Value of combined lactate and central venous oxygen saturation measurement in patients with sepsis: a retrospective cohort study
ISSN (print) 1726-9806     ISSN (online) 1818-474X
#2021-4
PDF_2021-4_59-68
HTML_2021-4_59-68

Keywords

central venous oxygen saturation
oximetry
lactate
sepsis
septic shock
prognosis
mortality

How to Cite

1.
Sitthikool K., Boyd J.H., Russell J.A., Walley K.R. Value of combined lactate and central venous oxygen saturation measurement in patients with sepsis: a retrospective cohort study. Annals of Critical Care. 2022;(4):59-68. doi:10.21320/1818-474X-2021-4-59-68

Statistic

Abstract Views: 131
PDF_2021-4_59-68 Downloads: 32
HTML_2021-4_59-68 Downloads: 17
Statistic from 01.07.2024

Language

English Русский

Social Networks

Abstract

Introduction. Lactate and central venous oxygen saturation (ScvO2) reflect tissue hypoperfusion but each measure is confounded by many additional factors. These confounding factors differ between lactate and ScvO2. Objectives. We postulated that combined assessment of lactate and ScvO2 may yield information beyond that of each measure alone. Specifically we sought to determine whether lactate has different characteristics and predictive value at different levels of ScvO2. Material and methods. We conducted a retrospective analysis of a Derivation cohort and a Validation Cohort of sepsis patients with lactate and ScvO2 measured within the first 4 hours of intensive care unit admission and 12 hours after resuscitation. Patients were grouped according to: 1) ScvO2 < 60 %; 2) 60 % ≤ ScvO2 < 80 %; 3) ScvO2 ≥ 80 %. Results. Lactate was negatively correlated with ScvO2 in the ScvO2 < 60 % group in both cohorts but was not correlated with ScvO2 in the other ScvO2 groups. Using receiver operator characteristic analysis in the Derivation Cohort, in the ScvO2 ≥ 80 % group lactate was predictive of 28-day mortality with an area under the ROC curve (AUC) of 0.94 and an optimal threshold lactate of 3.0 mmol/L. Using this threshold in the ScvO2 ≥ 80 % groups, 28-day mortality was 32.7 %. Conclusions. Lactate has different characteristics and predictive value at different levels of ScvO2. When ScvO2 < 60 % correlation between lactate and ScvO2 is consistent with a degree of oxygen supply limitation. When ScvO2 ≥ 80 % lactate > 3.0 mmol/L is predictive of mortality.

