Критический анализ концепции «цитокиновой бури» у пациентов с новой коронавирусной инфекцией COVID-19. Обзор литературы
#2021-1
PDF_2021-1_57-68
HTML_2021-1_57-68

Ключевые слова

COVID-19
SARS-CoV-2
цитокины
«цитокиновая буря»
гипервоспалительный синдром
иммуномодулирующая терапия

Как цитировать

Бобкова СС, Жуков АА, Проценко ДН, Самойленко ВВ, Тюрин ИН Критический анализ концепции «цитокиновой бури» у пациентов с новой коронавирусной инфекцией COVID-19. Обзор литературы. Вестник интенсивной терапии имени А.И. Салтанова. 2021;(1):57–68. doi:10.21320/1818-474X-2021-1-57-68.

Статистика

Просмотров аннотации: 132
PDF_2021-1_57-68 загрузок: 6
HTML_2021-1_57-68 загрузок: 3
Статистика с 21.01.2023

Язык

English Русский

Мы в соцсетях

Ключевые слова

Аннотация

Актуальность. Новая коронавирусная инфекция, вызванная вирусом SARS-CoV-2, характеризуется системной гипервоспалительной реакцией с выраженным повышением содержания провоспалительных цитокинов, получившей название «цитокиновая буря». По современным представлениям, «цитокиновая буря» является ведущей причиной развития тяжелой клинической картины COVID-19 и прогрессирования заболевания до полиорганной недостаточности.

Цель исследования. Проведение критического анализа концепции «цитокиновой бури» у пациентов с COVID-19 на основании данных литературы.

Результаты. При сравнении цитокинового ответа при COVID-19 и других синдромах, характеризующихся феноменом «цитокиновой бури», в частности гемофагоцитарного лимфогистиоцитоза и синдрома высвобождения цитокинов, выявляются существенные различия, и поэтому патогенез возникновения нарушений цитокинового ответа при COVID-19 нуждается в дальнейшем уточнении. К настоящему времени накоплены клинические данные, свидетельствующие о потенциальной пользе применения противовоспалительной иммуномодулирующей терапии у пациентов с тяжелым течением COVID-19. Несмотря на проведенные многочисленные исследования по оценке эффективности и безопасности таргетной терапии иммуномодулирующими препаратами, однозначных выводов и рекомендаций по их применению нет. Кроме того, результаты ряда работ ставят под сомнение ведущую роль «цитокиновой бури» в патогенезе прогрессирования COVID-19.

Заключение. Имеющиеся данные позволяют предположить, что нарушение регуляции цитокинового ответа является одним из механизмов, лежащих в основе прогрессирования COVID-19 и развития органной недостаточности. В то же время выраженность данных нарушений у части больных не позволяет объяснить развитие тяжелых осложнений, в связи с чем необходим поиск альтернативных патогенетических механизмов.

https://doi.org/10.21320/1818-474X-2021-1-57-68
PDF_2021-1_57-68
HTML_2021-1_57-68

