Current trends in management of hyperglycaemia in surgical patients with diabetes mellitus: a review
#2021-4
PDF_2021-4_33-47 (Русский)
HTML_2021-4_33-47 (Русский)
PDF_2021-4_33-47
HTML_2021-4_33-47

Keywords

diabetes mellitus
surgery
propofol
sevoflurane
insulin
intensive care unit
critical care

How to Cite

Kuklin VN, Matri J, Barlow NP, Tveit SH, Kvernberg JE, Ringvold E-M, Dahl V Current trends in management of hyperglycaemia in surgical patients with diabetes mellitus: a review. Annals of Critical Care. 2022;(4):33–47. doi:10.21320/1818-474X-2021-4-33-47.

Statistic

Abstract Views: 15
PDF_2021-4_33-47 (Русский) Downloads: 1
HTML_2021-4_33-47 (Русский) Downloads: 1
PDF_2021-4_33-47 Downloads: 1
HTML_2021-4_33-47 Downloads: 0
Plum Analytics

Language

English Русский

Social Networks

Keywords

Up

Abstract

A large amount of clinical evidences demonstrates a clear association between long-term and/or stress-related hyperglycaemia, and development of complications after surgery. The incidences of perioperative hyperglycaemia are demonstrated in 20–80 % of all cases depending on the type of elective surgery, with the highest rate registered in cardiac surgery. The most studied pathophysiological complications of long-term hyperglycaemia in Diabetes Mellitus (DM) patients are; activation of the polyol pathway, diacylglycerol/protein kinase C and hexosamine pathways, advanced glycation product formation, and oxidative stress. The uncontrolled stress-related hyperglycaemia during and after surgery instigates: osmotic diuresis with further fluid and electrolyte imbalance, increased gluconeogenesis and glucogenolysis, breakdown of fats into free fatty acid and glycerol, proteins into amino acids, and increases generation of pro-inflammatory cytokines. All these changes may lead to development of diabetic ketoacidosis, immune deregulation and insulin resistance. Some clinical investigations seems to indicate that anaesthesia with propofol may have some advantages in keeping stable blood sugar over inhalational agents. Two clinical trials comparing the influence of different anaesthetic agents on perioperative glycaemic status in diabetic patients are currently underway. For better management of perioperative hyperglycaemia in diabetic patients under surgery we have proposed several important practical principles.
https://doi.org/10.21320/1818-474X-2021-4-33-47
PDF_2021-4_33-47 (Русский)
HTML_2021-4_33-47 (Русский)
PDF_2021-4_33-47
HTML_2021-4_33-47

