metab. 2015; 100: 2443–2448. DOI: 10.1210/jc.2015-1748
  37. Cramer L., Hildebrandt B., Kung T., et al. Cardiovascular function and predictors of exercise capacity in patients with colorectal cancer. J Am Coll Cardiol. 2014; 64: 1310–1319. DOI: 10.1016/j.jacc.2014.07.948
  38. Hammill B.G., Curtis L.H., Bennett-Guerrero E., et al. Impact of heart failure on patients undergoing major noncardiac surgery. Anesthesiology. 2008; 108: 559–567. DOI: 10.1097/ALN.0b013e31816725ef
  39. Shen F.M., Guan Y.F., Xie H.H., Su D.F. Arterial baroreflex function determines the survival time in lipopolysaccharide-induced shock in rats. Shock. 2004; 21: 556–560. DOI: 10.1097/01.shk.0000126647.51109.5c
  40. Longo W.E., Virgo K.S., Johnson F.E. et al. Risk factors for morbidity and mortality after colectomy for colon cancer. Dis Colon Rectum. 2000; 43: 83–91. DOI: 10.1007/BF02237249
  41. Angus D.C., Barnato A.E., Bell D., et al. A systematic review and meta-analysis of early goal-directed therapy for septic shock: the ARISE, ProCESS and ProMISe Investigators. Intensive Care Med. 2015; 41: 1549–1560. DOI: 10.1007/s00134-015-3822-1
  42. Czura C.J., Schultz A., Kaipel M., et al. Vagus nerve stimulation regulates hemostasis in swine. Shock. 2010; 33: 608–613. DOI: 10.1097/SHK.0b013e3181cc0183
  43. Amar D., Fleisher M., Pantuck C.B., et al. Persistent alterations of the autonomic nervous system after noncardiac surgery. Anesthesiology. 1998; 89: 30–42. DOI: 10.1097/00000542-199807000-00008
  44. Ranucci M., Porta A., Bari V., et al. Baroreflex sensitivity and outcomes following coronary surgery. PLoS One. 2017; 12(4): e0175008. DOI: 10.1371/journal.pone.0175008
  45. Smith M.L., Carlson M.D., Thames M.D. Reflex control of the heart and circulation: implications for cardiovascular electrophysiology. J Cardiovasc Electrophysiol. 1991; 2: 441–449.
  46. Landolina M., Mantica M., Pessano P., et al. Impaired baroreflex sensitivity is correlated with hemodynamic deterioration of sustained ventricular tachycardia. J Am Coll Cardiol. 1997; 29: 568–575. DOI: 10.1016/s0735-1097(96)00533-5
  47. Liotta M., Olsson D., Sartipy U., Holzmann M.J. Minimal changes in postoperative creatinine values and early and late mortality and cardiovascular events after coronary artery bypass grafting. Am J Cardiol. 2014; 113: 70–75. DOI: 10.1016/j.amjcard.2013.09.012
  48. Pavlov V.A., Tracey K.J. The vagus nerve and the inflammatory reflex — linking immunity and metabolism. Nat Rev Endocrinol. 2012; 8: 743–754. DOI: 10.1038/nrendo.2012.189
  49. Inoue T., Rosin D.L., Okusa M.D. CAPing inflammation and acute kidney injury. Kidney Int. 2016; 90: 462–465. DOI: 10.1016/j.kint.2016.07.009
  50. Katsube Y., Saro H., Naka M., et al. Decreased baroreflex sensitivity in patients with stable coronary artery disease is correlated with the severity of coronary narrowing. Am J Cardiol. 1996; 78: 1007–1010. DOI: 10.1016/s0002-9149(96)00525-5
  51. Simula S., Laitinen T., Vanninen E., et al. Baroreflex sensitivity in asymptomatic coronary atherosclerosis. Clin Physiol Funct Imaging. 2013; 33: 70–74. DOI: 10.1111/j.1475-097X.2012.01165.x
  52. Nielsen R., Nikolajsen L., Kroner K., et al. Pre-operative baroreflex sensitivity and efferent cardiac parasympathetic activity are correlated with post-operative pain. Acta Anaesthesiol Scand. 2015; 59: 475–485. DOI: 10.1111/aas.12457
  53. France C.R., Katz J. Postsurgical pain is attenuated in men with elevated systolic blood pressure. Pain Res Manage. 1999; 4: 100–103. DOI: 10.1155/1999/460391
  54. Pan P.H., Coghill R., Houle T.T., et al. Multifactorial preoperative predictors for postcesarean section pain and analgesic requirement. Anesthesiology. 2006; 104: 417–425. DOI: 10.1097/00000542-200603000-00007
