Abstract
Introduction. Novel coronavirus infection (COVID-19) is characterized by systemic hyper-inflammation with elevated inflammatory cytokines referred to cytokine storm. It has been recognized as a leading cause of severe COVID-19 and its progression to multi-organ failure.
Objectives. To make a synthesis if the literature sources and to critical appraise “cytokine storm” concept in COVID-19.
Results. While comparisons have been made between COVID-19 cytokine storm and other kinds of cytokine storm such as hemophagocytic lymphohistiocytosis and cytokine release syndrome, the pathogenesis of cytokine storm has not been clearly elucidated yet. Furthermore, many clinical evidences have indicated the importance of anti-inflammatory immunomodulation therapy in severe COVID-19. Although a number of studies have been conducted on target immunomodulatory therapy for severe COVID-19, no specific recommendations have been made yet. Moreover, there are some evidence against cytokine storm as pivotal pathogenetic mechanism for clinical deterioration in COVID-19 patients.
Conclusion. There are enough evidence supporting cytokine response impairment as one of leading cause of COVID-19 progression to multiorgan failure. However, cytokine response abnormalities couldn’t explain clinical deterioration in some patients, so further studies are needed to find possible alternative pathogenetic mechanisms.
References
- Cohen S., Bigazzi P.E., Yoshida T. Commentary: Similarities of T cell function in cell-mediated immunity and antibody production. Cell Immunol. 1974; 12: 150–159. DOI: 10.1016/0008-8749(74)90066-5
- Curfs J., Meis J., Hoogkamp-Korstanje A. A Primer on Cytokines: Sources, Receptors, Effects, and Inducers.Clinical Microbiology Reviews. 1997: 742–780. DOI: 10.1128/CMR.10.4.742-780.1997
- Dinarello C.A. Historical insights into cytokines. Eur J Immunol. 2007; 37(Suppl. 1): S34–S45. DOI: 10.1002/eji.200737772
- Gulati K., Guhathakurta S., Joshi J., et al. Cytokines and their Role in Health and Disease: A Brief Overview. MOJ Immunol. 2016; 4(2): 00121. DOI: 10.15406/moji.2016.04.00121
- Oppenheim J.J. Cytokines: past, present, and future. Int J Hematol. 2001; 74(1): 3–8. DOI: 10.1007/BF02982543. PMID: 11530802
- Billingham M.E. Cytokines as inflammatory mediators. Br Med Bull. 1987; 43(2): 350–370. PMID: 3319033. DOI: 10.1093/oxfordjournals.bmb.a072187
- Alan A., Larry B. Cytokines and Inflammation. ImmunoMethods, 1993; 3(1): 3–12. DOI: 10.1006/immu.1993.1034
- Kany S., Vollrath J.T., Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci. 2019; 20(23): DOI: 10.3390/ijms20236008
- Thijs L.G., Hack C.E. Time course of cytokine levels in sepsis. Intensive Care Med. 1995; 21(Suppl 2): S258–S263. DOI: 10.1007/BF01740764
- Chousterman B.G., Swirski F.K., Weber G.F. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017; 39(5): 517–528. DOI: 10.1007/s00281-017-0639-8
- Wang H., Ma S. The cytokine storm and factors determining the sequence and severity of organ dysfunction in multiple organ dysfunction syndrome. Am J Emerg Med. 2008; 26(6): 711–715. DOI: 10.1016/j.ajem.2007.10.031
- Ferrara J.L., Abhyankar S., Gilliland D.G. Cytokine storm of graft-versus-host disease: a critical effector role for interleukin-1. Transplant Proc. 1993; 25(1 Pt 2): 1216–1217.
