Perioperative management of patients with concomitant morbid obesity. Guidelines of the All-Russian public organization “Federation of Anesthesiologists and Reanimatologists”
ISSN (print) 1726-9806     ISSN (online) 1818-474X
#2021-1
PDF_2021-1_7-18 (Russian)
HTML_2021-1_7-18 (Russian)

Keywords

obesity
obstructive sleep apnea
hypoventilation syndrome

How to Cite

1.
Zabolotskikh I.B., Anisimov M.A., Gorobets E.S., Gritsan A.I., Lebedinskii K.M., Musaeva T.S., Protsenko D.N., Trembach N.V., Shadrin R.V., Shifman E.M., Epstein S.L. Perioperative management of patients with concomitant morbid obesity. Guidelines of the All-Russian public organization “Federation of Anesthesiologists and Reanimatologists.” Annals of Critical Care. 2021;(1):7-18. doi:10.21320/1818-474X-2021-1-7-18

Statistic

Abstract Views: 140
PDF_2021-1_7-18 (Russian) Downloads: 103
HTML_2021-1_7-18 (Russian) Downloads: 147
Statistic from 01.07.2024

Language

English Русский

Social Networks

Abstract

According to the latest estimates of the World Health Organization, more than 1 billion people in the world are overweight. In economically developed countries, the proportion of the population with overweight reaches almost 50 %, of which 30 % are obese. In Russia, on average, 30 % of people of working age are obese and 25 % are overweight. Despite the significant economic costs for the prevention and treatment of obesity, mortality at the age of 20–35 with morbid obesity exceeds the average statistical 12 times, mainly from cardiovascular complications. The guidelines provides principles of perioperative management of patients with obesity.
PDF_2021-1_7-18 (Russian)
HTML_2021-1_7-18 (Russian)

References

  1. Bellami M., Struys М. Anesthesia for the Overweight and Obese Patient. 2007; 234 р. DOI: 10.1093/med/9780199233953.001.0001
  2. Sung Y.A., Oh J.Y., Lee H. Comparison of the body adiposity index to body mass index in Korean women. Yonsei Med J. 2014; 55(4): 1028–35. DOI: 10.3349/ymj.2014.55.4.1028
  3. Habib S. S. Body mass index and body fat percentage in assessment of obesity prevalence in saudi adults. Biomed Environ Sci. 2013; 26(2): 94–9. DOI: 10.7717/peerj.3238/supp-1
  4. Lin X.J., Wang C.P., Liu X.D., et al. Body mass index and risk of gastric cancer: a meta-analysis. Jpn J Clin Oncol. 2014; 44(9): 783–91. DOI: 10.1093/jjco/hyu082
  5. Javed A., Jumean M., Murad M.H., et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity in children and adolescents: a systematic review and meta-analysis. Pediatr Obes. 2015; 10(3): 234–44. DOI: 10.1111/ijpo.242
  6. Cerhan J.R., Moore S.C., Jacobs E.J., et al. A pooled analysis of waist circumference and mortality in 650,000 adults. Mayo Clin Proc. 2014; 89(3): 335–45. DOI: 10.1016/j.mayocp.2013.11.011
  7. Florath I., Brandt S., Weck M.N., et al. Evidence of inappropriate cardiovascular risk assessment in middle-age women based on recommended cut-points for waist circumference. Nutr Metab Cardiovasc Dis. 2014; 24(10): 1112–9. DOI: 10.1016/j.numecd.2014.04.005
  8. Tanamas S.K., Shaw J.E., Backholer K., et al. Twelve-year weight change, waist circumference change and incident obesity: the Australian diabetes, obesity and lifestyle study. Obesity (Silver Spring). 2014; 22(6): 1538–45. DOI: 10.1002/oby.20704
  9. Nunes C.N., Minicucci M.F., Farah E., et al. Impact of different obesity assessment methods after acute coronary syndromes. Arq Bras Cardiol. 2014; 103(1): 19–24. doi.org/10.5935/abc.20140073
  10. Zhou H.C., Lai Y.X., Shan Z.Y., et al. Effectiveness of different waist circumference cut-off values in predicting metabolic syndrome prevalence and risk factors in adults in China. Biomed Environ Sci. 2014; 27(5): 325–34. DOI: 10.1161/circulationaha.111.065904
  11. Labib M. The investigation and management of obesity. Clin Pathol. 2003; 56: 17–25. DOI: 10.1136/jcp.56.1.17
  12. Nagappa M., Liao P., Wong J., et al. Validation of the STOP-Bang Questionnaire as a Screening Tool for Obstructive Sleep Apnea among Different Populations: A Systematic Review and Meta-Analysis. PLoS One. 2015; 10(12): e0143697. DOI: 10.1371/journal.p one.0143697