References

  1. IDF Diabetes Atlas 2019. ISBN: 978-2-930229-87-4. Режим доступа: https://www.diabetesatlas.org/upload/resources/material/20200302_133351_IDFATLAS9e-final-web.pdf (Дата обращения: 08.11.2021)
  2. Umpierrez G.E., Isaacs S.D., Bazargan N., et al. Hyperglycemia: an independent marker of in-hospital mortality in patients with undiagnosed diabetes. J Clin Endocrinol Metab. 2002; 87(3): 978–82.
  3. Frisch A., Chandra P., Smiley D., Peng L., et al. Prevalence and clinical outcome of hyperglycemia in the perioperative period in noncardiac surgery. Diabetes Care. 2010; 33(8): 1783–8.
  4. Kotagal M., Symons R.G., Hirsch I.B., et al. SCOAP-Certain Collaborative. Perioperative hyperglycemia and risk of adverse events among patients with and without diabetes. Ann Surg. 2015; 261(1): 97–103.
  5. Zerr K.J., Furnary A.P., Grunkemeier G.L., et al. Glucose control lowers the risk of wound infection in diabetics after open heart operations. Ann Thorac Surg. 1997; 63(2): 356–61. DOI: 10.1016/s0003-4975(96)01044-2
  6. Thourani V.H., Weintraub W.S., Stein B., et al. Influence of diabetes on early and late outcome after coronary artery bypass grafting. Annals of Thoracic Surgery. 1999; 67: 1045–52.
  7. Khan M.A., Grinberg R., Johnson S., et al. Perioperative risk factors for 30-day mortality after bariatric surgery: is functional status important. Surgical Endoscopy. 2013; 27: 1772–7.
  8. Hulst A.H., Hermanides J., Hollmann M.W., et al. Lack of consensus on the peri-operative management of patients with diabetes mellitus. Eur J Anaesthesiol. 2019; 36(2): 168–9. DOI: 10.1097/EJA.0000000000000897
  9. NICE-SUGAR Study Investigators, Finfer S., Chittock D.R., Su S.Y., et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009; 360(13): 1283–97. DOI: 10.1056/NEJMoa0810625
  10. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia. Geneva: World Health Organization; 2006.
  11. Report of a World Health Organization consultation. Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus. Diabetes Res Clin Pract. 2011; 93: 299–309.
  12. Preguiça I., Alves A., Nunes S., et al. Diet-Induced Rodent Models of Diabetic Peripheral Neuropathy, Retinopathy and Nephropathy. Nutrients. 2020; 12(1): 250. DOI: 10.3390/nu12010250
  13. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001; 414(6865): 813–20. DOI: 10.1038/414813a
  14. Kitada M., Zhang Z., Mima A., et al. Molecular mechanisms of diabetic vascular complications. J Diabetes Investig. 2010; 1(3):77–89. DOI: 10.1111/j.2040-1124.2010.00018.x
  15. Bonnefont-Rousselot D. Glucose and reactive oxygen species. Curr Opin Clin Nutr Metab Care. 2002; 5(5): 561–8. DOI: 10.1097/00075197-200209000-00016
  16. Jedziniak J.A., Chylack L.T. Jr, Cheng H.M., et al. The sorbitol pathway in the human lens: aldose reductase and polyol dehydrogenase. Invest Ophthalmol Vis Sci. 1981; 20(3): 314–26.
  17. Pompella A, Visvikis A., Paolicchi A., et al. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol. 2003; 66(8): 1499–503. DOI: 10.1016/s0006-2952(03)00504-5
  18. Tousoulis D., Kampoli A.M., Tentolouris C., et al. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol. 2012; 10(1):4–18. DOI: 10.2174/157016112798829760
  19. Majumder A.L., Biswas B.B. Biology of Inositols and Phosphoinositides. Springer Science & Business Media, 2006. eBook ISBN 978-0-387-27600-7.
  20. Croze M.L., Soulage C.O. Potential role and therapeutic interests of myo-inositol in metabolic diseases. Biochimie. 2013; 95(10):1811–27. DOI: 10.1016/j.biochi.2013.05.011
  21. Geraldes P., King G.L. Activation of protein kinase C isoforms and its impact on diabetic complications. Circ Res. 2010; 106(8):1319–31. DOI:10.1161/CIRCRESAHA.110.217117