- Tisoncik J.R., Korth M.J., Simmons C.P., et al. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012; 76(1): 16–32. DOI: 10.1128/MMBR.05015-11
- Fajgenbaum D.C., June C.H. Cytokine Storm. N Engl J Med. 2020; 383(23): 255–2273. DOI: 10.1056/NEJMra2026131
- Ferrara J.L. Cytokine dysregulation as a mechanism of graft versus host disease. Curr Opin Immunol. 1993; 5(5): 794–799. DOI: 10.1016/0952-7915(93)90139-j
- Hussell T., Goulding J. Structured regulation of inflammation during respiratory viral infection. Lancet Infect Dis. 2010; 10(5): 360–366. DOI: 10.1016/S1473-3099(10)70067-0
- Teijaro J.R. Cytokine storms in infectious diseases. Semin Immunopathol. 2017; 39(5): 501–503. DOI: 10.1007/s00281-017-0640-2
- Barry S.M., Johnson M.A., Janossy G. Cytopathology or immunopathology? The puzzle of cytomegalovirus pneumonitis revisited. Bone Marrow Transplant. 2000; 26(6): 591–597. DOI: 10.1038/sj.bmt.1702562
- Srikiatkhachorn A., Mathew A., Rothman A.L. Immune-mediated cytokine storm and its role in severe dengue. Semin Immunopathol. 2017; 39(5): 563–574. DOI: 10.1007/s00281-017-0625-1
- Borges A.A., Campos G.M., Moreli M.L., et al. Hantavirus cardiopulmonary syndrome: immune response and pathogenesis. Microbes Infect. 2006; 8(8): 2324–2330. DOI: 10.1016/j.micinf.2006.04.019
- La Gruta N.L., Kedzierska K., Stambas J., Doherty P.C. A question of self-preservation: immunopathology in influenza virus infection. Immunol Cell Biol. 2007; 85(2): 85–92. DOI: 10.1038/sj.icb.7100026
- Liu Q., Zhou Y.-H., Yang Z.-Q. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol. 2016; 13:3–10. DOI: 10.1038/cmi.2015.74
- Guo X.J., Thomas P.G. New fronts emerge in the influenza cytokine storm. Semin Immunopathol. 2017; 39(5): 541–550. DOI: 10.1007/s00281-017-0636-y
- Huang K.J., Su I.J., Theron M., et al. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol. 2005; 75(2): 185–194. DOI: 10.1002/jmv.20255
- Thiel V., Weber F. Interferon and cytokine responses to SARS-coronavirus infection. Cytokine Growth Factor Rev. 2008; 19(2):121–132. DOI: 10.1016/j.cytogfr.2008.01.001
- Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017; 39(5): 529–539. DOI: 10.1007/s00281-017-0629-x
- Bhattad S. Cytokine Storm Syndrome: What Every Physician Must Know Today? Pediatr Inf Dis. 2020; 2(2): 79–81. DOI: 10.5005/jp-journals-10081-1251
- Canna S.W., Cron R.Q. Highways to hell: Mechanism-based management of cytokine storm syndromes. J Allergy Clin Immunol. 2020; 146(5): 949–959. DOI: 10.1016/j.jaci.2020.09.016
- Llewelyn M., Cohen J. Superantigens: microbial agents that corrupt immunity. Lancet Infect Dis. 2002; 2(3): 156–162. DOI: 10.1016/s1473-3099(02)00222-0
- Papageorgiou A.C., Acharya K.R. Microbial superantigens: from structure to function. Trends Microbiol. 2000; 8(8): 369–375. DOI: 10.1016/s0966-842x(00)01793-5
- Jessen B., Kögl T., Sepulveda F.E., et al. Graded defects in cytotoxicity determine severity of hemophagocytic lymphohistiocytosis in humans and mice. Front Immunol. 2013; 4: 448. DOI: 10.3389/fimmu.2013.00448
- Olejnik J., Hume A.J., Mühlberger E. Toll-like receptor 4 in acute viral infection: Too much of a good thing. PLoS Pathog. 2018; 14(12): e1007390. DOI: 10.1371/journal.ppat.1007390
- Bode S., Ammann S., Al-Herz W., et al. The syndrome of hemophagocytic lymphohistiocytosis in primary immunodeficiencies: implications for differential diagnosis and pathogenesis. Haematologica. 2015; 100(7): 978–988. DOI: 10.3324/haematol.2014.121608
- Booth C., Gilmour K.C., Veys P., et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011; 117: 53–62.
- Chatenoud L., Bach J.F. Activation lymphocytaire T induite par les anticorps monoclonaux anti-CD3: physiopathologie du relargage de cytokines. C R Seances Soc Biol Fil. 1991; 185(5): 268–277.