PDF_2021-4_59-68
HTML_2021-4_59-68

References

  1. Evans L., Rhodes A., Alhazzani W., et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021; 2: 1–67. DOI: 10.1007/s00134-021-06506-y
  2. Kraut J.A., Madias N.E. Lactic acidosis. N Engl J Med. 2014; 371(24): 2309–19. DOI: 10.1056/NEJMra1309483
  3. Reid M. Central venous oxygen saturation: analysis, clinical use and effects on mortality. Nurs Crit Care. 2013; 18(5): 245–50. DOI: 10.1111/nicc.12028
  4. Walton R.A.L., Hansen B.D. Venous oxygen saturation in critical illness. J Vet Emerg Crit Care (San Antonio). 2018; 28(5): 387–97. DOI: 10.1111/vec.12749
  5. O’Dell E., Tibby S.M., Durward A., et al. Hyperchloremia is the dominant cause of metabolic acidosis in the postresuscitation phase of pediatric meningococcal sepsis. Crit Care Med. 2007; 35: 2390–4. DOI: 10.1097/01.CCM.0000284588.17760.99
  6. Park M., Azevedo L.C., Maciel A.T., et al. Evolutive standard base excess and serum lactate level in severe sepsis and septic shock patients resuscitated with early goal-directed therapy: Still outcome markers? Clinics. 2006; 61: 47–52. DOI: 10.1590/s1807-59322006000100009
  7. Smith I., Kumar P., Molloy S., et al. Base excess and lactate as prognostic indicators for patients admitted to intensive care. Intensive Care Med. 2001; 27: 74–83. DOI: 10.1007/s001340051352
  8. Vincent J.L., De Backer D. Circulatory shock. N Engl J Med. 2013; 369: 1726–34. DOI: 10.1056/NEJMra1208943
  9. Casserly B., Phillips G.S., Schorr C., et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the Surviving Sepsis Campaign database. Crit Care Med. 2015; 43: 567–73. DOI: 10.1097/CCM.0000000000000742
  10. Zhang Z., Chen K., Ni H., et al. Predictive value of lactate in unselected critically ill patients: an analysis using fractional polynomials. J Thorac Dis. 2014; 6: 995–1003. DOI: 10.3978/j.issn.2072-1439.2014.07.01
  11. Ryoo S.M., Ahn R., Shin T.G., et al. Lactate normalization within 6 hours of bundle therapy and 24 hours of delayed achievement were associated with 28-day mortality in septic shock patients. PLoS One. 2019; 14(6): e0217857. DOI: 10.1371/journal.pone.0217857
  12. Nichol A.D., Egi M., Pettila V., et al. Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study. Crit Care. 2010; 14: R25. DOI: 10.1186/cc8888
  13. Levy M.M., Evans L.E., Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 Update. Crit Care Med. 2018; 46(6): 997–1000. DOI: 10.1097/CCM.0000000000003119
  14. Jansen T.C., Bommel J.V., Schoonderbeek F.J., et al. LACTATE study group. Early lactate-guided therapy in intensive care unit patients: A multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med. 2010; 182: 752–61. DOI: 10.1164/rccm.200912-1918OC
  15. Jones A.E., Shapiro N.I., Trzeciak S., et al. Emergency Medicine Shock Research Network (EMShockNet) Investigators. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: A randomized clinical trial. JAMA. 2010; 303: 739–46. DOI: 10.1001/jama.2010.158
  16. Rivers E.P., Ander D.S., Powell D. Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care. 2001; 7:204–11. DOI: 10.1097/00075198-200106000-00011
  17. Muckart D.J, Bhagwanjee S. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference definitions of the systemic inflammatory response syndrome and allied disorders in relation to critically injured patients. Crit Care Med. 1997; 25(11): 1789–95. DOI: 10.1097/00003246-199711000-00014
  18. Walley K.R. Use of Central Venous Oxygen Saturation to Guide Therapy. Am J Respir Crit Care Med. 2011; 184(5): 514–20. DOI: 10.1164/rccm.201010-1584CI
  19. Bellomo R., Reade M.C., Warrillow S.J. The pursuit of a high central venous oxygen saturation in sepsis: growing concerns. Crit Care. 2008; 12(2): 130. DOI: 10.1186/cc6841
  20. Rivers E., Nguyen B., Havstad S., et al. Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001; 345(19):1368–77. DOI: 10.1056/NEJMoa010307
  21. Jones A.E., Shapiro N.I., Trzeciak S., et al. Emergency Medicine Shock Research Network I: lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010; 303: 739–46. DOI: 10.1001/jama.2010.158
  22. Peake S.L., Delaney A., Bailey M., et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014; 371: 1496–506. DOI: 10.1056/NEJMoa1404380
  23. Mouncey P.R., Osborn T.M., Power G.S., et al. Trial of early, goaldirected resuscitation for septic shock. N Engl J Med. 2015; 372:1301–11. DOI: 10.1056/NEJMoa1500896
  24. Yealy D.M., Kellum J.A., Huang D.T., et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014; 370: 1683–93. DOI: 10.1056/NEJMoa1401602