  22. Mellor H., Parker P.J. The extended protein kinase C superfamily. Biochem J. 1998; 332: 281–92.
  23. Sandoval R., Malik A.B., Minshall R.D., et al. Ca(2+) signaling and PKCalpha activate in- creased endothelial permeability by disassembly of VE-cadherin junctions. J Physiol. 2001; 533:433–45.
  24. Garcia J.G., Davis H.W., Patterson C.E. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol. 1995; 163: 510–522.
  25. Lynch J.J., Ferro T.J., Blumenstock F.A., et al. Increased endothelial albumin permeability mediated by protein kinase C activation. J Clin Invest. 1990; 85: 1991–8.
  26. Siflinger-Birnboim A., Goligorsky M.S., Del Vecchio P.J., et al. Activation of protein kinase C pathway contributes to hydrogen peroxide-induced increase in endothelial permeability. Lab Invest. 1992; 67: 24–30.
  27. Helset E., Ytrehus K., Tveita T., et al. Endothelin-1 causes accumulation of leukocytes in the pulmonary circulation. Circ Shock. 1994; 44: 201–9.
  28. Helset E., Sildnes T., Konopski S. Endothelin-1 stimulates monocytes in vitro to release chemotactic activity identified as interleukin-8 and monocyte chemotactic protein-1. Mediators of Inflammation. 1994; 3: 155–60.
  29. Helset E., Lindal S., Olsen R., et al. Endothelin-1 causes sequential trapping of platelets and neutrophils in pulmonary microcirculation in rats. Am J Physiol. 1996; 271: L538–546.
  30. Helset E., Sildnes T., Seljelid R., et al. Endothelin-1 stimulates human monocytes in vitro to release TNFα, IL-1β and IL-6. Mediat Inflam. 1993; 2: 417–22.
  31. McClain D.A., Crook E.D. Hexosamines and insulin resistance. Diabetes. 1996; 45(8): 1003–9. DOI: 10.2337/diab.45.8.1003
  32. Buse M.G. Hexosamines, insulin resistance, and the complications of diabetes: current status. Am J Physiol Endocrinol Metab. 2006; 290(1): E1–E8. DOI: 10.1152/ajpendo.00329.2005
  33. Marshall S., Bacote V., Traxinger R.R. Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. J Biol Chem. 1991; 266: 4706–12.
  34. Schmidt A.M., Hori O., Brett J., et al. Cellular receptors for advanced glycation end products: implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscler Thromb. 1994; 14: 1521–8.
  35. Singh R., Barden A., Mori T., et al. Advanced glycation end-products: a review. Diabetologia. 2001; 44: 129–46.
  36. Sakurai T., Tsuchiya S. Superoxide production from nonenzymatically glycated protein. FEBS Letters. 1988; 236(2): 406–10.
  37. Karachalias N., Babaei-Jadidi R., Ahmed N., et al. Accumulation of fructosyl-lysine and advanced glycation end products in the kidney, retina and peripheral nerve of streptozotocin-induced diabetic rats. Biochem Soc Trans. 2003; 31(6): 1423–5. DOI: 10.1042/bst0311423
  38. Bucala R., Tracey K.J., Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endotheliumdependent vasodilatation in experimental diabetes. J Clin Invest. 1991; 87: 432–8.
  39. Asahi K., Ichimori K., Nakazawa H., et al. Nitric oxide inhibits the formation of advanced glycation end products. Kidney Int. 2000; 58: 1780–7.
  40. Frank G.D., Eguchi S., Motley E.D. The role of reactive oxygen species in insulin signaling in the vasculature. Antioxid Redox Signal. 2005; 7: 1053–61.
  41. Halter J.B., Pflug A.E. Effects of anesthesia and surgical stress on insulin secretion in man. Metabolism. 1980; 29(S1): 1124–7.
  42. Burton D., Nicholson G., Hall G. Endocrine and metabolic response to surgery. Contin Educ Anaesth Crit Care Pain. 2004; 4: 144–7.
  43. Miles J.M., Haymond M.W., Nissen S., et al. Effects of free fatty acid availability, glucagon excess and insulin deficiency on ketone body production in postabsorptive man. J Clin Invest. 1983; 71: 1554 –61.