- Lee D.W., Gardner R., Porter D.L., et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood. 2014; 124(2): 188–195. DOI: 10.1182/blood-2014-05-552729
- Shimabukuro-Vornhagen A., Gödel P., Subklewe M., et al. Cytokine release syndrome. J Immunother Cancer. 2018; 6(1): 56. DOI: 10.1186/s40425-018-0343-9
- Xu X.J., Tang Y.M. Cytokine release syndrome in cancer immunotherapy with chimeric antigen receptor engineered T cells. Cancer Lett. 2014; 343(2):172–178. DOI: 10.1016/j.canlet.2013.10.004
- García Roche A., Díaz Lagares C., Élez E., Ferrer Roca R. Cytokine release syndrome. Reviewing a new entity in the intensive care unit. Med Intensiva. 2019; 43(8): 480–488. DOI: 10.1016/j.medin.2019.01.009
- Le R.Q., Li L., Yuan W., et al. FDA Approval Summary: Tocilizumab for Treatment of Chimeric Antigen Receptor T Cell-Induced Severe or Life-Threatening Cytokine Release Syndrome. Oncologist. 2018; 23(8): 943–947. DOI: 10.1634/theoncologist.2018-0028
- Farquhar J.W., Claireaux A.E. Familial haemophagocytic reticulosis. Arch Dis Child. 1952; 27(136): 519–525. DOI: 10.1136/adc.27.136.519
- Risdall R.J., McKenna R.W., Nesbit M.E., et al. Virus-associated hemophagocytic syndrome: a benign histiocytic proliferation distinct from malignant histiocytosis. Cancer. 1979; 44(3): 993–1002. DOI: 10.1002/1097-0142(197909)44:3<993::aid-cncr2820440329>3.0.co;2-5
- Tiab M., Mechinaud F., Harousseau J.L. Haemophagocytic syndrome associated with infections. Baillieres Best Pract Res Clin Haematol. 2000; 13(2): 163–178. DOI: 10.1053/beha.2000.0066
- Rouphael N.G., Talati N.J., Vaughan C., et al. Infections associated with haemophagocytic syndrome. Lancet Infect Dis. 2007; 7(12): 814–822. DOI: 10.1016/S1473-3099(07)70290-6
- Chen J., Wang X., He P., et al. Viral etiology, clinical and laboratory features of adult hemophagocytic lymphohistiocytosis. J Med Virol. 2016; 88(3): 541–549. DOI: 10.1002/jmv.24359
- Fardet L., Galicier L., Lambotte O., et al. Development and validation of the HScore, a score for the diagnosis of reactive hemophagocytic syndrome. Arthritis Rheumatol. 2014; 66(9): 2613–2620. DOI: 10.1002/art.38690
- Jordan M.B., Allen C.E., Greenberg J., et al. Challenges in the diagnosis of hemophagocytic lymphohistiocytosis: Recommendations from the North American Consortium for Histiocytosis (NACHO). Pediatr Blood Cancer. 2019; 66(11): e27929. DOI: 10.1002/pbc.27929
- Ramos-Casals M., Brito-Zerón P., López-Guillermo A., et al. Adult haemophagocytic syndrome. Lancet. 2014; 383(9927): 1503–1516. DOI: 10.1016/S0140-6736(13)61048-X
- Canna S.W., Behrens E.M. Making sense of the cytokine storm: a conceptual framework for understanding, diagnosing, and treating hemophagocytic syndromes. Pediatr Clin North Am. 2012; 59(2): 329–344. DOI: 10.1016/j.pcl.2012.03.002
- La Rosée P., Horne A., Hines M., et al. Recommendations for the management of hemophagocytic lymphohistiocytosis in adults. Blood. 2019; 133(23): 2465–2477. DOI: 10.1182/blood.2018894618
- Hadchouel M., Prieur A.M., Griscelli C. Acute hemorrhagic, hepatic, and neurologic manifestations in juvenile rheumatoid arthritis: possible relationship to drugs or infection. J Pediatr. 1985; 106(4): 561–566. DOI: 10.1016/s0022-3476(85)80072-x
- Crayne C.B., Albeituni S., Nichols K.E., Cron R.Q. The Immunology of Macrophage Activation Syndrome. Front Immunol. 2019; 10: DOI: 10.3389/fimmu.2019.00119
- Bracaglia C., Prencipe G., De Benedetti F. Macrophage Activation Syndrome: different mechanisms leading to a one clinical syndrome. Pediatr Rheumatol Online J. 2017; 15(1): Published 2017 Jan 17. DOI: 10.1186/s12969-016-0130-4
- Stuart J. Carter, Rachel S. Tattersall, Athimalaipet V. Ramanan. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment, Rheumatology. 2019; 58(1): 5–17. DOI: 10.1093/rheumatology/key006
- Zhao Z., Wei Y., Tao C. An enlightening role for cytokine storm in coronavirus infection. Clin Immunol. 2021; 222: DOI: 10.1016/j.clim.2020.108615