Библиографические ссылки

  1. Cohen S., Bigazzi P.E., Yoshida T. Commentary: Similarities of T cell function in cell-mediated immunity and antibody production. Cell Immunol. 1974; 12: 150–159. DOI: 10.1016/0008-8749(74)90066-5
  2. Curfs J., Meis J., Hoogkamp-Korstanje A. A Primer on Cytokines: Sources, Receptors, Effects, and Inducers.Clinical Microbiology Reviews. 1997: 742–780. DOI: 10.1128/CMR.10.4.742-780.1997
  3. Dinarello C.A. Historical insights into cytokines. Eur J Immunol. 2007; 37(Suppl. 1): S34–S45. DOI: 10.1002/eji.200737772
  4. Gulati K., Guhathakurta S., Joshi J., et al. Cytokines and their Role in Health and Disease: A Brief Overview. MOJ Immunol. 2016; 4(2): 00121. DOI: 10.15406/moji.2016.04.00121
  5. Oppenheim J.J. Cytokines: past, present, and future. Int J Hematol. 2001; 74(1): 3–8. DOI: 10.1007/BF02982543. PMID: 11530802
  6. Billingham M.E. Cytokines as inflammatory mediators. Br Med Bull. 1987; 43(2): 350–370. PMID: 3319033. DOI: 10.1093/oxfordjournals.bmb.a072187
  7. Alan A., Larry B. Cytokines and Inflammation. ImmunoMethods, 1993; 3(1): 3–12. DOI: 10.1006/immu.1993.1034
  8. Kany S., Vollrath J.T., Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci. 2019; 20(23): DOI: 10.3390/ijms20236008
  9. Thijs L.G., Hack C.E. Time course of cytokine levels in sepsis. Intensive Care Med. 1995; 21(Suppl 2): S258–S263. DOI: 10.1007/BF01740764
  10. Chousterman B.G., Swirski F.K., Weber G.F. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017; 39(5): 517–528. DOI: 10.1007/s00281-017-0639-8
  11. Wang H., Ma S. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Emerg Med. 2008; 26(6): 711–715. DOI: 10.1016/j.ajem.2007.10.031
  12. Ferrara J.L., Abhyankar S., Gilliland D.G. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc. 1993; 25(1 Pt 2): 1216–1217.
  13. Tisoncik J.R., Korth M.J., Simmons C.P., et al. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012; 76(1): 16–32. DOI: 10.1128/MMBR.05015-11
  14. Fajgenbaum D.C., June C.H. Cytokine Storm. N Engl J Med. 2020; 383(23): 255–2273. DOI: 10.1056/NEJMra2026131
  15. Ferrara J.L. Cytokine dysregulation as a mechanism of graft versus host disease. Curr Opin Immunol. 1993; 5(5): 794–799. DOI: 10.1016/0952-7915(93)90139-j
  16. Hussell T., Goulding J. Structured regulation of inflammation during respiratory viral infection. Lancet Infect Dis. 2010; 10(5): 360–366. DOI: 10.1016/S1473-3099(10)70067-0
  17. Teijaro J.R. Cytokine storms in infectious diseases. Semin Immunopathol. 2017; 39(5): 501–503. DOI: 10.1007/s00281-017-0640-2
  18. Barry S.M., Johnson M.A., Janossy G. Cytopathology or immunopathology? The puzzle of cytomegalovirus pneumonitis revisited. Bone Marrow Transplant. 2000; 26(6): 591–597. DOI: 10.1038/sj.bmt.1702562
  19. Srikiatkhachorn A., Mathew A., Rothman A.L. Immune-mediated cytokine storm and its role in severe dengue. Semin Immunopathol. 2017; 39(5): 563–574. DOI: 10.1007/s00281-017-0625-1
  20. Borges A.A., Campos G.M., Moreli M.L., et al. Hantavirus cardiopulmonary syndrome: immune response and pathogenesis. Microbes Infect. 2006; 8(8): 2324–2330. DOI: 10.1016/j.micinf.2006.04.019
  21. La Gruta N.L., Kedzierska K., Stambas J., Doherty P.C. A question of self-preservation: immunopathology in influenza virus infection. Immunol Cell Biol. 2007; 85(2): 85–92. DOI: 10.1038/sj.icb.7100026