  13. Khanna A.K., Sessler D.I., Sun Z., et al. Using the STOP-BANG questionnaire to predict hypoxaemia in patients recovering from noncardiac surgery: a prospective cohort analysis. Br J Anaesth. 2016; 116(5): 632–40. DOI: 10.1371/journal.pone.0143697
  14. Chudeau N., Raveau T., Carlier L., et al. The STOP-BANG questionnaire and the risk of perioperative respiratory complications in urgent surgery patients: A prospective, observational study. Anaesth Crit Care Pain Med. 2016; 35(5): 347–353. DOI: 10.1016/j.accpm.2016.01.006
  15. Corso R.M., Petrini F., Buccioli M., et al. Clinical utility of preoperative screening with STOP-Bang questionnaire in elective surgery. Minerva Anestesiol. 2014; 80(8): 877–84. DOI: 10.23736/s0375-9393.19.14308-8
  16. Chung F., Yegneswaran B., Liao P. STOP questionnaire: a tool to screen patients for obstructive sleep apnea. Anesthesiology. 2008; 108: 812–821. DOI: 10.1097/sa.0b013e31818bcea2
  17. Bradley T.D., Floras J.S. Obstructive sleep apnea and its cardiovascular consequences. Larnet. 2009; 373: 82–93. DOI: 10.1201/b15277
  18. Somers V.K., White D.P., Amin R. Sleep apnea and cardiovascular disease. Circulation. 2008; 118: 1080–1111. DOI: 10.1016/b978-1-4377-0398-6.00079-2
  19. Kaw R., Bhateja P., Paz Y., Mar H., et al. Postoperative Complications in Patients with Unrecognized Obesity Hypoventilation Syndrome Undergoing Elective Noncardiac Surgery. Chest. 2016; 149(1): 84–91. DOI: 10.1378/chest.14-3216
  20. Fernandez A.Z. Jr., Demaria E.J., Tichansky D.S., et al. Multivariate analysis of risk factors for death following gastric bypass for treatment of morbid obesity. Ann Surg. 2004; 239(5): 698–702. DOI: 10.1097/01.sla.0000124295.41578.ab
  21. Lumachi F., Marzano B., Fanti G., et al. Hypoxemia and hypoventilation syndrome improvement after laparoscopic bariatric surgery in patients with morbid obesity. In: Vivo. 2010; 24(3): 329–31. DOI: 10.1021/acs.jproteome.8b00144.s001
  22. Raveendran R., Wong J., Singh M., et al. Obesity hypoventilation syndrome, sleep apnea, overlap syndrome: perioperative management to prevent complications. Curr Opin Anaesthesiol. 2017; 30(1): 146–155. DOI: 10.1097/aco.0000000000000421
  23. Davis G., Patel J.A., Gagne D.J. Pulmonary considerations in obesity and bariatric surgical patient. Med Clin N Am. 2007; 91: 433–442. DOI: 10.1016/j.mcna.2007.02.001
  24. Mokhlesi B., Tulaimat A. Recent advances in obesity hypoventilation syndrome. 2007; 132: 1322–1336. DOI: 10.1378/chest.07-0027
  25. Crummy F., Piper A.J., Naughton M.T. Obesity and the lung. Thorax. 2008; 63: 738–746. DOI: 10.1136/thx.2007.086843
  26. Adams J.P., Murphy P.G. Obesity in anaesthesia and intensive care. Br J Anaesth. 2000; 85: 91–108. DOI: 10.1093/bja/85.1.91
  27. Hines R.L., Marschall K.E. Anesthesia and Co-Existing Disease. 2008; 195 p. DOI: 10.1016/b978-1-4160-3998-3.10003-x
  28. Lavi R., Segal D., Ziser A. Predicting difficult airways using the intubation difficulty scale: a study comparing obese and non-obese patients. J Clin Anesth. 2009; 21(4): 264–7. DOI: 10.1016/j.jclinane.2008.08.021
  29. Williamson J.A., Webb R.K., Szekely S., et al. The Australian Incident Monitoring Study. Difficult intubation: an analysis of 2000 incident reports. Anaesth Intensive Care. 1993; 21(5): 602–7. DOI: 10.1177/0310057×9302100518
  30. Lima Filho J.A., Ganem E.M., de Cerqueira B.G. Reevaluation of the airways of obese patients undergone bariatric surgery after reduction in body mass index. Rev Bras Anestesiol. 2011; 61(1): 31–40. DOI: 10.1016/s0034-7094(11)70004-6
  31. Tatlıpınar A., Kınal E. Links and risks associated with adenotonsillectomy and obesity. Pediatric Health Med Ther. 2015; 6: 123–127. DOI: 10.2147/phmt.s66730
  32. Langeron O., Masso E., Huraux C., et al. Prediction of difficult mask ventilation. Anesthesiology; 92: 1229–1236. DOI: 10.1097/00000542-200005000-00009
