Abstract
Introduction. Catabolic syndrome is typical for most critical illness situations. A long progressive course of hypercatabolism is considered by a number of authors as a prognostic criterion for negative clinical outcome of the disease. Objective. Evaluation of the prognostic value of some indicators of the severity of catabolic syndrome in ICU patients with COVID-19. Materials and methods. A prospective cohort study was conducted in 55 patients of the intensive care unit in the period from May 2020 to March 2021. The severity of hypercatabolism was determined by the dynamics of serum albumin and daily urinary nitrogen excretion within 14 days from admission to the ICU. Comparative analysis of nonparametric quantitative data was carried out using the Mann–Whitney test. To determine the predictive value of the diagnostic test, we plotted using the curves of operating characteristics (ROC, Receiver Operating Characteristics) with the subsequent determination of the sensitivity and specificity at the separation point. Results. ROC analysis revealed moderate sensitivity (75.9 %) and low specificity (58.1 %) of the daily urinary nitrogen excretion during the first 14 days of treatment in the ICU in patients with severe SARSCoV-2. It was also shown that the dynamics of serum albumin has a low predictive value for negative clinical outcome. It should be noted that in the group of survived patients a significant increase in daily urinary nitrogen excretion was observed on days 4–7 (p = 0.022) and 8–14 (p = 0.01) of intensive therapy. Conclusion. Nitrogen urinary excretion is a more accurate prognostic marker of poor clinical outcome than serum albumin in ICU patients with severe COVID-19. The main feature of the catabolic syndrome in patients with positive clinical outcome is a progressive increase in the rate of urinary nitrogen excretion from 4 to 14 days after admission to ICU.
References
- International Society for Infectious Diseases. ProMed SARS-CoV2 COVID-19 update: Global, cruise ship, more countries, WHO. Int. Soc. Infect. Dis. 2020. Available online: https://promedmail.org (accessed on 9 August 2020).
- Li L., Gong S., Yan J. Covid-19 in China: ten critical issues for intensive care medicine. Critical Care. 2020; 24: 124. DOI: 10.1186/s13054-020-02848-z
- Лейдерман И.Н., Ярошецкий А.И. К вопросу о потребности в белке пациентов отделений реанимации и интенсивной терапии. Вестник интенсивной терапии имени А.И. Салтанова. 2018; 3: 59–66. DOI: 10.21320/1818-474X-2018-3-59-66 [Leyderman I.N., Yaroshetskiy A.I. Discussing protein requirements of intensive care unit (ICU) patients. Alexander Saltanov Intensive Care Herald. 2018; 3: 59–66. (In Russ)] DOI: 10.21320/1818-474X-2018-3-59-66
- Dickerson R.N. Nitrogen Balance and Protein Requirements for Critically Ill Older Patients. Nutrients. 2016; 8(4): 226. DOI: 10.3390/nu8040226
- Mackenzie T.A., Clark N.G., Bistrian B.R., et al. A simple method for estimating nitrogen balance in hospitalized patients: a review and supporting data for a previously proposed technique. J Am Coll Nutr. 1985; 4(5): 575–81. DOI: 10.1080/07315724.1985.10720100
- Dickerson R.N., Tidwell A.C., Minard G., et al. Predicting total urinary nitrogen excretion from urinary urea nitrogen excretion in multiple-trauma patients receiving specialized nutritional support. Nutrition. 2005; 21(3): 332–8. DOI: 10.1016/j.nut.2004.07.005
- Scheinkestel C.D., Kar L., Marshall K., et al. Prospective randomized trial to assess caloric and protein needs of critically ill, anuric, ventilated patients requiring continuous renal replacement therapy. Nutrition. 2003: 19: 909–16. DOI: 10.1016/s0899-9007(03)00175-8
- Lordan R., Tsoupras A., Zabetakis I. Platelet activation and prothrombotic mediators at the nexus of inflammation and atherosclerosis: Potential role of antiplatelet agents. Blood Rev. 2021; 45: 100694. DOI: 10.1016/j.blre.2020.100694
- Thibault et al. Nutrition Management of COVID-19 Patients in the ICU and Post-ICU/ Critical Care. 2020; 24: 447. DOI: 10.1186/s13054-020-03159-z
- Kjæve J. The Lungs and the Catabolic State. In: Revhaug A. (ed.) Acute Catabolic State. Update in Intensive Care and Emergency Medicine. 1996. Vol 21. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-48801-6_13
- Fernández-Quintela A., Milton-Laskibar I., Trepiana J., et al. Key Aspects in Nutritional Management of COVID-19 Patients. J. Clin. Med. 2020: 9: 2589. DOI: 10.3390/jcm9082589
- Aman J., van der Heijden M., van Lingen A., et al. Plasma protein levels are markers of pulmonary vascular permeability and degree of lung injury in critically ill patients with or at risk for acute lung injury/acute respiratory distress syndrome. Crit Care Med .2011:39(1): 89–97. DOI: 10.1097/CCM.0b013e3181feb46a
- Vincent J.L., Dubois M.J., Navickis R.J., Wilkes M.M. Hypoalbuminemia in acute illness: is there a rationale for intervention? A meta-analysis of cohort studies and controlled trials. Ann Surg. 2003: 237(3): 319–34. DOI: 10.1097/01.SLA.0000055547.93484.87
- Jellinge M.E., Henriksen D.P., Hallas P., Brabrand M. Hypoalbuminemia is a strong predictor of 30-day all-causemortality in acutely admittedmedical patients: a prospective, observational, cohort study. PLoS One. 2014: 9(8): 105983. DOI: 10.1371/journal.pone.0105983
- Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395(10229): 1054–62. DOI: 10.1016/S0140-6736(20)30566-3
- Sobotka L., Soeters P.B. Metabolic response to injury and sepsis. In: Sobotka L., Allison S.P., Fürst P., Meier R., Pertkiewicz M., Soeters P., eds. Basics in clinical nutrition. 3th Czech Republic: Galen, 2004: 57–134.