  22. Liu Q., Zhou Y.-H., Yang Z.-Q. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016; 13:3–10. DOI: 10.1038/cmi.2015.74
  23. Guo X.J., Thomas P.G. New fronts emerge in the influenza cytokine storm. Semin Immunopathol. 2017; 39(5): 541–550. DOI: 10.1007/s00281-017-0636-y
  24. Huang K.J., Su I.J., Theron M., et al. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol. 2005; 75(2): 185–194. DOI: 10.1002/jmv.20255
  25. Thiel V., Weber F. Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev. 2008; 19(2):121–132. DOI: 10.1016/j.cytogfr.2008.01.001
  26. Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017; 39(5): 529–539. DOI: 10.1007/s00281-017-0629-x
  27. Bhattad S. Cytokine Storm Syndrome: What Every Physician Must Know Today? Pediatr Inf Dis. 2020; 2(2): 79–81. DOI: 10.5005/jp-journals-10081-1251
  28. Canna S.W., Cron R.Q. Highways to hell: Mechanism-based management of cytokine storm syndromes. J Allergy Clin Immunol. 2020; 146(5): 949–959. DOI: 10.1016/j.jaci.2020.09.016
  29. Llewelyn M., Cohen J. Superantigens: microbial agents that corrupt immunity. Lancet Infect Dis. 2002; 2(3): 156–162. DOI: 10.1016/s1473-3099(02)00222-0
  30. Papageorgiou A.C., Acharya K.R. Microbial superantigens: from structure to function. Trends Microbiol. 2000; 8(8): 369–375. DOI: 10.1016/s0966-842x(00)01793-5
  31. Jessen B., Kögl T., Sepulveda F.E., et al. Graded defects in cytotoxicity determine severity of hemophagocytic lymphohistiocytosis in humans and mice. Front Immunol. 2013; 4: 448. DOI: 10.3389/fimmu.2013.00448
  32. Olejnik J., Hume A.J., Mühlberger E. Toll-like receptor 4 in acute viral infection: Too much of a good thing. PLoS Pathog. 2018; 14(12): e1007390. DOI: 10.1371/journal.ppat.1007390
  33. Bode S., Ammann S., Al-Herz W., et al. The syndrome of hemophagocytic lymphohistiocytosis in primary immunodeficiencies: implications for differential diagnosis and pathogenesis. Haematologica. 2015; 100(7): 978–988. DOI: 10.3324/haematol.2014.121608
  34. Booth C., Gilmour K.C., Veys P., et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011; 117: 53–62.
  35. Chatenoud L., Bach J.F. Activation lymphocytaire T induite par les anticorps monoclonaux anti-CD3: physiopathologie du relargage de cytokines. C R Seances Soc Biol Fil. 1991; 185(5): 268–277.
  36. Lee D.W., Gardner R., Porter D.L., et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014; 124(2): 188–195. DOI: 10.1182/blood-2014-05-552729
  37. Shimabukuro-Vornhagen A., Gödel P., Subklewe M., et al. Cytokine release syndrome. J Immunother Cancer. 2018; 6(1): 56. DOI: 10.1186/s40425-018-0343-9
  38. Xu X.J., Tang Y.M. Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Lett. 2014; 343(2):172–178. DOI: 10.1016/j.canlet.2013.10.004
  39. García Roche A., Díaz Lagares C., Élez E., Ferrer Roca R. Cytokine release syndrome. Reviewing a new entity in the intensive care unit. Med Intensiva. 2019; 43(8): 480–488. DOI: 10.1016/j.medin.2019.01.009
  40. Le R.Q., Li L., Yuan W., et al. FDA Approval Summary: Tocilizumab for Treatment of Chimeric Antigen Receptor T Cell-Induced Severe or Life-Threatening Cytokine Release Syndrome. Oncologist. 2018; 23(8): 943–947. DOI: 10.1634/theoncologist.2018-0028
  41. Farquhar J.W., Claireaux A.E. Familial haemophagocytic reticulosis. Arch Dis Child. 1952; 27(136): 519–525. DOI: 10.1136/adc.27.136.519