  55. Stirt J.A., Frantz R.A., Gunz E.F., Conolly M.E. Anesthesia, catecholamines, and hemodynamics in autonomic dysfunction. Anesth Analg. 1982; 61: 701–704. DOI: 10.1213/00000539-198208000-00016
  56. Bijker J.B., van Klei W.A., Kappen T.H., et al. Incidence of intraoperative hypotension as a function of the chosen definition: literature definitions applied to a retrospective cohort using automated data collection. Anesthesiology. 2007; 107: 213–220. DOI: 10.1097/01.anes.0000270724.40897.8e
  57. Dorantes Mendez G., Aletti F., Toschi N., et al. Baroreflex sensitivity variations in response to propofol anesthesia: comparison between normotensive and hypertensive patients. J Clin Monit Comput. 2013; 27: 417–426. DOI: 10.1007/s10877-012-9426-1
  58. Huang D., Zhou J., Su D., et al. Variations of perioperative baroreflex sensitivity in hypertensive and normotensive patients. Clin Exp Hypertens. 2017; 39(1): 74–79. DOI: 10.1080/10641963.2016.1210624
  59. Weingarten T.N., Whalen F.X., Warner D.O., et al. Comparison of two ventilatory strategies in elderly patients undergoing major abdominal surgery. Br J Anaesth. 2010; 104(1): 16–22. DOI: 10.1093/bja/aep319
  60. Bohm S.H., Thamm O.C., von Sandersleben A., et al. Alveolar recruitment strategy and high positive end-expiratory pressure levels do not affect hemodynamics in morbidly obese intravascular volume-loaded patients. Anesthesia & Analgesia. 2009; 109(1): 160–163. DOI: 10.1213/ane.0b013e3181a801a3
  61. Whalen F.X., Gajic O., Thompson G.B., et al. The effects of the alveolar recruitment maneuver and positive end-expiratory pressure on arterial oxygenation during laparoscopic bariatric surgery. Anesthesia and Analgesia. 2006; 102(1): 298–305. DOI: 10.1213/01.ane.0000183655.57275.7a
  62. Hemmes S., Gama de Abreu M., Severgnini P., et al. High versus low positive end expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): a multicentre randomized controlled trial. The Lancet. 2014; 384 (9942): 495–503. DOI: 10.1016/S0140-6736(14)60416-5.
  63. Valipour A., Schneider F., Kössler W., et al. Heart rate variability and spontaneous baroreflex sequences in supine healthy volunteers subjected to nasal positive airway pressure. Journal of Applied Physiology. 2005; 99(6): 2137–2143. DOI: 10.1152/japplphysiol.00003.2005
  64. Blevins S.S., Connolly M.J., Carlson D.E. Baroreceptor-mediated compensation for hemodynamic effects of positive end-expiratory pressure. Journal of Applied Physiology. 1999; 86(1): 285–293. DOI: 10.1152/jappl.1999.86.1.285
  65. Cullen P.M., Turtle M., Prys-Roberts C., et al. Effect of propofol anesthesia on baroreflex activity in humans. Anesth Analg. 1987; 66: 1115–1120.
  66. Samain E., Marty J., Gauzit R., et al. Effects of propofol on baroreflex control of heart rate and on plasma noradrenaline levels. Eur J Anaesthesiol. 1989; 6: 321–326.
  67. Ebert T.J., Muzi M., Berens R., et al. Sympathetic responses to induction of anesthesia in humans with propofol or etomidate. Anesthesiology. 1992; 76: 725–733. DOI: 10.1097/00000542-199205000-00010
  68. Sato M., Tanaka M., Umehara S., Nishikawa T. Baroreflex control of heart rate during and after propofol infusion in humans. Br. J. Anaesth. 2005; 94: 577–581. DOI: 10.1093/bja/aei092
  69. Kamijo Y., Goto H., Nakazawa K., et al. Arterial baroreflex attenuation during and after continuous propofol infusion. Can J Anaesth. 1992; 39: 987–991. DOI: 10.1007/BF03008351
  70. Bristow J.D., Prys-Roberts C., Fisher A., et al. Effects of anesthesia on baroreflex control of heart rate in man. Anesthesiology. 1969; 31(5): 422–428.