  33. Cattano D., Katsiampoura A., Corso R.M., et al. Predictive factors for difficult mask ventilation in the obese surgical population. F1000Res. 2014; 3: 239. DOI: 10.12688/f1000research.5471.1
  34. Bozkurt B., Aguilar D., Deswal A., et al. Contributory Risk and Management of Comorbidities of Hypertension, Obesity, Diabetes Mellitus, Hyperlipidemia, and Metabolic Syndrome in Chronic Heart Failure: A Scientific Statement From the American Heart Association. Circulation. 2016; 134(23): 535–578. DOI: 10.1161/cir.0000000000000450
  35. Kenchaiah S., Evans J.C., Levy D., et al. Obesity and the risk of heart failure. N Engl J Med. 2002; 347(5): 305–13. DOI: 10.1056/nejmoa020245
  36. Nagarajan V., Cauthen C.A., Starling R.C., et al. Prognosis of morbid obesity patients with advanced heart failure. Congest Heart Fail. 2013; 19(4): 160–4. DOI: 10.1111/chf.12038
  37. Alpert M. A. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci. 2001; 321: 225–236. DOI: 10.1097/00000441-200104000-00003
  38. Poirier P., Giles T.D., Bray G.A., et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association scientific statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006; 113: 898–918. DOI: 10.1161/circulationaha.106.171016
  39. Paulus W.J., Tschope C., Sanderson J.E., et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J. 2007; 28(20): 2539–2550. DOI: 10.1093/eurheartj/ehm380
  40. Национальные рекомендации ОССН, РКО и РНМОТ по диагностике и лечению ХСН (четвертый пересмотр) 2012 г. Сердечная недостаточность. 2013; 14(7): 35. DOI: 10.18087/cardio.2475 [Natsionalnyye rekomendatsii OSSN. RKO i RNMOT po diagnostike i lecheniyu KhSN (chetvertyy peresmotr) 2012 g. Serdechnaya nedostatochnost. 2013; 14(7): 35. (In Russ)]
  41. Morbid obesity. Perioperative management. Alvarez A., et al., eds. 2010; 246 p. DOI: 10.19052/ruls.vol1.iss77.6
  42. Crujeiras A.B., Díaz-Lagares A., Carreira M.C., et al. Oxidative stress associated to dysfunctional adipose tissue: a potential link between obesity, type 2 diabetes mellitus and breast cancer. Free Radic Res. 2013; 47(4): 243–56. DOI: 10.3109/10715762.2013.772604
  43. Frank G.R., Fox J., Candela N., et al. Severe obesity and diabetes insipidus in a patient with PCSK1 deficiency. Mol Genet Metab. 2013; 110(1–2): 191–4. DOI: 10.1016/j.ymgme.2013.04.005
  44. Fronczyk A., Molęda P., Safranow K., et al. Increased concentration of C-reactive protein in obese patients with type 2 diabetes is associated with obesity and presence of diabetes but not with macrovascular and microvascular complications or glycemic control. Inflammation. 2014; 37(2): 349–57. DOI: 10.1007/s10753-013-9746-4
  45. Lim R.B., Chen C., Naidoo N., et al. Anthropometrics indices of obesity, and all-cause and cardiovascular disease-related mortality, in an Asian cohort with type 2 diabetes mellitus. Diabetes Metab. 2015; 41(4): 291–300. DOI: 10.1016/j.diabet.2014.12.003
  46. Hossain P., Kawar B., El Nahas M. Obesity and diabetes in the developing world: a growing challenge. N Engl J Med. 2007; 356: 213–215. doi.org/10.1056/nejmp068177
  47. Рекомендации по диабету, предиабету и сердечно-сосудистым заболеваниям. EASD/ESC 2013 Российский кардиологический журнал. 2014; 3(107): 7–61. DOI: 10.1016/j.rec.2020.04.007 [Rekomendatsii po diabetu. prediabetu i serdechno-sosudistym zabolevaniyam. EASD/ESC 2013 Rossiyskiy kardiologicheskiy zhurnal. 2014; 3(107): 7–61. (In Russ)]
  48. Mahajan V., Hashmi J., Singh R., et al. Comparative evaluation of gastric pH and volume in morbidly obese and lean patients undergoing elective surgery and effect of aspiration prophylaxis. J Clin Anesth. 2015; 27(5): 396–400. DOI: 10.1016/j.jclinane.2015.03.004
  49. Cook-Sather S.D., Gallagher P.R., Kruge L.E., et al. Overweight/obesity and gastric fluid characteristics in pediatric day surgery: implications for fasting guidelines and pulmonary aspiration risk. Anesth Analg. 2009; 109(3): 727–36. DOI: 10.1213/ane.0b013e3181b085ff. doi.org/10.1213/ane.0b013e3181b085ff