  44. Esposito K., Nappo F., Marfella R., et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002; 106(16): 2067–72.
  45. Stentz F.B., Umpierrez G.E., Cuervo R., et al. Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress, and lipid peroxidation in patients with hyperglycemic crises. Diabetes. 2004; 53: 2079–86.
  46. Reinhold D., Ansorge S., Schleicher E.D. Elevated glucose levels stimulate transforming growth factor-β 1 (TGF-β 1), suppress interleukin IL-2, IL-6 and IL-10 production and DNA synthesis in peripheral blood mononuclear cells. Horm Metab Res. 1996; 28(6): 267–70.
  47. Wallace T.M., Matthews D.R. The assessment of insulin resistance in man. Diabet Med. 2002; 19: 527–34.
  48. Clarke R.S. The hyperglycaemic response to different types of surgery and anaesthesia. Br J Anaesth. 1970; 42: 45–53.
  49. Thorell A., Efendic S., Gutniak M., et al. Development of postoperative insulin resistance is associated with the magnitude of operation. Eur J Surg. 1993; 159: 593–9.
  50. Thorell A., Nygren J., Essen P., et al. The metabolic response to cholecystectomy: insulin resistance after open compared with laparoscopic operation. Eur J Surg. 1996; 162: 187–91.
  51. Thorell A., Häggmark T., Gutniak M., et al. Insulin resistance after abdominal surgery. Br J Surg. 1994; 81: 59–63.
  52. Ouattara A., Lecomte P., Le Manach Y., et al. Poor intraoperative blood glucose control is associated with a worsened hospital outcome after cardiac surgery in diabetic patients. Anesthesiology. 2005; 103(4): 687–94.
  53. Frisch A., Chandra P., Smiley D., et al. Prevalence and clinical outcome of hyperglycemia in the perioperative period in noncardiac surgery. Diabetes Care. 2010; 33(8): 1783–8. DOI: 10.2337/dc10–0304
  54. Kotagal M., Symons R.G., Hirsch I.B., et al; SCOAP-CERTAIN Collaborative. Perioperative hyperglycemia and risk of adverse events among patients with and without diabetes. Ann Surg. 2015; 261(1): 97–103.
  55. Hall G.M., Lacoumenta S., Hart G.R., et al. Site of action of fentanyl in inhibiting the pituitary-adrenal response to surgery in man. Br J Anaesth. 1990; 65: 251–3.
  56. Klingstedt C., Giesecke K., Hamberger B., et al. High- and lowdose fentanyl anaesthesia: circulatory and plasma catecholamine responses during cholecystectomy. Br J Anaesth. 1987; 59(2): 184–8. DOI: 10.1093/bja/59.2.184
  57. Callingham B.A. Catecholamines in blood; in Handbook of Physiology, section 7: Endocrinology, vol. 6. Adrenal Gland (eds H. Blaschko, G. Sayers and A.D. Smith), Washington D.C.: American Physiological Society, 1975; 427.
  58. Thorell A., Alston-Smith J., Ljungqvist O. The effect of preoperative carbohydrate loading on hormonal changes, hepatic glycogen, and glucoregulatory enzymes during abdominal surgery. Nutrition. 1996; 12(10): 690–5. DOI: 10.1016/s0899-9007(96)00167-0
  59. Thorell A., Nygren J., Ljungqvist O. Insulin resistance—a marker of surgical stress. Curr Op Clin Nutr Met Care. 1999; 2: 69–79.
  60. Hrebicek S., Rypka M., Chmela Z., et al. Tumor necrosis factor alpha in various tissues of insulin-resistant obese Koletsky rats: relations to insulin receptor characteristics. Physiol Res. 1999; 48: 83–6.
  61. Qi C., Pekala P.H. Tumor necrosis factor-alpha-induced insulin resistance in adipocytes. Proc Soc Exp Biol Med. 2000; 223: 128–35.
  62. Thorell A., Loftenius A., Andersson B., et al. Postoperative insulin resistance and circulating concentrations of stress hormones and cytokines. Clin Nutr. 1996; 15: 75–59.
  63. Cruickshank A.M., Fraser W.D., Burns H.J., et al. Response of serum interleukin-6 in patients undergoing elective surgery of varying severity. Clin Sci (Lond). 1990; 79: 161–165.
  64. Raeburn C.D., Sheppard F., Barsness K.A., et al. Cytokines for surgeons. Am J Surg. 2002; 183: 268–73.
