Comparative analysis of the safety of hypnotic component of anesthesia in robot-assisted radical prostatectomy: a review
ISSN (print) 1726-9806     ISSN (online) 1818-474X
#2021-3
PDF_2021-3_117-125 (Russian)
HTML_2021-3_117-125 (Russian)

Keywords

prostate cancer
radical prostatectomy
robotic system da Vinci S
complications
general anesthesia

How to Cite

1.
Lutfarakhmanov I.I., Zdorik N.A., Lazarev S.T., Galeev I.R., Syrchin E.Y., Lifanova A.D., Mironov P.I. Comparative analysis of the safety of hypnotic component of anesthesia in robot-assisted radical prostatectomy: a review. Annals of Critical Care. 2021;(3):117-125. doi:10.21320/1818-474X-2021-3-117-125

Statistic

Abstract Views: 57
PDF_2021-3_117-125 (Russian) Downloads: 30
HTML_2021-3_117-125 (Russian) Downloads: 14
Statistic from 01.07.2024

Language

English Русский

Social Networks

Abstract

Introduction. Robot-assisted laparoscopic radical prostatectomy (RALRP) is the most effective treatment option for localized prostate cancer. Special conditions of the surgery (Trendelenburg position and pneumoperitoneum) lead to negative physiological consequences. Objectives. Systematize current data of the effect of total intravenous anesthesia (TIVA) with propofol or inhaled anesthesia with sevoflurane or desflurane on undesirable perioperative events during RALRP in patients with prostate cancer. Materials and methods. Search of PubMed, Embase, Cochrane Central Register of Controlled Trials, Web of Science, International Standard Randomized Register of Controlled Trials, and ClinicalTrials.gov until February 2021. Results. The review included 7 randomized controlled trials. Undesirable perioperative events were nausea and vomiting, decreased jugular venous bulb blood oxygenation, increased optic nerve sheath diameter as a surrogate marker of high intracranial pressure, and high intraocular pressure. Conclusions. We found weak evidence that propofol-based TIVA may have safety advantages over inhaled anesthetics in the anesthesia provision of RARP.

PDF_2021-3_117-125 (Russian)
HTML_2021-3_117-125 (Russian)