  50. Wang T.F., Milligan P.E., Wong C.A., et al. Efficacy and safety of high-dose thromboprophylaxis in morbidly obese inpatients. Thromb Haemost. 2014; 111(1): 88–93. DOI: 10.1160/th13-01-0042
  51. Steele K.E., Canner J., Prokopowicz G., et al. The EFFORT trial: Preoperative enoxaparin versus postoperative fondaparinux for thromboprophylaxis in bariatric surgical patients: a randomized double-blind pilot trial. Surg Obes Relat Dis. 2015; 11(3): 672–83. DOI: 10.1016/j.soard.2014.10.003
  52. Ho K.M., Bham E., Pavey W. Incidence of Venous Thromboembolism and Benefits and Risks of Thromboprophylaxis After Cardiac Surgery: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2015; 4(10): e002652. DOI: 10.1161/jaha.115.002652
  53. Steib A., Degirmenci S.E., Junke E., et al. Once versus twice daily injection of enoxaparin for thromboprophylaxis in bariatric surgery: effects on antifactor Xa activity and procoagulant microparticles. A randomized controlled study. Surg Obes Relat Dis. 2016; 12(3): 613–621. DOI: 10.1016/j.soard.2015.08.505
  54. Dixon B.J., Dixon J.B., Carden J.R., et al. Preoxygenation is more effective in the 25 degrees head-up position than in the supine position in severely obese patients: a randomized controlled study. Anesthesiology. 2005; 102(6): 1110–5. DOI: 10.1097/00000542-200506000-00009
  55. Lane S., Saunders D., Schofield A., et al. A prospective, randomised controlled trial comparing the efficacy of pre-oxygenation in the 20 degrees head-up vs supine position. Anaesthesia. 2005; 60(11): 1064–7. DOI: 10.1111/j.1365-2044.2005.04374.x
  56. Rao S.L., Kunselman A.R., Schuler H.G., Des Harnais S. Laryngoscopy and tracheal intubation in the head-elevated position in obese patients: a randomized, controlled, equivalence trial. Anesth Analg. 2008; 107(6): 1912–8. DOI: 10.1213/ane.0b013e31818556ed
  57. Valenza F., Vagginelli F., Tiby A., et al. Effects of the beach chair position, positive end-expiratory pressure, and pneumoperitoneum on respiratory function in morbidly obese patients during anesthesia and paralysis Anesthesiology. 2007; 107(5): 725–32. DOI: 10.1097/01.anes.0000287026.61782.a6
  58. Brodsky J.B., Lemmens H.J., Brock-Utne J.G., et al. Morbid obesity and tracheal intubation. Anesth Analg. 2002; 94: 3732–3736. DOI: 10.1097/00000539-200203000-00047
  59. Cortínez L.I., Gambús P., Trocóniz I.F., et al. Obesity does not influence the onset and offset of sevoflurane effect as measured by the hysteresis between sevoflurane concentration and bispectral index. Anesth Analg. 2011; 113(1): 70–6. DOI: 10.1213/ane.0b013e31821f105c
  60. Pal D., Walton M.E., Lipinski W.J., et al. Determination of minimum alveolar concentration for isoflurane and sevoflurane in a rodent model of human mebolic syndrome. Anesth Analg. 2012 Feb; 114(2): 297–302. doi.org/10.1213/ane.0b013e31823ede22
  61. Gaszyński T., Wieczorek A. A comparison of BIS recordings during propofol-based total intravenous anaesthesia and sevoflurane-based inhalational anaesthesia in obese patients. Anaesth Intensive Ther. 2016; 48(4): 239–247. DOI: 10.1177/0310057×1804600509
  62. McKay R.E., Malhotra A., Cakmakkaya O.S., et al. Effect of increased body mass index and anaesthetic duration on recovery of protective airway reflexes after sevoflurane vs desflurane. Br J Anaesth. 2010 Feb; 104(2): 175–82. DOI: 10.1093/bja/aep374
  63. El-Baraky I.A., Abbassi M.M., Marei T.A., et al. Obesity Does Not Affect Propofol Pharmacokinetics During Hypothermic Cardiopulmonary Bypass. J Cardiothorac Vasc Anesth. 2016; 30(4): 876–83. DOI: 10.1053/j.jvca.2016.02.003
  64. Tachibana N., Niiyama Y., Yamakage M. Evaluation of bias in predicted and measured propofol concentrations during target-controlled infusions in obese Japanese patients: an open-label comparative study. Eur J Anaesthesiol. 2014 Dec; 31(12): 701–7. DOI: 10.1097/eja.0000000000000154
  65. Juvin P., Vadam C., Malek L., et al. Postoperative recovery after desflurane, propofol, or isoflurane anesthesia among morbidly obese patients: a prospective, randomized study. Anesth Analg. 2000; 91: 714–719. DOI: 10.1097/00000539-200009000-00041