- Pelaia C., Tinello C., Vatrella A., et al. Lung under attack by COVID-19-induced cytokine storm: pathogenic mechanisms and therapeutic implications. Ther Adv Respir Dis. 2020; 14: 1753466620933508. DOI: 10.1177/1753466620933508
- Vaninov N. In the eye of the COVID-19 cytokine storm. Nat Rev Immunol. 2020; 20(5): 277. DOI: 10.1038/s41577-020-0305-6
- de la Rica R., Borges M., Gonzalez-Freire M. COVID-19: In the Eye of the Cytokine Storm. Front Immunol. 2020; 11: Published 2020 Sep 24. DOI: 10.3389/fimmu.2020.558898
- Song P., Li W., Xie J., Hou Y., You C. Cytokine storm induced by SARS-CoV-2. Clin Chim Acta. 2020; 509: 280–287. DOI: 10.1016/j.cca.2020.06.017
- Khosroshahi L.M., Rezaei N. Dysregulation of the Immune Response in COVID-19. Cell Biol Int. 2020: 1002/cbin.11517. DOI: 10.1002/cbin.11517
- Mangalmurti N., Hunter C.A. Cytokine Storms: Understanding COVID-19. Immunity. 2020; 53(1): 19–25. DOI: 10.1016/j.immuni.2020.06.017
- Potempa L.A., Rajab I.M., Hart P.C., et al. Insights into the Use of C-Reactive Protein as a Diagnostic Index of Disease Severity in COVID-19 Infections. Am J Trop Med Hyg. 2020; 103(2): 561–563. DOI: 10.4269/ajtmh.20-0473
- Yonas E., Alwi I., Pranata R., et al. Elevated interleukin levels are associated with higher severity and mortality in COVID 19 — A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr. 2020; 14(6): 2219–2230. DOI: 10.1016/j.dsx.2020.11.011
- Lavillegrand J.R., Garnier M., Spaeth A., et al. Elevated plasma IL-6 and CRP levels are associated with adverse clinical outcomes and death in critically ill SARS-CoV-2 patients: inflammatory response of SARS-CoV-2 patients. Ann. Intensive Care 11, 9 (2021). DOI: 10.1186/s13613-020-00798-x.
- Moore J.B., June C.H. Cytokine release syndrome in severe COVID-19. Science. 2020; 368(6490): 473–474. DOI: 10.1126/science.abb8925
- McGonagle D., Sharif K., O’Regan A., Bridgewood C. The Role of Cytokines including Interleukin-6 in COVID-19 induced Pneumonia and Macrophage Activation Syndrome-Like Disease. Autoimmun Rev. 2020;19(6): DOI: 10.1016/j.autrev.2020.102537
- Langer-Gould A., Smith J.B., Gonzales E.G., et al. Early identification of COVID-19 cytokine storm and treatment with anakinra or tocilizumab. Int J Infect Dis. 2020; 99: 291–297. DOI: 10.1016/j.ijid.2020.07.081
- Bhaskar S., Sinha A., Banach M., et al. Cytokine Storm in COVID-19-Immunopathological Mechanisms, Clinical Considerations, and Therapeutic Approaches: The REPROGRAM Consortium Position Paper. Front Immunol. 2020; 11: 1648. Published 2020 Jul 10. DOI: 10.3389/fimmu.2020.01648
- Caricchio R., Gallucci M., Dass C., et al. Preliminary predictive criteria for COVID-19 cytokine storm. Annals of the Rheumatic Diseases. 2021; 80(1): 88–95. DOI: 10.1136/annrheumdis-2020-218323
- Retamozo S., Brito-Zerón P., Sisó-Almirall A., et al. Haemophagocytic syndrome and COVID-19. Clin Rheumatol. 2021. DOI: 10.1007/s10067-020-05569-4
- Morris S.B., Schwartz N.G., Patel P., et al. Case Series of Multisystem Inflammatory Syndrome in Adults Associated with SARS-CoV-2 Infection — United Kingdom and United States, March-August 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(40): 1450–1456. DOI: 10.15585/mmwr.mm6940e1
- Leisman D.E., Ronner L., Pinotti R., et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, metaanalysis, and comparison with other inflammatory syndromes. Lancet Respir Med. S2213–2600: 30404–30405. DOI: 10.1016/S2213-2600(20)30404-5
- Liu D., Zhang T., Wang Y., Xia L. Tocilizumab: The Key to Stop Coronavirus Disease 2019 (COVID-19)-Induced Cytokine Release Syndrome (CRS)? Front Med (Lausanne). 2020; 7: Published 2020 Oct 26. DOI: 10.3389/fmed.2020.571597
- Miao Y., Fan L., Li J.Y. Potential Treatments for COVID-19 Related Cytokine Storm — Beyond Corticosteroids. Front Immunol. 2020 Jun 16;11:1445. DOI: 10.3389/fimmu.2020.01445.