  42. Risdall R.J., McKenna R.W., Nesbit M.E., et al. Virus-associated hemophagocytic syndrome: a benign histiocytic proliferation distinct from malignant histiocytosis. Cancer. 1979; 44(3): 993–1002. DOI: 10.1002/1097-0142(197909)44:3<993::aid-cncr2820440329>3.0.co;2-5
  43. Tiab M., Mechinaud F., Harousseau J.L. Haemophagocytic syndrome associated with infections. Baillieres Best Pract Res Clin Haematol. 2000; 13(2): 163–178. DOI: 10.1053/beha.2000.0066
  44. Rouphael N.G., Talati N.J., Vaughan C., et al. Infections associated with haemophagocytic syndrome. Lancet Infect Dis. 2007; 7(12): 814–822. DOI: 10.1016/S1473-3099(07)70290-6
  45. Chen J., Wang X., He P., et al. Viral etiology, clinical and laboratory features of adult hemophagocytic lymphohistiocytosis. J Med Virol. 2016; 88(3): 541–549. DOI: 10.1002/jmv.24359
  46. Fardet L., Galicier L., Lambotte O., et al. Development and validation of the HScore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol. 2014; 66(9): 2613–2620. DOI: 10.1002/art.38690
  47. Jordan M.B., Allen C.E., Greenberg J., et al. Challenges in the diagnosis of hemophagocytic lymphohistiocytosis: Recommendations from the North American Consortium for Histiocytosis (NACHO). Pediatr Blood Cancer. 2019; 66(11): e27929. DOI: 10.1002/pbc.27929
  48. Ramos-Casals M., Brito-Zerón P., López-Guillermo A., et al. Adult haemophagocytic syndrome. Lancet. 2014; 383(9927): 1503–1516. DOI: 10.1016/S0140-6736(13)61048-X
  49. Canna S.W., Behrens E.M. Making sense of the cytokine storm: a conceptual framework for understanding, diagnosing, and treating hemophagocytic syndromes. Pediatr Clin North Am. 2012; 59(2): 329–344. DOI: 10.1016/j.pcl.2012.03.002
  50. La Rosée P., Horne A., Hines M., et al. Recommendations for the management of hemophagocytic lymphohistiocytosis in adults. Blood. 2019; 133(23): 2465–2477. DOI: 10.1182/blood.2018894618
  51. Hadchouel M., Prieur A.M., Griscelli C. Acute hemorrhagic, hepatic, and neurologic manifestations in juvenile rheumatoid arthritis: possible relationship to drugs or infection. J Pediatr. 1985; 106(4): 561–566. DOI: 10.1016/s0022-3476(85)80072-x
  52. Crayne C.B., Albeituni S., Nichols K.E., Cron R.Q. The Immunology of Macrophage Activation Syndrome. Front Immunol. 2019; 10: DOI: 10.3389/fimmu.2019.00119
  53. Bracaglia C., Prencipe G., De Benedetti F. Macrophage Activation Syndrome: different mechanisms leading to a one clinical syndrome. Pediatr Rheumatol Online J. 2017; 15(1): Published 2017 Jan 17. DOI: 10.1186/s12969-016-0130-4
  54. Stuart J. Carter, Rachel S. Tattersall, Athimalaipet V. Ramanan. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment, Rheumatology. 2019; 58(1): 5–17. DOI: 10.1093/rheumatology/key006
  55. Zhao Z., Wei Y., Tao C. An enlightening role for cytokine storm in coronavirus infection. Clin Immunol. 2021; 222: DOI: 10.1016/j.clim.2020.108615
  56. Pelaia C., Tinello C., Vatrella A., et al. Lung under attack by COVID-19-induced cytokine storm: pathogenic mechanisms and therapeutic implications. Ther Adv Respir Dis. 2020; 14: 1753466620933508. DOI: 10.1177/1753466620933508
  57. Vaninov N. In the eye of the COVID-19 cytokine storm. Nat Rev Immunol. 2020; 20(5): 277. DOI: 10.1038/s41577-020-0305-6
  58. de la Rica R., Borges M., Gonzalez-Freire M. COVID-19: In the Eye of the Cytokine Storm. Front Immunol. 2020; 11: Published 2020 Sep 24. DOI: 10.3389/fimmu.2020.558898