  66. Strum E.M., Szenohradszki J., Kaufman W.A., et al. Emergence and recovery characteristics of desflurane versus sevoflurane in morbidly obese adult surgical patients: a prospective, randomized study. Anesth Analg. 2004; 99: 1848–1853. DOI: 10.1213/01.ane.0000136472.01079.95
  67. Baerdemaeker L.E., Struys М.М. Optimization of desflurane administration in morbidly obese patients. Br J Anesth. 2003; 91(5): 638–650. DOI: 10.1093/bja/aeg236
  68. La Colla L., Albertin A., La Colla G., et al. Predictive performance of the ‘Minto’ remifentanil pharmacokinetic parameter set in morbidly obese patients ensuing from a new method for calculating lean body mass. Clin Pharmacokinet. 2010; 49(2): 131–9. DOI: 10.2165/11317690-000000000-00000
  69. Shibutani K., Inchiosa M.A. Jr., Sawada K., et al. Pharmacokinetic mass of fentanyl for postoperative analgesia in lean and obese patients. Br J Anaesth. 2005; 95(3): 377–83. DOI: 10.1097/00000539-199902001-00378
  70. Harbut P., Gozdzik W., Stjernfält E., et al. Continuous positive airway pressure/pressure support pre-oxygenation of morbidly obese patients. Acta Anaesthesiol Scand. 2014; 58(6): 675–80. DOI: 10.1111/aas.12317
  71. Cressey D.M., Berthoud M.C., Reilly C.S. Effectiveness of continuous positive airway pressure to enhance pre-oxygenation in morbidly obese women. Anaesthesia. 2001 Jul; 56(7): 680–4. DOI: 10.1046/j.1365-2044.2001.01374-3.x
  72. Delay J.M., Sebbane M., Jung B., et al. The effectiveness of noninvasive positive pressure ventilation to enhance preoxygenation in morbidly obese patients: a randomized controlled study. Anesth Analg. 2008; 107(5): 1707–13. DOI: 10.1213/ane.0b013e318183909b
  73. Rajan S., Joseph N., Tosh P., et al. Effects of Preoxygenation with Tidal Volume Breathing Followed by Apneic Oxygenation with and without Continuous Positive Airway Pressure on Duration of Safe Apnea Time and Arterial Blood Gases. Anesth Essays Res. 2018; 12(1): 229–233. DOI: 10.4103/aer.aer_219_17
  74. Wong D.T., Dallaire A., Singh K.P., et al. High-Flow Nasal Oxygen Improves Safe Apnea Time in Morbidly Obese Patients Undergoing General Anesthesia: A Randomized Controlled Trial. Anesth Analg. 2019; 129(4): 1130–1136. DOI: 10.1213/ane.0000000000003966
  75. Stéphan F., Bérard L., Rézaiguia-Delclaux S. High-Flow Nasal Cannula Therapy Versus Intermittent Noninvasive Ventilation in Obese Subjects After Cardiothoracic Surgery. Respir Care. 2017; 62(9): 1193–1202. DOI: 10.4187/respcare.05473
  76. Groves N., Tobin A. High flow nasal oxygen generates positive airway pressure in adult volunteers. Aust Crit Care. 2007; 20: 126–131. DOI: 10.1016/j.aucc.2007.08.001
  77. Anzueto A., Frutos-Vivar F., Esteban A., et al. Influence of body mass index on outcome of the mechanically ventilated patients. Thorax. 2011; 66(1): 66–73. DOI: 10.1136/thx.2010.145086
  78. Ortiz V.E., Vidal-Melo M.F., Walsh J.L. Strategies for managing oxygenation in obese patients undergoing laparoscopic surgery. Surg Obes Relat Dis. 2015; 11(3): 721–8. DOI: 10.1016/j.soard.2014.11.021
  79. Fernandez-Bustamante A., Wood C.L., Tran Z.V., et al. Intraoperative ventilation: incidence and risk factors for receiving large tidal volumes during general anesthesia. BMC Anesthesiol. 2011; 11: 22. DOI: 10.1186/1471-2253-11-22
  80. Coussa M., Proietti S., Schnyder P., et al. Prevention of atelectasis formation during the induction of general anesthesia in morbidly obese patients. Anesth Analg. 2004; 98(5): 1491–5. DOI: 10.1213/01.ane.0000111743.61132.99
  81. Pelosi P., Ravagnan I., Giurati G., et al. Positive end-expiratory pressure improves respiratory function in obese but not in normal subjects during anesthesia and paralysis. Anesthesiology. 1999; 91(5): 1221–31. DOI: 10.1097/00132586-200012000-00043