  65. Abbas A.K., Lichtman A.H., Pober J.S. (eds). Cellular and Molecular Immunology, 3rd edn. Philadelphia: WB Saunders, 1997: 263–4.
  66. Lattermann R., Schricker T., Wachter U., et al. Understanding the mechanisms by which isoflurane modifies the hyperglycemic response to surgery. Anesth Analg. 2001; 93(1): 121–7.
  67. Cok O.Y., Ozkose Z., Pasaoglu H., et al. Glucose response during craniotomy: propofol-remifentanil versus isoflurane-remifentanil. Minerva Anestesiol. 2011; 77(12): 1141–8.
  68. Geisser W., Schreiber M., Hofbauer H., et al. Sevoflurane versus isoflurane—anaesthesia for lower abdominal surgery. Effects on perioperative glucose metabolism. Acta Anaesthesiol Scand. 2003; 47: 174–9.
  69. Tanaka T., Nabatame H., Tanifuji Y. Insulin secretion and glucose utilization are impaired under general anesthesia with sevoflurane as well as isoflurane in a concentration- independent manner. J Anesth. 2005; 19: 277–81.
  70. Zuurbier C.J., Keijzers P.J.M., Koeman A., et al. Anesthesia’s effects on plasma glucose and insulin and cardiac hexokinase at similar hemodynamics and without major surgical stress in fed rats. Anesth Analg. 2008; 106: 135–42.
  71. Tanaka K., Kawano T., Tomino T., et al. Mechanisms of impaired glucose tolerance and insulin secretion during isoflurane anesthesia. Anesthesiology. 2009; 111: 1044–51.
  72. Ihn C.H., Joo J.D., Choi J.W., et al. Comparison of Stress Hormone Response, Interleukin-6 and Anaesthetic Characteristics of Two Anaesthetic Techniques: Volatile Induction and Maintenance of Anaesthesia using Sevoflurane versus Total Intravenous Anaesthesia using Propofol and Remifentanil. J Int Med Res. 2009; 37: 1760–71.
  73. Geisser W., Schreiber M., Hofbauer H., et al. Sevoflurane versus isoflurane—anaesthesia for lower abdominal surgery. Effects on perioperative glucose metabolism. Acta Anaesthesiol Scand. 2003; 47(2): 174–79. DOI: 10.1034/j.1399-6576.2003.00023.x
  74. Onk D., Akarsu Ayazoğlu T., Onk O.A., et al. Comparison of TIVA and Desflurane Added to a Subanaesthetic Dose of Propofol in Patients Undergoing Coronary Artery Bypass Surgery: Evaluation of Haemodynamic and Stress Hormone Changes. Biomed Res Int. 2016; 3272530. DOI: 10.1155/2016/3272530
  75. Schricker T., Carli F., Schreiber M., et al. Propofol/sufentanil anesthesia suppresses the metabolic and endocrine response during, not after, lower abdominal surgery. Anesth Analg. 2000; 90(2): 450–5. DOI: 10.1097/00000539-200002000-00039
  76. Kim H., Han J., Jung S.M., et al. Comparison of sevoflurane and propofol anesthesia on the incidence of hyperglycemia in patients with type 2 diabetes undergoing lung surgery. Yeungnam Univ J Med. 2018; 35(1): 54–62. DOI: 10.12701/yujm.2018.35.1.54
  77. Li X., Kitamura T., Kawamura G., Mori Y., et al. Comparison of mechanisms underlying changes in glucose utilization in fasted rats anesthetized with propofol or sevoflurane: Hyperinsulinemia is exaggerated by propofol with concomitant insulin resistance induced by an acute lipid load. Biosci Trends. 2014; 8(3): 155–62. DOI: 10.5582/bst.2014.01060
  78. Saho S., Kadota Y., Sameshima T., et al. The effects of sevoflurane anesthesia on insulin secretion and glucose metabolism in pigs. Anesth Analg. 1997; 84: 1359–65.
  79. Xiong X.H., Chen C., Chen H., et al. Effects of intravenous and inhalation anesthesia on blood glucose and complications in patients with type 2 diabetes mellitus: study protocol for a randomized controlled trial. Ann Transl Med. 2020; 8(13):825. DOI: 10.21037/atm-20-2045a
  80. Management and Outcomes of Perioperative Care of European Diabetic Patients (MOPED). URL: https://www.esaic.org/uploads/2021/08/moped-flyer-word-v1–3-17-08-2021-final.pdf