- Cavalli G., Farina N., Campochiaro C., et al. Repurposing of Biologic and Targeted Synthetic Anti-Rheumatic Drugs in COVID-19 and Hyper-Inflammation: A Comprehensive Review of Available and Emerging Evidence at the Peak of the Pandemic. Front Pharmacol. 2020; 11: 598308. Published 2020 Dec 18. DOI: 10.3389/fphar.2020.598308
- D’Elia R.V., Harrison K., Oyston P.C., et al. Targeting the “Cytokine Storm” for Therapeutic Benefit. Clinical and Vaccine Immunology. 2013; 20(3): 319–327; DOI: 10.1128/CVI.00636-12
- Wong J.P., Viswanathan S., Wang M., et al. Current and future developments in the treatment of virus-induced hypercytokinemia. Future Med Chem. 2017; 9(2): 169–178. DOI: 10.4155/fmc-2016-0181
- Xu X., Han M., Li T., et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proceedings of the National Academy of Sciences. 2020; 117(20): 10970–10975. DOI: 10.1073/pnas.2005615117
- Narazaki M., Kishimoto T. The Two-Faced Cytokine IL-6 in Host Defense and Diseases. Int J Mol Sci. 2018; 19(11): DOI: 10.3390/ijms19113528
- Ritchie A.I., Singanayagam A. Immunosuppression for hyperinflammation in COVID-19: a double-edged sword? Lancet. 2020; 395(10230): DOI: 10.1016/S0140-6736(20)30691-7
- Lang V.R., Englbrecht M., Rech J., et al. Risk of infections in rheumatoid arthritis patients treated with tocilizumab. Rheumatology (Oxford). 2012;51 (5): 852–857. DOI: 10.1093/rheumatology/ker223
- Halyabar O., Chang M.H., Schoettler M.L., et al. Calm in the midst of cytokine storm: a collaborative approach to the diagnosis and treatment of hemophagocytic lymphohistiocytosis and macrophage activation syndrome. Pediatr Rheumatol Online J. 2019; 17(1): 7. DOI: 10.1186/s12969-019-0309-6
- Kim J.S., Lee J.Y., Yang J.W., et al. Immunopathogenesis and treatment of cytokine storm in COVID-19. Theranostics. 2021; 11(1): 316–329. DOI: 10.7150/thno.49713
- Han Q., Guo M., Zheng Y., et al. Current Evidence of Interleukin-6 Signaling Inhibitors in Patients With COVID-19: A Systematic Review and Meta-Analysis. Front Pharmacol. 2020; 11: 615972. DOI: 10.3389/fphar.2020.615972
- Schoot T.S., Kerckhoffs A.P.M., Hilbrands L.B., et al. Immunosuppressive Drugs and COVID-19: A Review. Front Pharmacol. 2020; 11: 1333. DOI: 10.3389/fphar.2020.01333
- Tleyjeh I.M., Kashour Z., Damlaj M., et al. Efficacy and safety of tocilizumab in COVID-19 patients: a living systematic review and meta-analysis [published online ahead of print, 2020 Nov 5]. Clin Microbiol Infect. 2020; 27(2): 215–227. DOI: 10.1016/j.cmi.2020.10.036
- Richier Q., Plaçais L., Lacombe K., Hermine O. COVID-19: encore une place pour le tocilizumab? Rev Med Interne. 2021; 42(2):73–78. DOI: 10.1016/j.revmed.2020.11.016
- Nasonov E., Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother. 2020; 131: DOI: 10.1016/j.biopha.2020.110698
- Rosas I., Bräu N., Waters M., et al. Tocilizumab in Hospitalized Patients With COVID-19 Pneumonia. medRxiv. 2020.08.27.20183442. DOI: 10.1101/2020.08.27.20183442
- Hermine O., Mariette X., Tharaux P.L., et al. CORIMUNO-19 Collaborative Group. Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial. JAMA Intern Med. 2021; 181(1): 32–40. DOI: 10.1001/jamainternmed.2020.6820
- Stone J.H., Frigault M.J., Serling-Boyd N.J., et al. BACC Bay Tocilizumab Trial Investigators. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N Engl J Med. 2020; 383(24): 2333–2344. DOI: 10.1056/NEJMoa2028836