  25. Singer M., Deutschman C.S., Seymour C.W., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 23; 315(8): 801–10. DOI: 10.1001/jama.2016.0287
  26. Bracht H., Hänggi M., Jeker B., et al. Incidence of low central venous oxygen saturation during unplanned admissions in a multidisciplinary intensive care unit: an observational study. Critical Care. 2007; 11: R2. DOI: 10.1186/cc5144
  27. Textoris J., Fouché L., Wiramus S., et al. High central venous oxygen saturation in the latter stages of septic shock is associated with increased mortality. Crit Care. 2011; 26; 15(4): R176. DOI: 10.1186/cc10325
  28. Lee Y.K., Hwang S.Y., Shin T.G., et al. Prognostic value of lactate and central venous oxygen saturation after early resuscitation in sepsis patients. PLoS One. 2016; 11(4): e0153305. DOI: 10.1371/journal.pone.0153305
  29. Casserly B., Phillips G.S., Schorr C., et al. Lactate measurements in sepsis-induced tissue hypoperfusion: results from the Surviving Sepsis Campaign database. Crit Care. 2015; 43: 567–573. DOI: 10.1097/CCM.0000000000000742
  30. Puskarich M.A., Trzeciak S., Shapiro N.I., et al. Whole blood lactate kinetics in patients undergoing quantitative resuscitation for severe sepsis and septic shock. Chest. 2013; 143: 1548–1553. DOI: 10.1378/chest.12-0878
  31. Suetrong B., Walley K.R. Lactic Acidosis in Sepsis: It’s not all anaerobic implications for diagnosis and management. CHEST. 2016; 149(1): 252–261. DOI: 10.1378/chest.15-1703
  32. Rivers E.P., Elkin R., Cannon C.M. Counterpoint: should lactate clearance be substituted for central venous oxygen saturation as goals of early severe sepsis and septic shock therapy? No. Chest. 2011; 140: 1408–1413. DOI: 10.1378/chest.11-2563
  33. Hernandez G., Castro R., Romero C., et al. Persistent sepsis-induced hypotension without hyperlactatemia: is it really septic shock? J Crit Care. 2011; 26: e439– e414. DOI: 10.1016/j.jcrc.2010.09.007
  34. Omar S., Burchard A.T., Lundgren A.C., et al. The relationship between blood lactate and survival following the use of adrenaline in the treatment of septic shock. Anaesth Intensive Care. 2011; 39(3): 449–455. DOI: 10.1177/0310057X1103900316
  35. Rowan K.M., Angus D.C., Bailey M., et al. Early, Goal-Directed Therapy for Septic Shock — A Patient-Level Meta-Analysis. N Engl J Med. 2017; 376(23): 2223–2234. DOI: 10.1056/NEJMoa1701380
  36. Pope J.V., Jones A.E., Gaieski D.F., et al. Multicenter study of central venous oxygen saturation (ScvO2) as a predictor of mortality in patients with sepsis. Ann Emerg Med. 2010; 55(1): 40–46.e1. DOI: 10.1016/j.annemergmed.2009.08.014
  37. Shin T.G., Jo I.J., Hwang S.Y., et al. Comprehensive interpretation of central venous oxygen saturation and blood lactate levels during resuscitation of patients with severe sepsis and septic shock in the emergency department. SHOCK. 2016; 45(1): 4–9. DOI: 10.1097/SHK.0000000000000466
  38. Bisarya R., Shaath D., Pirzad A., et al. Serum lactate poorly predicts central venous oxygen saturation in critically ill patients: a retrospective cohort study. J Intensive Care. 2019; 7:47. DOI: 10.1186/s40560-019-0401-5
  39. Roberts J.K., Disselkamp M., Yataco A.C. Oxygen Delivery in Septic Shock. Ann Am Thorac Soc. 2015; 12(6): 952–955. DOI: 10.1513/AnnalsATS.201501-069CC
  40. Joshi R., de Witt B., Mosier J.M. Optimizing oxygen delivery in the critically ill: the utility of lactate and central venous oxygen saturation (ScvO2) as a roadmap of resuscitation in shock. The Journal of emergency medicine. 2014; 47(4): 493–500. DOI: 10.1016/j.jemermed.2014.06.016
  41. Nguyen H.B., Rivers E.P., Knoblich B.P., et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med. 2004; 32 (8): 1637–42. DOI: 10.1097/01.ccm.0000132904.35713.a7
  42. Vallet B., Pinsky M.R., Cecconi M. Resuscitation of patients with septic shock: please ‘mind the gap’! Intensive Care Med. 2013; 39:1653–5. DOI: 10.1007/s00134-013-2998-5
  43. Vallée F., Vallet B., Mathe O., et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008; 34: 2218–25. DOI: 10.1007/s00134-008-1199-0
  44. Ospina-Tascon G.A., Bautista-Rincon D.F., Umaña M., et al. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit Care. 2013; 17: R294. DOI: 10.1186/cc13160
  45. Mesquida J., Gruartmoner G., Espinal C., et al. Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock Crit Care. 2015; 19(1): 126. DOI: 10.1186/s13054-015-0858-0
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2022 ANNALS OF CRITICAL CARE