  81. Gottschalk A., Rink B., Smektala R., et al. Spinal anesthesia protects against perioperative hyperglycemia in patients undergoing hip arthroplasty. J Clin Anesth. 2014; 26(6): 455–60. DOI: 10.1016/j.jclinane.2014.02.001
  82. El-Radaideh K., Alhowary A.A., Alsawalmeh M., et al. Effect of Spinal Anesthesia versus General Anesthesia on Blood Glucose Concentration in Patients Undergoing Elective Cesarean Section Surgery: A Prospective Comparative Study. Anesthesiol Res Pract. 2019; 2019: 7585043. DOI: 10.1155/2019/7585043
  83. Kiliçkan L., Yumuk Z., Bayindir O. The effect of combined preinduction thoracic epidural anaesthesia and glucocorticoid administration on perioperative interleukin-10 levels and hyperglycemia. A randomized controlled trial. J Cardiovasc Surg (Torino). 2008; 49(1): 87–93.
  84. Donatelli F., Vavassori A., Bonfanti S., et al. Epidural anesthesia and analgesia decrease the postoperative incidence of insulin resistance in preoperative insulin-resistant subjects only. Anesth Analg. 2007; 104: 1587–93.
  85. Greisen J., Nielsen D.V., Sloth E., et al. High thoracic epidural analgesia decreases stress hyperglycemia and insulin need in cardiac surgery patients. Acta Anaesthesiol Scand. 2013; 57(2):171–7. DOI: 10.1111/j.1399-6576.2012.02731.x
  86. Lattermann R., Carli F., Wykes L., et al. Epidural blockade modifies perioperative glucose production without affecting protein catabolism. Anesthesiology. 2002; 97(2): 374–81. DOI: 10.1097/00000542-200208000-00014
  87. Houghton A., Hickey J.B., Ross S.A., et al. Glucose tolerance during anaesthesia and surgery. Comparison of general and extradural anaesthesia. Br J Anaesth. 1978; 50(5): 495–9. DOI: 10.1093/bja/50.5.495
  88. Guideline for Perioperative Care for People with Diabetes Mellitus Undergoing Elective and Emergency Surgery.URL: https://cpoc.org.uk/guidelines-resources-guidelines-resources/guidelinediabetes
  89. NICE-SUGAR Study Investigators, Finfer S., Chittock D.R., Su S.Y., et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009; 360(13): 1283–97. DOI: 10.1056/NEJMoa0810625
  90. Peacock S.C., Lovshin J.A., Cherney D.Z.I. Perioperative Considerations for the Use of Sodium-Glucose Cotransporter-2 Inhibitors in Patients With Type 2 Diabetes. Anesth Analg. 2018; 126(2):699–704. DOI: 10.1213/ANE.0000000000002377
  91. DeCou J.A., Sams S.H. New Diabetes Medications Raise New Perioperative Concerns for the Anesthesiologist. Anesth Analg. 2018; 126(2): 390–2. DOI: 10.1213/ANE.0000000000002740
  92. Reissell E., Orko R., Maunuksela E.L., et al. Predictability of difficult laryngoscopy in patients with long-term diabetes mellitus. Anaesthesia. 1990; 45: 1024–7.
  93. Warner M.E., Contreras M.G., Warner M.A., et al. Diabetes mellitus and difficult laryngoscopy in renal and pancreatic transplant patients. Anesth Analg. 1998; 86: 516–9.
  94. Cavallo-Perin P., Aimo G., Mazzillo A., et al. Gastric-emptying of liquids and solids evaluated by acetaminophen test in diabetic patients with and without autonomic neuropathy. Riv Eur Sci Med Farmacol. 1991; 13: 205–9.
  95. Reissell E., Taskinen M.R., Orko R., et al. Increased volume of gastric contents in diabetic patients undergoing renal transplantation: lack of effect with cisapride. Acta Anaesthesiol Scand. 1992; 36:736–40.
  96. Membership of the Working Party, Barker P., Creasey P.E., Dhatariya K., et al. Peri-operative management of the surgical patient with diabetes 2015: Association of Anaesthetists of Great Britain and Ireland. Anaesthesia. 2015; 70(12): 1427–40. DOI: 10.1111/anae.13233
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2022 ANNALS OF CRITICAL CARE

Downloads

Download data is not yet available.