Abstract
Introduction. Lactate and central venous oxygen saturation (ScvO2) reflect tissue hypoperfusion but each measure is confounded by many additional factors. These confounding factors differ between lactate and ScvO2. Objectives. We postulated that combined assessment of lactate and ScvO2 may yield information beyond that of each measure alone. Specifically we sought to determine whether lactate has different characteristics and predictive value at different levels of ScvO2. Material and methods. We conducted a retrospective analysis of a Derivation cohort and a Validation Cohort of sepsis patients with lactate and ScvO2 measured within the first 4 hours of intensive care unit admission and 12 hours after resuscitation. Patients were grouped according to: 1) ScvO2 < 60 %; 2) 60 % ≤ ScvO2 < 80 %; 3) ScvO2 ≥ 80 %. Results. Lactate was negatively correlated with ScvO2 in the ScvO2 < 60 % group in both cohorts but was not correlated with ScvO2 in the other ScvO2 groups. Using receiver operator characteristic analysis in the Derivation Cohort, in the ScvO2 ≥ 80 % group lactate was predictive of 28-day mortality with an area under the ROC curve (AUC) of 0.94 and an optimal threshold lactate of 3.0 mmol/L. Using this threshold in the ScvO2 ≥ 80 % groups, 28-day mortality was 32.7 %. Conclusions. Lactate has different characteristics and predictive value at different levels of ScvO2. When ScvO2 < 60 % correlation between lactate and ScvO2 is consistent with a degree of oxygen supply limitation. When ScvO2 ≥ 80 % lactate > 3.0 mmol/L is predictive of mortality.
References
- Evans L., Rhodes A., Alhazzani W., et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021; 2: 1–67. DOI: 10.1007/s00134-021-06506-y
- Kraut J.A., Madias N.E. Lactic acidosis. N Engl J Med. 2014; 371(24): 2309–19. DOI: 10.1056/NEJMra1309483
- Reid M. Central venous oxygen saturation: analysis, clinical use and effects on mortality. Nurs Crit Care. 2013; 18(5): 245–50. DOI: 10.1111/nicc.12028
- Walton R.A.L., Hansen B.D. Venous oxygen saturation in critical illness. J Vet Emerg Crit Care (San Antonio). 2018; 28(5): 387–97. DOI: 10.1111/vec.12749
- O’Dell E., Tibby S.M., Durward A., et al. Hyperchloremia is the dominant cause of metabolic acidosis in the postresuscitation phase of pediatric meningococcal sepsis. Crit Care Med. 2007; 35: 2390–4. DOI: 10.1097/01.CCM.0000284588.17760.99
- Park M., Azevedo L.C., Maciel A.T., et al. Evolutive standard base excess and serum lactate level in severe sepsis and septic shock patients resuscitated with early goal-directed therapy: Still outcome markers? Clinics. 2006; 61: 47–52. DOI: 10.1590/s1807-59322006000100009
- Smith I., Kumar P., Molloy S., et al. Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med. 2001; 27: 74–83. DOI: 10.1007/s001340051352
- Vincent J.L., De Backer D. Circulatory shock. N Engl J Med. 2013; 369: 1726–34. DOI: 10.1056/NEJMra1208943
- Casserly B., Phillips G.S., Schorr C., et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the Surviving Sepsis Campaign database. Crit Care Med. 2015; 43: 567–73. DOI: 10.1097/CCM.0000000000000742
- Zhang Z., Chen K., Ni H., et al. Predictive value of lactate in unselected critically ill patients: an analysis using fractional polynomials. J Thorac Dis. 2014; 6: 995–1003. DOI: 10.3978/j.issn.2072-1439.2014.07.01
- Ryoo S.M., Ahn R., Shin T.G., et al. Lactate normalization within 6 hours of bundle therapy and 24 hours of delayed achievement were associated with 28-day mortality in septic shock patients. PLoS One. 2019; 14(6): e0217857. DOI: 10.1371/journal.pone.0217857
- Nichol A.D., Egi M., Pettila V., et al. Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study. Crit Care. 2010; 14: R25. DOI: 10.1186/cc8888
- Levy M.M., Evans L.E., Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 Update. Crit Care Med. 2018; 46(6): 997–1000. DOI: 10.1097/CCM.0000000000003119
- Jansen T.C., Bommel J.V., Schoonderbeek F.J., et al. LACTATE study group. Early lactate-guided therapy in intensive care unit patients: A multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010; 182: 752–61. DOI: 10.1164/rccm.200912-1918OC
- Jones A.E., Shapiro N.I., Trzeciak S., et al. Emergency Medicine Shock Research Network (EMShockNet) Investigators. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: A randomized clinical trial. JAMA. 2010; 303: 739–46. DOI: 10.1001/jama.2010.158
- Rivers E.P., Ander D.S., Powell D. Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care. 2001; 7:204–11. DOI: 10.1097/00075198-200106000-00011
- Muckart D.J, Bhagwanjee S. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference definitions of the systemic inflammatory response syndrome and allied disorders in relation to critically injured patients. Crit Care Med. 1997; 25(11): 1789–95. DOI: 10.1097/00003246-199711000-00014
- Walley K.R. Use of Central Venous Oxygen Saturation to Guide Therapy. Am J Respir Crit Care Med. 2011; 184(5): 514–20. DOI: 10.1164/rccm.201010-1584CI
- Bellomo R., Reade M.C., Warrillow S.J. The pursuit of a high central venous oxygen saturation in sepsis: growing concerns. Crit Care. 2008; 12(2): 130. DOI: 10.1186/cc6841