- Jan B.V., Lowry S.T. Systemic response to injury and metabolic support. In: Brunicardi F.C., Andersen D.K., Billiar T.R., Dunn D.L., Hunter J.G., Matthews J.B., Pollock R.E., eds. Schwartz’s Principles of Surgery. 9th New York: Mc Graw-Hill, 2010: 15–49.
- ПономаревС.В. Клиническая эффективность фармаконутритивной поддержки в интенсивной терапии больных с травмой груди и живота: автореферат … канд. мед. наук: 14.01.20 / Пономарев Сергей Вячеславович. — Ижевск, 2017. — 26 с. [Ponomarev S.V. Klinicheskaya effektivnost’ farmakonutritivnoj podderzhki v intensivnoj terapii bol’nyh s travmoj grudi i zhivota: avtoreferat … kandidata medicinskih nauk: 14.01.20 / Ponomarev Sergej Vyacheslavovich. — Izhevsk, 2017. — 26 s. (In Russ)]
- Siddiqi H.K., Mehra M.R. COVID-19 illness in native and immunosuppressed states: A clinical-therapeutic staging proposal. J Heart Lung Transplant. 2020: 39(5): 405–7. DOI: 10.1016/j.healun.2020.03.012
- Komatsu M., Waguri S., Ueno T., et al. Impairment of starvation induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005; 169: 425–34. DOI: 10.1083/jcb.200412022
- Masiero E., Agatea L., Mammucari C., et al. Autophagy is required to maintain muscle mass. Cell Metab. 2009; 10: 507–15. DOI: 10.1016/j.cmet.2009.10.008
- Derde S., Hermans G., Derese I., et al. Muscle atrophy and preferential loss of myosin in prolonged critically ill patients. Crit Care Med. 2012: 40: 79–89. DOI: 10.1097/CCM.0b013e31822d7c18
- Vanhorebeek I., Gunst J., Derde S., et al. Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J Clin Endocrinol Metab. 2011: 96: 633–45. DOI: 10.1186/cc9806
- Glick D., Barth S., Macleod K.F. Autophagy: cellular and molecular mechanisms. J Pathol. 2010: 221: 3–12. DOI: 10.1002/path.2697
- Hermans G., Casaer M.P., Clerckx B., et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNic trial. Lancet Resp Med. 2013: 1: 621–29. DOI: 10.1016/S2213-2600(13)70183-8
- Carchman E.H., Rao J., Loughran P.A., et al. Heme oxygenase-1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology. 2011; 53: 2053–62. DOI: 10.1002/hep.24324
- Hsieh C.H., Pai P.Y., Hsueh H.W., et al. Complete induction of autophagy is essential for cardioprotection in sepsis. Ann. Surg. 2011: 253: 1190–200. DOI: 10.1097/sla.0b013e318214b67e
- Метаболический мониторинг и нутритивная поддержка при проведении длительной искусственной вентиляции легких. Общероссийская общественная организация «Федерация анестезиологов и реаниматологов» Клинические рекомендации. Утверждены Президиумом ФАР 8 сентября 2018 г. Доступно по: https://faronline.ru/recomendation?download=81 %3Anutritionventilation, 02.06.2021. [Metabolicheskij monitoring i nutritivnaya podderzhka pri provedenii dlitel’noj iskusstvennoj ventilyacii legkih. Obshcherossijskaya obshchestvennaya organizaciya “Federaciya anesteziologov i reanimatologov” Klinicheskie rekomendacii. Utverzhdeny Prezidiumom FAR September 8 2018. Available at https://faronline.ru/recomendation?download=81 %3Anutritionventilation, Accessed 02.06.2021. (In Russ)]
- Wiedermann C.J. Hypoalbuminemia as Surrogate and Culprit of Infections. Int. J. Mol. Sci. 2021; 22: 4496. DOI: 10.3390/ijms22094496
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2021 ANNALS OF CRITICAL CARE