References

  1. Gainsburg D.M. Anesthetic concerns for robotic-assisted laparoscopic radical prostatectomy. Minerva Anestesiol. 2012; 78(5): 596–604.
  2. Sohn K.S., Kim J.H. Anesthetic management for laparoscopic surgery and robotic surgery. J Korean Med Assoc. 2012; 55(7): 641–8. DOI: 10.5124/jkma.2012.55.7.641
  3. Börgers A., Brunkhorst V., Groeben H. Anaesthesia for urological surgery — Anaesthesia for robotic assisted prostatectomies. Anasthesiol Intensivmed Notfallmed Schmerzther. 2013; 48: 488–93. DOI: 10.1055/s-0033-1352496
  4. Paranjape S., Chhabra A. Anaesthesia for robotic surgery. Trends in Anaesthesia and Critical Care. 2014; 4(1): 25–31. DOI: 10.1016/j.tacc.2013.10.003
  5. Lee J.R. Anesthetic considerations for robotic surgery. Korean J Anesthesiol. 2014; 66(1): 3–11. DOI: 10.4097/kjae.2014.66.1.3
  6. Prabhakar A., Donnenfeld B.L., Kaye A.D., et al. Concepts in creating an evidence-based anesthetic protocol for robot-assisted laparoscopic pelvic surgery. J Med Pract Manage. 2015; 30(6 Spec No): 18–23.
  7. Olympio M.A. Anesthetic Considerations for Robotic Urologic Surgery. In: Hemal A., Menon M. (eds) Robotics in Genitourinary Surgery. Springer: Cham; 2018. DOI: 10.1007/978-3-319-20645-5_4
  8. Özgök A., Arıkan M., Kazancı D. Tips in Anesthesia for Robotic Surgery. In: Rané A., Turna B., Autorino R., Rassweiler J. (eds) Practical Tips in Urology. Springer: London; 2017541-548. DOI: 10.1007/978-1-4471-4348-2_55
  9. Aceto P., Beretta L., Cariello C., et al.; Società Italiana di Anestesia Analgesia Rianimazione e Terapia Intensiva (SIAARTI), Società Italiana di Ginecologia e Ostetricia (SIGO), and Società Italiana di Urologia (SIU). Joint consensus on anesthesia in urologic and gynecologic robotic surgery: specific issues in management from a task force of the SIAARTI, SIGO, and SIU. Minerva Anestesiol. 2019; 85(8): 871–85. DOI: 10.23736/S0375-9393.19.13360-3
  10. Климов А.А., Малахова А.А., Камнев С.А. и др. Результаты проспективного рандомизированного пилотного исследования по оценке влияния уровня миорелаксации и режима вентиляции на хирургические условия при выполнении лапароскопических робот-ассистированных вмешательств. Вестник интенсивной терапии им. А.И. Салтанова. 2021; 2: 115–27. [Klimov A.A., Malakhova A.A., Kamnev S.A., et al. A prospective randomized pilot study: The impact of the depth of neuromuscular blockade and modes of mechanical ventilation on surgical conditions during laparoscopic and robotic surgery. Ann Crit Care. 2021; 2: 115–27. (In Russ)] DOI: 10.21320/1818–474X-2021-2-115-127
  11. Лутфарахманов И.И., Мельникова И.А., Сырчин Е.Ю. и др. Изменения дыхательной механики и газообмена при робот-ассистированной радикальной простатэктомии. Анестезиология и реаниматология. 2020; 4: 60–7. DOI: 10.17116/anaesthesiology202004161 [Lutfarakhmanov I.I., Melnikova I.A., Syrchin E.Yu., et al. Changes in respiratory mechanics and gas exchange in robot-assisted radical prostatectomy. Anesteziol Reanimatol. 2020; 4: 60–7. DOI: 10.17116/anaesthesiology202004161 (In Russ)]
  12. Лутфарахманов И.И., Сырчин Е.Ю., Галеев И.Р. и др. Изменения центральной гемодинамики при робот-ассистированной радикальной простатэктомии в зависимости от вида анестезии. Анестезиология и реаниматология. 2020; 6: 69–76. DOI: 10.17116/ anaesthesiology/anaesthesiology202006169 [Lutfarakhmanov I.I., Syrchin E.Yu., Galeev I.R., et al. Changes in central hemodynamics during robot-assisted radical prostatectomy depending on the type of anesthesia. Anesteziol Reanimatol. 2020; 6: 69–76. DOI: 10.17116/ anaesthesiology/anaesthesiology202006169 (In Russ)]
  13. Лутфарахманов И.И., Мельникова И.А., Сырчин Е.Ю. и др. Особенности механики дыхания и газообмена при робот-ассистированной радикальной простатэктомии. Обзор литературы. Вестник интенсивной терапии имени А.И. Салтанова. 2020; 1: 75–89. DOI: 10.21320/1818–474X-2020-1-75-89 [Lutfarakhmanov I.I., Melnikova I.A., Syrchin E.Yu., et al. Features of the mechanics of respiration and gas exchange during robot-assisted radical prostatectomy. Review. Ann Crit Care. 2020; 1: 75–89. DOI: 10.21320/1818–474X-2020-1-75-89 (In Russ)]
  14. Kim S.J., Kwon J.Y., Cho A.R., et al. The effects of sevoflurane and propofol anesthesia on cerebral oxygenation in gynecological laparoscopic surgery. Korean J Anesth. 2011; 61(3): 225–32. DOI: 10.4097/kjae.2011.61.3.225
  15. Closhen D., Treiber A.H., Berres M., et al. Robotic assisted prostatic surgery in the Trendelenburg position does not impair cerebral oxygenation measured using two different monitors: A clinical observational study. Eur J Anaesthesiol. 2014; 31(2): 104–9. DOI: 10.1097/EJA.0000000000000000
  16. Matsuoka T., Ishiyama T., Shintani N., et al. Changes of cerebral regional oxygen saturation during pneumoperitoneum and Trendelenburg position under propofol anesthesia: a prospective observational study. BMC Anesthesiol. 2019; 19: 72. DOI: 10.1186/s12871-019-0736-4
  17. Taketani Y., Mayama C., Suzuki N., et al. Transient but significant visual field defects after robot-assisted laparoscopic radical prostatectomy in deep Trendelenburg position. PLoS One. 2015; 10(4): e0123361. DOI: 10.1371/journal.pone.0123361.e0123361