  82. Nestler C., Simon P., Petroff D., et al. Individualized positive end-expiratory pressure in obese patients during general anaesthesia: a randomized controlled clinical trial using electrical impedance tomography. Br J Anaesth. 2017 Dec 1; 119(6): 1194–1205. DOI: 10.1093/bja/aex192
  83. Tafer N., Nouette-Gaulain K., Richebé P., et al. Effectiveness of a recruitment manoeuvre and positive end-expiratory pressure on respiratory mechanics during laparoscopic bariatric surgery. Ann Fr Anesth Reanim. 2009; 28(2): 130–4. DOI: 10.1016/j.annfar.2008.12.022
  84. Chalhoub V., Yazigi A., Sleilaty G., et al. Effect of vital capacity manoeuvres on arterial oxygenation in morbidly obese patients undergoing open bariatric surgery. Eur J Anaesthesiol. 2007; 24(3): 283–8. DOI: 10.1017/s0265021506001529
  85. Almarakbi W.A., Fawzi H.M., Alhashemi J.A. Effects of four intraoperative ventilatory strategies on respiratory compliance and gas exchange during laparoscopic gastric banding in obese patients. Br J Anaesth. 2009; 102(6): 862–8. DOI: 10.1093/bja/aep084
  86. Whalen F.X., Gajic O., Thompson G.B. The effects of the alveolar recruitment maneuver and positive end-expiratory pressure on arterial oxygenation during laparoscopic bariatric surgery. Anesth Analg. 2006; 102: 298–305. DOI: 10.1213/01.ane.0000183655.57275.7a
  87. Talab H.F., Zabani I.A., Abdelrahman H.S., et al. Intraoperative ventilatory strategies for prevention of pulmonary atelectasis in obese patients undergoing laparoscopic bariatric surgery. Anesth Analg. 2009; 109(5): 1511–6. DOI: 10.1213/ane.0b013e3181ba7945
  88. Wei K., Min S., Cao J., et al. Repeated alveolar recruitment maneuvers with and without positive end-expiratory pressure during bariatric surgery: a randomized trial. Minerva Anestesiol. 2018; 84(4): 463–472. DOI: 10.1097/01.aoa.0000530016.91344.81
  89. Writing Committee for the PROBESE Collaborative Group of the PROtective VEntilation Network (PROVEnet) for the Clinical Trial Network of the European Society of Anaesthesiology, Bluth T, Serpa Neto A, Effect of Intraoperative High Positive End-Expiratory Pressure (PEEP) With Recruitment Maneuvers vs Low PEEP on Postoperative Pulmonary Complications in Obese Patients: A Randomized Clinical Trial. JAMA. 2019; 321(23): 2292–2305. DOI: 10.1001/jama.2019.7505
  90. Ball L., Hemmes S.N.T., Serpa Neto A., Bluth T. Intraoperative ventilation settings and their associations with postoperative pulmonary complications in obese patients. Br J Anaesth. 2018; 121(4): 899–908. DOI: 10.1016/j.bja.2018.04.021
  91. Tusman G., Groisman I., Fiolo F.E., et al. Noninvasive monitoring of lung recruitment maneuvers in morbidly obese patients: The role of pulse oximetry and volumetric capnography. Anesth Analg. 2014; 118: 137–44. DOI: 10.1213/01.ane.0000438350.29240.08
  92. Kim H.J., Kim W.H., Lim H.W., et al. Obesity is independently associated with spinal anesthesia outcomes: a prospective observation study. PLoS One. 2015; 10(4): 0124264. DOI: 10.1371/journal.pone.0124264
  93. Rodrigues F.R., Brandão M.J. Regional anesthesia for cesarean section in obese pregnant women: a retrospective study. Rev Bras Anestesiol. 2011; 61(1): 13–20. DOI: 10.1016/s0034-7094(11)70002-2
  94. Nielsen K.C., Guller U., Steele S.M., et al. Influence of obesity on surgical regional anesthesia in the ambulatory setting: an analysis of 9,038 blocks. Anesthesiology. 2005; 102(1): 181–7. DOI: 10.1097/00000542-200501000-00027
  95. Ikramuddin S., Blackstone R.P., Brancatisano A., et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. JAMA. 2014; 312(9): 915–22. DOI: 10.1001/jama.2014.10540
  96. Symeonidis D., Baloyiannis I., Georgopoulou S., et al. Laparoscopic ventral hernia repair in obese patients under spinal anesthesia. Int J Surg. 2013; 11(9): 926–9. DOI: 10.1016/j.ijsu.2013.07.002
  97. Tonidandel A., Booth J., D’Angelo R. Anesthetic and obstetric outcomes in morbidly obese parturients: a 20-year follow-up retrospective cohort study. Int J Obstet Anesth. 2014; 23(4): 357–64. DOI: 10.1097/01.aoa.0000472733.35350.93