  71. Kotrly K.J., Ebert T.J., Vucins E., et al. Baroreceptor reflex control of heart rate during isoflurane anesthesia in Human. Anesthesiology. 1984; 60(3): 173–179. DOI: 10.1097/00000542-198403000-00001
  72. Umehara S., Tanaka M., Nishikawa T. Effects of sevoflurane anesthesia on carotid-cardiac baroreflex responses in Humans. Anesth Analg. 2006; 102(1): 38–44. DOI: 10.1213/01.ane.0000183651.10514.9a
  73. Tanaka M., Nagasaki G., Nishikawa T. Moderate hypothermia depresses arterial baroreflex control of heart rate during, and delays its recovery after, general anesthesia in humans. Anesthesiology. 2001; 95: 51–55. DOI: 10.1097/00000542-200107000-00013
  74. Nagasaki G., Tanaka M., Nishikawa T. The recovery profile of baroreflex control of heart rate after isoflurane or sevoflurane anesthesia in humans. Anesth Analg. 2001; 93: 1127–1131. DOI: 10.1097/00000539-200111000-00012
  75. Zorrilla-Vaca A., Healy R.J., Wu C.L., Grant M.C. Relation between bispectral index measurements of anesthetic depth and postoperative mortality: a meta-analysis of observational studies. Can J Anesth. 2017; 64: 597–607. DOI: 10.1007/s12630-017-0872-6
  76. Sessler D.I., Sigl J.C., Kelley S.D., et al. Hospital stay and mortality are increased in patients having a “triple low” of low blood pressure, low bispectral index and low minimum alveolar concentration of volatile anesthesia. Anesthesiology. 2012; 116: 1195–1203 DOI: 10.1097/ALN.0b013e31825683dc
  77. Kertai M., White W., Gan T. Cumulative duration of “triple low” state of low blood pressure, low bispectral index, and low minimum alveolar concentration of volatile anesthetic is not associated with increased mortality. Anesthesiology. 2014; 121: 18–28. DOI: 10.1097/ALN.0000000000000281
  78. Chan M., Cheng B., Lee T., et al. BIS-guided anesthesia decreases postoperative delirium and cognitive decline. J Neurosurg Anesthesiol. 2013; 25: 33–42. DOI: 10.1097/ANA.0b013e3182712fba
  79. Abdelmalak B., Bonilla A., Mascha E., et al. Dexamethasone, light anaesthesia, and tight glucose control (DeLiT) randomized controlled trial. Br J Anaesth. 2013; 111: 209–221. DOI: 10.1093/bja/aet050
  80. Brown C.H. 4th, Azman A., Gottschalk A., et al. Sedation depth during spinal anesthesia and survival in elderly patients undergoing hip fracture repair. Anesth Analg. 2013; 118: 977–980. DOI: 10.1213/ANE.0000000000000157
  81. Short T., Leslie K., Campbell D., et al. A pilot study for a prospective, randomized, double-blind trial of the influence of anesthetic depth on long term outcome. Anesth Analg. 2014; 118: 981–986. DOI: 10.1213/ANE.0000000000000209
  82. Sieber F., Zakriya K., Gottschalk A., et al. Sedation depth during spinal anesthesia and the development of postoperative delirium in elderly patients undergoing hip fracture repair. Mayo Clin Proc. 2010; 85: 18–26. DOI: 10.4065/mcp.2009.0469
  83. Short T.G., Campbell D., Frampton C., et al. Anaesthetic depth and complications after major surgery: an international, randomised controlled trial. Lancet. 2019; 394(10212): 1907–1914. DOI: 10.1016/S0140-6736(19)32315-3
  84. Bonnet F., Szekely B., Abhay K., et al. Baroreceptor control after cervical epidural anesthesia in patients undergoing carotid artery surgery. J Cardiothorac Anesth. 1989; 3: 418–424. DOI: 10.1016/s0888-6296(89)97411-5
  85. Takeshima R., Dohi S. Circulatory responses to baroreflexes, Valsalva maneuver, coughing, swallowing, and nasal stimulation during acute cardiac sympathectomy by epidural blockade in awake humans. Anesthesiology. 1985; 63: 500–508. DOI: 10.1097/00000542-198511000-00005
  86. Dohi S., Tsuchida H., Mayumi T. Baroreflex control of heart rate during cardiac sympathectomy by epiduralanesthesia in lightly anesthetized humans. Anesth Analg. 1983; 62: 815–820.
  87. Goertz A., Heinrich H., Seeling W. Baroreflex control of heart rate during high thoracic epidural anaesthesia: A randomised clinical trial on anaesthetised humans. Anaesthesia 1992; 47: 984–987. DOI: 10.1111/j.1365-2044.1992.tb03206.x
  88. Licker M., Spiliopoulos A., Tschopp J.M. Influence of thoracic epidural analgesia on cardiovascular autonomic control after thoracic surgery. Br J Anaesth. 2003; 91: 525–531. DOI: 10.1093/bja/aeg212
  89. Tanaka M., Goyagi T., Kimura T., Nishikawa T. The effects of cervical and lumbar epidural anesthesia onheart rate variability and spontaneous sequence baroreflex sensitivity. Anesth Analg. 2004; 99: 924–929. DOI: 10.1213/01.ANE.0000131966.61686.66
  90. Lipman R.D., Salisbury J.K., Taylor J.A. Spontaneous indices are inconsistent with arterial baroreflex gain. Hypertension. 2003; 42: 481–487.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.