  18. Seo K.H., Kim Y.S., Joo J., Choi J.–W. Variation in intraocular pressure caused by repetitive positional changes during laparoscopic colorectal surgery: a prospective, randomized, controlled study comparing propofol and desflurane anesthesia. J Clin Monit Comput. 2018; 32(6): 1101–9. DOI: 10.1007/s10877-018-0116-5
  19. Kaur G., Sharma M., Kalra P., et al. Intraocular Pressure Changes during Laparoscopic Surgery in Trendelenburg Position in Patients Anesthetized with Propofol‑based Total Intravenous Anesthesia Compared to Sevoflurane Anesthesia: A Comparative Study. Anesth Essays Res. 2018; 12(1): 67–72. DOI: 10.4103/aer.AER_177_17
  20. Kim N.Y., Yoo Y.C., Park H.J., et al. The effect of dexmedetomidine on intraocular pressure increase in patients during robot-assisted laparoscopic radical prostatectomy in the steep Trendelenburg position. J Endourol. 2015; 29(3): 310–16. DOI: 10.1089/end.2014.0381
  21. Joo J., Koh H., Lee K., Lee J. Effects of Systemic Administration of Dexmedetomidine on Intraocular Pressure and Ocular Perfusion Pressure during Laparoscopic Surgery in a Steep Trendelenburg Position: Prospective, Randomized, Double-Blinded Study. J Korean Med Sci. 2016; 31: 989–96. DOI: 10.3346/ jkms.2016.31.6.989
  22. Kitamura S., Takechi K., Nishihara T., et al. Effect of dexmedetomidine on intraocular pressure in patients undergoing robot-assisted laparoscopic radical prostatectomy under total intravenous anesthesia: A randomized, double blinded placebo controlled clinical trial. J Clin Anesth. 2018; 49: 30–5. DOI: 10.1016/j.jclinane.2018.06.006
  23. Yonekura H., Hirate H., Sobue K. Comparison of anesthetic management and outcomes of robot-assisted vs pure laparoscopic radical prostatectomy. J Clin Anesth. 2016; 35: 281–6. DOI: 10.1016/j.jclinane.2016.08.014
  24. Kim N.Y., Jang W.S., Choi Y.D., et al. Comparison of Biochemical Recurrence After Robot-assisted Laparoscopic Radical Prostatectomy with Volatile and Total Intravenous Anesthesia. Int J Med Sci. 2020; 17(4): 449–56. DOI: 10.7150/ijms.40958
  25. Herling S.F., Dreijer B., Lam G.W., et al. Total intravenous anaesthesia versus inhalational anaesthesia for adults undergoing transabdominal robotic assisted laparoscopic surgery. Cochrane Database Syst Rev. 2017; 4(4): CD011387. DOI: 10.1002/14651858.CD011387.pub2
  26. Yoo Y.C., Shin S., Choi E.K., et al. Increase in intraocular pressure is less with propofol than with sevoflurane during laparoscopic surgery in the steep Trendelenburg position. Can J Anaesth. 2014; 61(4): 322–9. DOI: 10.1007/s12630-014-0112-2
  27. Choi E.S., Jeon Y.T., Sohn H.M., et al. Comparison of the effects of desflurane and total intravenous anesthesia on the optic nerve sheath diameter in robot assisted laparoscopic radical prostatectomy: A randomized controlled trial. Medicine (Baltimore). 2018; 97(41): e12772. DOI: 10.1097/MD.0000000000012772
  28. Yu J., Hong J.H., Park J.Y., et al. Propofol attenuates the increase of sonographic optic nerve sheath diameter during robot-assisted laparoscopic prostatectomy: a randomized clinical trial. BMC Anesthesiol. 2018; 18(1): 72. DOI: 10.1186/s12871-018-0523-7
  29. Sujata N., Tobin R., Tamhankar A., et al. A randomised trial to compare the increase in intracranial pressure as correlated with the optic nerve sheath diameter during propofol versus sevoflurane-maintained anesthesia in robot-assisted laparoscopic pelvic surgery. J Robot Surg. 2019; 13(2): 267–73. DOI: 10.1007/s11701-018-0849-7
  30. Doe A., Kumagai M., Tamura Y., et al. A comparative analysis of the effects of sevoflurane and propofol on cerebral oxygenation during steep Trendelenburg position and pneumoperitoneum for robotic assisted laparoscopic prostatectomy. J Anesth. 2016; 30: 949–55. DOI: 10.1007/s00540-016-2241-y
  31. Yoo Y.C., Bai S.J., Lee K.Y., et al. Total intravenous anesthesia with propofol reduces postoperative nausea and vomiting in patients undergoing robot-assisted laparoscopic radical prostatectomy: a prospective randomized trial. Yonsei Med J. 2012; 53(6): 1197–202. DOI: 10.3349/ymj.2012.53.6.1197
  32. Ozdemir M., Bakan N., Sahin K., et al. The comparison of sevoflurane-remifentanil and propofol-remifentanil in robotic prostatectomies. J Clin Anal Med. 2013; 4(4): 313–17. DOI: 10.4328/CAM.1018
  33. Atallah M.M., Othman M.M. Robotic laparoscopic radical cystectomy inhalational versus total intravenous anaesthesia: a pilot study. Middle East J Anesthesiol. 2009; 20(2): 257–63.
  34. Заболотских И.Б., Трембач Н.В. Пациенты высокого периоперационного риска: два подхода к стратификации. Вестник интенсивной терапии им. А.И. Салтанова. 2019; 4: 34–46. DOI: 10.21320/1818–474X-2019-4-34-46 [Zabolotskikh I.B., Trembach N.V. High perioperative risk patients: two approaches to stratification. Review. Ann Crit Care. 2019; 4: 34–46. DOI: 10.21320/1818–474X-2019-4-34-46 (In Russ)]
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2021 ANNALS OF CRITICAL CARE