  59. Song P., Li W., Xie J., Hou Y., You C. Cytokine storm induced by SARS-CoV-2. Clin Chim Acta. 2020; 509: 280–287. DOI: 10.1016/j.cca.2020.06.017
  60. Khosroshahi L.M., Rezaei N. Dysregulation of the Immune Response in COVID-19. Cell Biol Int. 2020: 1002/cbin.11517. DOI: 10.1002/cbin.11517
  61. Mangalmurti N., Hunter C.A. Cytokine Storms: Understanding COVID-19. Immunity. 2020; 53(1): 19–25. DOI: 10.1016/j.immuni.2020.06.017
  62. Potempa L.A., Rajab I.M., Hart P.C., et al. Insights into the Use of C-Reactive Protein as a Diagnostic Index of Disease Severity in COVID-19 Infections. Am J Trop Med Hyg. 2020; 103(2): 561–563. DOI: 10.4269/ajtmh.20-0473
  63. Yonas E., Alwi I., Pranata R., et al. Elevated interleukin levels are associated with higher severity and mortality in COVID 19 — A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2020; 14(6): 2219–2230. DOI: 10.1016/j.dsx.2020.11.011
  64. Lavillegrand J.R., Garnier M., Spaeth A., et al. Elevated plasma IL-6 and CRP levels are associated with adverse clinical outcomes and death in critically ill SARS-CoV-2 patients: inflammatory response of SARS-CoV-2 patients. Ann. Intensive Care 11, 9 (2021). DOI: 10.1186/s13613-020-00798-x.
  65. Moore J.B., June C.H. Cytokine release syndrome in severe COVID-19. Science. 2020; 368(6490): 473–474. DOI: 10.1126/science.abb8925
  66. McGonagle D., Sharif K., O’Regan A., Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19(6): DOI: 10.1016/j.autrev.2020.102537
  67. Langer-Gould A., Smith J.B., Gonzales E.G., et al. Early identification of COVID-19 cytokine storm and treatment with anakinra or tocilizumab. Int J Infect Dis. 2020; 99: 291–297. DOI: 10.1016/j.ijid.2020.07.081
  68. Bhaskar S., Sinha A., Banach M., et al. Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Front Immunol. 2020; 11: 1648. Published 2020 Jul 10. DOI: 10.3389/fimmu.2020.01648
  69. Caricchio R., Gallucci M., Dass C., et al. Preliminary predictive criteria for COVID-19 cytokine storm. Annals of the Rheumatic Diseases. 2021; 80(1): 88–95. DOI: 10.1136/annrheumdis-2020-218323
  70. Retamozo S., Brito-Zerón P., Sisó-Almirall A., et al. Haemophagocytic syndrome and COVID-19. Clin Rheumatol. 2021. DOI: 10.1007/s10067-020-05569-4
  71. Morris S.B., Schwartz N.G., Patel P., et al. Case Series of Multisystem Inflammatory Syndrome in Adults Associated with SARS-CoV-2 Infection — United Kingdom and United States, March-August 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(40): 1450–1456. DOI: 10.15585/mmwr.mm6940e1
  72. Leisman D.E., Ronner L., Pinotti R., et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, metaanalysis, and comparison with other inflammatory syndromes. Lancet Respir Med. S2213–2600: 30404–30405. DOI: 10.1016/S2213-2600(20)30404-5
  73. Liu D., Zhang T., Wang Y., Xia L. Tocilizumab: The Key to Stop Coronavirus Disease 2019 (COVID-19)-Induced Cytokine Release Syndrome (CRS)? Front Med (Lausanne). 2020; 7: Published 2020 Oct 26. DOI: 10.3389/fmed.2020.571597
  74. Miao Y., Fan L., Li J.Y. Potential Treatments for COVID-19 Related Cytokine Storm — Beyond Corticosteroids. Front Immunol. 2020 Jun 16;11:1445. DOI: 10.3389/fimmu.2020.01445.