  98. Sudré E.C., de Batista P.R., Castiglia Y.M. Longer Immediate Recovery Time After Anesthesia Increases Risk of Respiratory Complications After Laparotomy for Bariatric Surgery: a Randomized Clinical Trial and a Cohort Study. Obes Surg. 2015; 25(11): 2205–12. DOI: 10.1007/s11695-015-1855-8
  99. Loupec T., Frasca D., Rousseau N., et al. Appropriate dosing of sugammadex to reverse deep rocuronium-induced neuromuscular blockade in morbidly obese patients. Anaesthesia. 2016; 71(3): 265–72. DOI: 10.1111/anae.13344
  100. Llauradó S., Sabaté A., Ferreres E., et al. Postoperative respiratory outcomes in laparoscopic bariatric surgery: comparison of a prospective group of patients whose neuromuscular blockade was reverted with sugammadex and a historical one reverted with neostigmine. Rev Esp Anestesiol Reanim. 2014; 61(10): 565–70. DOI: 10.1016/j.redar.2013.11.009
  101. Monk T.G., Rietbergen H., Woo T., et al. Use of Sugammadex in Patients with Obesity: A Pooled Analysis. Am J Ther. 2017; 24(5): 507–e516. DOI: 10.1016/j.redar.2013.11.009
  102. Carron M., Galzignato C., Godi I., et al. Benefit of sugammadex on lung ventilation evaluated with electrical impedance tomography in a morbidly obese patient undergoing bariatric surgery. J Clin Anesth. 2016; 31: 78–9. DOI: 10.1016/j.jclinane.2016.01.018
  103. Castro D.S. Jr., Leão P., Borges S., et al. Sugammadex reduces postoperative pain after laparoscopic bariatric surgery: a randomized trial. Surg Laparosc Endosc Percutan Tech. 2014 Oct; 24(5): 420–3. DOI: 10.1097/sle.0000000000000049
  104. Mahul M., Jung B., Galia F., et al. Spontaneous breathing trial and post-extubation work of breathing in morbidly obese critically ill patients. Crit Care. 2016; 20(1): 346. DOI: 10.1186/s13054-016-1457-4
  105. Lin H.T., Ting P.C., Chang W.Y., et al. Predictive risk index and prognosis of postoperative reintubation after planned extubation during general anesthesia: a single-center retrospective case-controlled study in Taiwan from 2005 to 2009. Acta Anaesthesiol Taiwan. 2013; 51(1): 3–9. DOI: 10.1016/j.aat.2013.03.004
  106. Parlow J.L., Ahn R., Milne B. Obesity is a risk factor for failure of “fast track” extubation following coronary artery bypass surgery. Can J Anaesth. 2006; 53(3): 288–94. DOI: 10.1007/bf03022217
  107. El-Solh A.A., Aquilina A., Pineda L., et al. Noninvasive ventilation for prevention of post-extubation respiratory failure in obese patients. Eur Respir J. 2006; 28(3): 588–95. DOI: 10.1183/09031936.06.00150705
  108. Nava S., Gregoretti C., Fanfulla F., et al. Noninvasive ventilation to prevent respiratory failure after extubation in high-risk patients. Crit Care Med. 2005 Nov; 33(11): 2465–70. DOI: 10.1097/01.ccm.0000186416.44752.72
  109. Lin C., Yu H., Fan H., et al. The efficacy of noninvasive ventilation in managing postextubation respiratory failure: a meta-analysis. Heart Lung. 2014; 43(2): 99–104. DOI: 10.1016/j.hrtlng.2014.01.002
  110. Ziemann-Gimmel P., Hensel P., Koppman J., et al. Multimodal analgesia reducesnarcotic requirements and antiemetic rescue medication in laparoscopic Roux-en-Y gastricbypass surgery. Surg Obes Relat Dis. 2013; 9(6): 975–80. DOI: 10.1016/j.soard.2013.02.003
  111. Song K., Melroy M.J., Whipple O.C. Optimizing multimodal analgesia with intravenousacetaminophen and opioids in postoperative bariatric patients. Pharmacotherapy. 2014; 34(1): 14–21. DOI: 10.1002/phar.1517
  112. Madan A.K., Ternovits C.A., Speck K.E., et al. Inpatient pain medicationrequirements after laparoscopic gastric bypass. Obes Surg. 2005; 15(6): 778–81. DOI: 10.1381/0960892054222812
  113. Karlnosk R.A., Sprenker C., Puri S., et al. Reduced postoperative pain and complications after a modified multidisciplinary approach for bariatric surgery. Open Obes J. 2013; 5: 60–4. DOI: 10.2174/1876823720130508009
  114. Эпштейн С.Л. Периоперационное анестезиологическое обеспечение больных с морбидным ожирением. Регионарная анестезия и лечение острой боли. 2012. 6(3): 5–27. DOI: 10.21518/2079-701X-2013-5-6-17-27 [Epshteyn S.L. Perioperatsionnoye anesteziologicheskoye obespecheniye bolnykh s morbidnym ozhireniyem. Regionarnaya anesteziya i lecheniye ostroy boli. 2012. 6(3): 5–27. (In Russ)]