- Salvarani C., Dolci G., Massari M., et al. Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized With COVID-19 Pneumonia: A Randomized Clinical Trial. JAMA Intern Med. 2021; 181(1): 24–31. DOI: 10.1001/jamainternmed.2020.6615
- Veiga V.C., Prats J., Farias D., et al. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: randomised controlled trial. BMJ. 2021; 372: n84. DOI: 10.1136/bmj.n84
- Mogensen T.H., Paludan S.R. Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev. 2001; 65(1): 131–150. DOI:1128/MMBR.65.1.131-150.2001
- Kimura H., Yoshizumi M., Ishii H., et al. Cytokine production and signaling pathways in respiratory virus infection. Front Microbiol. 2013; 4: 276. DOI: 10.3389/fmicb.2013.00276
- Schwarze J., Mackenzie K.J. Novel insights into immune and inflammatory responses to respiratory viruses. Thorax. 2013; 68(1): 108–110. DOI:1136/thoraxjnl-2012-202291
- Bhattacharyya S. Inflammation During Virus Infection: Swings and Roundabouts. Dynamics of Immune Activation in Viral Diseases. 2019; 43–59. DOI:1007/978-981-15-1045-8_3
- Sinha P., Matthay M.A., Calfee C.S. Is a “Cytokine Storm” Relevant to COVID-19? JAMA Intern Med. 2020; 180(9): 1152–1154. DOI:1001/jamainternmed.2020.3313.
- Mudd P.A., Crawford J.C., Turner J.S., et al. Distinct inflammatory profiles distinguish COVID-19 from influenza with limited contributions from cytokine storm. Sci Adv. 2020; 6(50): eabe3024. DOI: 10.1126/sciadv.abe3024
- Nigrovic P.A. COVID-19 cytokine storm: what is in a name? Ann Rheum Dis 2021; 80: 3–5. DOI: 10.1136/annrheumdis-2020-219448
- Brikman S., Bieber A., Dori G. The Hyper-Inflammatory Response in Adults with Severe COVID-19 Pneumonia Differs from the Cytokine Storm of Hemophagocytic Syndrome. Isr Med Assoc J. 2020; 22(8): 505–513.
- Lorenz G., Moog P., Bachmann Q., et al. Cytokine release syndrome is not usually caused by secondary hemophagocytic lymphohistiocytosis in a cohort of 19 critically ill COVID-19 patients. Sci Rep. 2020; 10(1): 18277. DOI: 10.1038/s41598-020-75260-w
- Gao Y., Wang C., Kang K., et al. Cytokine Storm May Not Be the Chief Culprit for the Deterioration of COVID-19. Viral Immunol. 2020, Nov 17. DOI: 10.1089/vim.2020.0243
- Blot M., Bourredjem A., Binquet C., Piroth L. LYMPHONIE Study Group. Is IL-6 the Right Target in COVID-19 Severe Pneumonia? Am J Respir Crit Care Med. 2021; 203(1): 139–140. DOI: 10.1164/rccm.202007-2924LE
- Kox M., Waalders N.J.B., Kooistra E.J., et al. Cytokine Levels in Critically Ill Patients With COVID-19 and Other Conditions. JAMA. 2020; 324(15): 1565–1567. DOI: 10.1001/jama.2020.17052
- Remy K.E., Mazer M., Striker D.A., et al. Severe immunosuppression and not a cytokine storm characterizes COVID-19 infections. JCI Insight. 2020; 5(17): e140329. DOI: 10.1172/jci.insight.140329
- Riva G., Nasillo V., Tagliafico E., et al. COVID-19: more than a cytokine storm. Critical Care. 2020; 24: 549. DOI: 10.1186/s13054-020-03267-w
- Kiselevskiy M., Shubina I., Chikileva I., et al. Immune Pathogenesis of COVID-19 Intoxication: Storm or Silence? Pharmaceuticals (Basel). 2020; 13(8):166. DOI: 10.3390/ph13080166
- Descartes R. Regles pour la direction de l’esprit. Edité par: Vrin, 1988.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2021 ANNALS OF CRITICAL CARE