- Rivers E., Nguyen B., Havstad S., et al. Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001; 345(19):1368–77. DOI: 10.1056/NEJMoa010307
- Jones A.E., Shapiro N.I., Trzeciak S., et al. Emergency Medicine Shock Research Network I: lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010; 303: 739–46. DOI: 10.1001/jama.2010.158
- Peake S.L., Delaney A., Bailey M., et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014; 371: 1496–506. DOI: 10.1056/NEJMoa1404380
- Mouncey P.R., Osborn T.M., Power G.S., et al. Trial of early, goaldirected resuscitation for septic shock. N Engl J Med. 2015; 372:1301–11. DOI: 10.1056/NEJMoa1500896
- Yealy D.M., Kellum J.A., Huang D.T., et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014; 370: 1683–93. DOI: 10.1056/NEJMoa1401602
- Singer M., Deutschman C.S., Seymour C.W., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 23; 315(8): 801–10. DOI: 10.1001/jama.2016.0287
- Bracht H., Hänggi M., Jeker B., et al. Incidence of low central venous oxygen saturation during unplanned admissions in a multidisciplinary intensive care unit: an observational study. Critical Care. 2007; 11: R2. DOI: 10.1186/cc5144
- Textoris J., Fouché L., Wiramus S., et al. High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality. Crit Care. 2011; 26; 15(4): R176. DOI: 10.1186/cc10325
- Lee Y.K., Hwang S.Y., Shin T.G., et al. Prognostic value of lactate and central venous oxygen saturation after early resuscitation in sepsis patients. PLoS One. 2016; 11(4): e0153305. DOI: 10.1371/journal.pone.0153305
- Casserly B., Phillips G.S., Schorr C., et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the Surviving Sepsis Campaign database. Crit Care. 2015; 43: 567–573. DOI: 10.1097/CCM.0000000000000742
- Puskarich M.A., Trzeciak S., Shapiro N.I., et al. Whole blood lactate kinetics in patients undergoing quantitative resuscitation for severe sepsis and septic shock. Chest. 2013; 143: 1548–1553. DOI: 10.1378/chest.12-0878
- Suetrong B., Walley K.R. Lactic Acidosis in Sepsis: It’s not all anaerobic implications for diagnosis and management. CHEST. 2016; 149(1): 252–261. DOI: 10.1378/chest.15-1703
- Rivers E.P., Elkin R., Cannon C.M. Counterpoint: should lactate clearance be substituted for central venous oxygen saturation as goals of early severe sepsis and septic shock therapy? No. Chest. 2011; 140: 1408–1413. DOI: 10.1378/chest.11-2563
- Hernandez G., Castro R., Romero C., et al. Persistent sepsis-induced hypotension without hyperlactatemia: is it really septic shock? J Crit Care. 2011; 26: e439– e414. DOI: 10.1016/j.jcrc.2010.09.007
- Omar S., Burchard A.T., Lundgren A.C., et al. The relationship between blood lactate and survival following the use of adrenaline in the treatment of septic shock. Anaesth Intensive Care. 2011; 39(3): 449–455. DOI: 10.1177/0310057X1103900316
- Rowan K.M., Angus D.C., Bailey M., et al. Early, Goal-Directed Therapy for Septic Shock — A Patient-Level Meta-Analysis. N Engl J Med. 2017; 376(23): 2223–2234. DOI: 10.1056/NEJMoa1701380
- Pope J.V., Jones A.E., Gaieski D.F., et al. Multicenter study of central venous oxygen saturation (ScvO2) as a predictor of mortality in patients with sepsis. Ann Emerg Med. 2010; 55(1): 40–46.e1. DOI: 10.1016/j.annemergmed.2009.08.014
- Shin T.G., Jo I.J., Hwang S.Y., et al. Comprehensive interpretation of central venous oxygen saturation and blood lactate levels during resuscitation of patients with severe sepsis and septic shock in the emergency department. SHOCK. 2016; 45(1): 4–9. DOI: 10.1097/SHK.0000000000000466
- Bisarya R., Shaath D., Pirzad A., et al. Serum lactate poorly predicts central venous oxygen saturation in critically ill patients: a retrospective cohort study. J Intensive Care. 2019; 7:47. DOI: 10.1186/s40560-019-0401-5
- Roberts J.K., Disselkamp M., Yataco A.C. Oxygen Delivery in Septic Shock. Ann Am Thorac Soc. 2015; 12(6): 952–955. DOI: 10.1513/AnnalsATS.201501-069CC
- Joshi R., de Witt B., Mosier J.M. Optimizing oxygen delivery in the critically ill: the utility of lactate and central venous oxygen saturation (ScvO2) as a roadmap of resuscitation in shock. The Journal of emergency medicine. 2014; 47(4): 493–500. DOI: 10.1016/j.jemermed.2014.06.016
- Nguyen H.B., Rivers E.P., Knoblich B.P., et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004; 32 (8): 1637–42. DOI: 10.1097/01.ccm.0000132904.35713.a7
- Vallet B., Pinsky M.R., Cecconi M. Resuscitation of patients with septic shock: please ‘mind the gap’! Intensive Care Med. 2013; 39:1653–5. DOI: 10.1007/s00134-013-2998-5
- Vallée F., Vallet B., Mathe O., et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008; 34: 2218–25. DOI: 10.1007/s00134-008-1199-0
- Ospina-Tascon G.A., Bautista-Rincon D.F., Umaña M., et al. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit Care. 2013; 17: R294. DOI: 10.1186/cc13160
- Mesquida J., Gruartmoner G., Espinal C., et al. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock Crit Care. 2015; 19(1): 126. DOI: 10.1186/s13054-015-0858-0
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2022 ANNALS OF CRITICAL CARE