  75. Cavalli G., Farina N., Campochiaro C., et al. Repurposing of Biologic and Targeted Synthetic Anti-Rheumatic Drugs in COVID-19 and Hyper-Inflammation: A Comprehensive Review of Available and Emerging Evidence at the Peak of the Pandemic. Front Pharmacol. 2020; 11: 598308. Published 2020 Dec 18. DOI: 10.3389/fphar.2020.598308
  76. D’Elia R.V., Harrison K., Oyston P.C., et al. Targeting the “Cytokine Storm” for Therapeutic Benefit. Clinical and Vaccine Immunology. 2013; 20(3): 319–327; DOI: 10.1128/CVI.00636-12
  77. Wong J.P., Viswanathan S., Wang M., et al. Current and future developments in the treatment of virus-induced hypercytokinemia. Future Med Chem. 2017; 9(2): 169–178. DOI: 10.4155/fmc-2016-0181
  78. Xu X., Han M., Li T., et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proceedings of the National Academy of Sciences. 2020; 117(20): 10970–10975. DOI: 10.1073/pnas.2005615117
  79. Narazaki M., Kishimoto T. The Two-Faced Cytokine IL-6 in Host Defense and Diseases. Int J Mol Sci. 2018; 19(11): DOI: 10.3390/ijms19113528
  80. Ritchie A.I., Singanayagam A. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword? Lancet. 2020; 395(10230): DOI: 10.1016/S0140-6736(20)30691-7
  81. Lang V.R., Englbrecht M., Rech J., et al. Risk of infections in rheumatoid arthritis patients treated with tocilizumab. Rheumatology (Oxford). 2012;51 (5): 852–857. DOI: 10.1093/rheumatology/ker223
  82. Halyabar O., Chang M.H., Schoettler M.L., et al. Calm in the midst of cytokine storm: a collaborative approach to the diagnosis and treatment of hemophagocytic lymphohistiocytosis and macrophage activation syndrome. Pediatr Rheumatol Online J. 2019; 17(1): 7. DOI: 10.1186/s12969-019-0309-6
  83. Kim J.S., Lee J.Y., Yang J.W., et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics. 2021; 11(1): 316–329. DOI: 10.7150/thno.49713
  84. Han Q., Guo M., Zheng Y., et al. Current Evidence of Interleukin-6 Signaling Inhibitors in Patients With COVID-19: A Systematic Review and Meta-Analysis. Front Pharmacol. 2020; 11: 615972. DOI: 10.3389/fphar.2020.615972
  85. Schoot T.S., Kerckhoffs A.P.M., Hilbrands L.B., et al. Immunosuppressive Drugs and COVID-19: A Review. Front Pharmacol. 2020; 11: 1333. DOI: 10.3389/fphar.2020.01333
  86. Tleyjeh I.M., Kashour Z., Damlaj M., et al. Efficacy and safety of tocilizumab in COVID-19 patients: a living systematic review and meta-analysis [published online ahead of print, 2020 Nov 5]. Clin Microbiol Infect. 2020; 27(2): 215–227. DOI: 10.1016/j.cmi.2020.10.036
  87. Richier Q., Plaçais L., Lacombe K., Hermine O. COVID-19: encore une place pour le tocilizumab? Rev Med Interne. 2021; 42(2):73–78. DOI: 10.1016/j.revmed.2020.11.016
  88. Nasonov E., Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother. 2020; 131: DOI: 10.1016/j.biopha.2020.110698
  89. Rosas I., Bräu N., Waters M., et al. Tocilizumab in Hospitalized Patients With COVID-19 Pneumonia. medRxiv. 2020.08.27.20183442. DOI: 10.1101/2020.08.27.20183442
  90. Hermine O., Mariette X., Tharaux P.L., et al. CORIMUNO-19 Collaborative Group. Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial. JAMA Intern Med. 2021; 181(1): 32–40. DOI: 10.1001/jamainternmed.2020.6820
  91. Stone J.H., Frigault M.J., Serling-Boyd N.J., et al. BACC Bay Tocilizumab Trial Investigators. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N Engl J Med. 2020; 383(24): 2333–2344. DOI: 10.1056/NEJMoa2028836