  115. Zotou A., Siampalioti A., Tagari P., et al. Does epiduralmorphine loading in addition to thoracic epidural analgesia benefit the postoperative management of morbidly obese patients undergoing open bariatric surgery? A pilot study. Obes Surg. 2014; 24(12): 2099–108. DOI: 10.1007/s11695-014-1305-z
  116. Schumann R., Shikora S., Weiss J.M., et al. A comparison of multimodal perioperative analgesia to epidural pain management after gastric bypass surgery. Anesth Analg. 2003; 96(2): 469–74. DOI: 10.1213/00000539-200302000-00032
  117. Michaloudis D., Fraidakis O., Petrou A., et al. Continuous spinal anesthesia/analgesia for perioperative management of morbidly obese patients undergoing laparotomy for gastroplastic surgery. Obes Surg. 2000; 10(3): 220–9. DOI: 10.1381/096089200321643494
  118. Nielsen K.C., Guller U., Steele S.M., et al. Influence of obesity on surgical regional anesthesia in the ambulatory setting: an analysis of 9,038 blocks. Anesthesiology. 2005; 102(1): 181–7. DOI: 10.1097/00000542-200501000-00027
  119. Franco C.D., Gloss F.J., Voronov G., et al. Supraclavicular block in the obese population: an analysis of 2020 blocks. Anesth Analg. 2006; 102(4): 1252–4. DOI: 10.1213/01.ane.0000198341.53062.a2
  120. Schroeder K., Andrei A.C., Furlong M.J., et al. The perioperative effect of increased body mass index on peripheral nerve blockade: an analysis of 528 ultrasound guided interscalene blocks. Rev Bras Anestesiol. 2012; 62(1): 28–38. DOI: 10.1016/s0034-7094(12)70100-9
  121. Naja Z.M., Naccache N., Ziade F., et al. Multilevel nerve stimulator guided paravertebral block as a sole anesthetic technique for breast cancer surgery in morbidly obese patients. J Anesth. 2011; 25(5): 760–4. DOI: 10.1007/s00540-011-1194-4
  122. Brodsky J.B., Mariano E.R. Regional anaesthesia in the obese patient: lost landmarks and evolving ultrasound guidance. Best Pract Res Clin Anaesthesiol. 2011; 25(1): 61–72. DOI: 10.1016/j.bpa.2010.12.005
  123. Rottenstreich A., Levin G., Elchalal U., et al. The effect on thrombin generation and anti-Xa levels of thromboprophylaxis dose adjustment in post-cesarean obese patients — A prospective cohort study. Thromb Res. 2018; 170: 69–74. DOI: 10.1016/j.thromres.2018.08.007
  124. Rottenstreich A., Elazary R., Yuval J.B., et al. Assessment of the procoagulant potential after laparoscopic sleeve gastrectomy: a potential role for extended thromboprophylaxis. Surg Obes Relat Dis. 2018; 14(1): 1–7. DOI: 10.1016/j.soard.2017.09.526
  125. Moaad F., Zakhar B., Anton K., et al. Is LMWH Sufficient for Anticoagulant Prophylaxis in Bariatric Surgery? Prospective Study. Obes Surg. 2017; 27(9): 2331–2337. DOI: 10.1007/s11695-017-2638-1
  126. Moulin P.A., Dutour A., Ancel P., et al. Perioperative thromboprophylaxis in severely obese patients undergoing bariatric surgery: insights from a French national survey. Surg Obes Relat Dis. 2017 Feb; 13(2): 320–326. DOI: 10.1016/j.soard.2016.08.497
  127. Steib A., Degirmenci S.E., Junke E., et al. Once versus twice daily injection of enoxaparin for thromboprophylaxis in bariatric surgery: effects on antifactor Xa activity and procoagulant microparticles. A randomized controlled study. Surg Obes Relat Dis. 2016; 12(3): 613–621. DOI: 10.1016/j.soard.2015.08.505
  128. Magee C.J., Barry J., Javed S., et al. Extended thromboprophylaxis reduces incidence of postoperative venous thromboembolism in laparoscopic bariatric surgery. Surg Obes Relat Dis. 2010; 6(3): 322–5. DOI: 10.1016/j.soard.2010.02.046
  129. Rocha A., et al. Risk of venous thromboembolism and efficacy of thromboprophylaxis in hospitalized obese medical patients and in obese patients undergoing bariatric surgery. Obes Surg. 2006; 16(12): 1645–1655. DOI: 10.1381/096089206779319383
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2021 ANNALS OF CRITICAL CARE