  92. Salvarani C., Dolci G., Massari M., et al. Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized With COVID-19 Pneumonia: A Randomized Clinical Trial. JAMA Intern Med. 2021; 181(1): 24–31. DOI: 10.1001/jamainternmed.2020.6615
  93. Veiga V.C., Prats J., Farias D., et al. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: randomised controlled trial. BMJ. 2021; 372: n84. DOI: 10.1136/bmj.n84
  94. Mogensen T.H., Paludan S.R. Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev. 2001; 65(1): 131–150. DOI:1128/MMBR.65.1.131-150.2001
  95. Kimura H., Yoshizumi M., Ishii H., et al. Cytokine production and signaling pathways in respiratory virus infection. Front Microbiol. 2013; 4: 276. DOI: 10.3389/fmicb.2013.00276
  96. Schwarze J., Mackenzie K.J. Novel insights into immune and inflammatory responses to respiratory viruses. Thorax. 2013; 68(1): 108–110. DOI:1136/thoraxjnl-2012-202291
  97. Bhattacharyya S. Inflammation During Virus Infection: Swings and Roundabouts. Dynamics of Immune Activation in Viral Diseases. 2019; 43–59. DOI:1007/978-981-15-1045-8_3
  98. Sinha P., Matthay M.A., Calfee C.S. Is a “Cytokine Storm” Relevant to COVID-19? JAMA Intern Med. 2020; 180(9): 1152–1154. DOI:1001/jamainternmed.2020.3313.
  99. Mudd P.A., Crawford J.C., Turner J.S., et al. Distinct inflammatory profiles distinguish COVID-19 from influenza with limited contributions from cytokine storm. Sci Adv. 2020; 6(50): eabe3024. DOI: 10.1126/sciadv.abe3024
  100. Nigrovic P.A. COVID-19 cytokine storm: what is in a name? Ann Rheum Dis 2021; 80: 3–5. DOI: 10.1136/annrheumdis-2020-219448
  101. Brikman S., Bieber A., Dori G. The Hyper-Inflammatory Response in Adults with Severe COVID-19 Pneumonia Differs from the Cytokine Storm of Hemophagocytic Syndrome. Isr Med Assoc J. 2020; 22(8): 505–513.
  102. Lorenz G., Moog P., Bachmann Q., et al. Cytokine release syndrome is not usually caused by secondary hemophagocytic lymphohistiocytosis in a cohort of 19 critically ill COVID-19 patients. Sci Rep. 2020; 10(1): 18277. DOI: 10.1038/s41598-020-75260-w
  103. Gao Y., Wang C., Kang K., et al. Cytokine Storm May Not Be the Chief Culprit for the Deterioration of COVID-19. Viral Immunol. 2020, Nov 17. DOI: 10.1089/vim.2020.0243
  104. Blot M., Bourredjem A., Binquet C., Piroth L. LYMPHONIE Study Group. Is IL-6 the Right Target in COVID-19 Severe Pneumonia? Am J Respir Crit Care Med. 2021; 203(1): 139–140. DOI: 10.1164/rccm.202007-2924LE
  105. Kox M., Waalders N.J.B., Kooistra E.J., et al. Cytokine Levels in Critically Ill Patients With COVID-19 and Other Conditions. JAMA. 2020; 324(15): 1565–1567. DOI: 10.1001/jama.2020.17052
  106. Remy K.E., Mazer M., Striker D.A., et al. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections. JCI Insight. 2020; 5(17): e140329. DOI: 10.1172/jci.insight.140329
  107. Riva G., Nasillo V., Tagliafico E., et al. COVID-19: more than a cytokine storm. Critical Care. 2020; 24: 549. DOI: 10.1186/s13054-020-03267-w
  108. Kiselevskiy M., Shubina I., Chikileva I., et al. Immune Pathogenesis of COVID-19 Intoxication: Storm or Silence? Pharmaceuticals (Basel). 2020; 13(8):166. DOI: 10.3390/ph13080166
  109. Descartes R. Regles pour la direction de l’esprit. Edité par: Vrin, 1988.
Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.

Copyright (c) 2021 ВЕСТНИК ИНТЕНСИВНОЙ ТЕРАПИИ имени А.И. САЛТАНОВА