Predictors of the outcome of severe polytrauma in children: a retrospective cohort multicenter study
ISSN (print) 1726-9806     ISSN (online) 1818-474X
#2021-4
PDF_2021-4_69-78 (Russian)
HTML_2021-4_69-78 (Russian)

Keywords

polytrauma
children
forecasting
favourable outcome
unfavourable outcome

How to Cite

1.
Pshenisnov K.V., Aleksandrovich Y.S., Lipin A.S., Kaziakhmedov V.A., Kozubov M.U., Pastukhova N.K. Predictors of the outcome of severe polytrauma in children: a retrospective cohort multicenter study. Annals of Critical Care. 2022;(4):69-78. doi:10.21320/1818-474X-2021-4-69-78

Statistic

Abstract Views: 78
PDF_2021-4_69-78 (Russian) Downloads: 42
HTML_2021-4_69-78 (Russian) Downloads: 17
Statistic from 01.07.2024

Language

English Русский

Social Networks

Abstract

Introduction. Severe polytrauma is the most common cause of deaths in children, but there are currently no objective criteria for predicting the outcome of severe polytrauma in pediatric ICU patients and identifying a high-risk group. Objectives of the study is to identify the features of clinical and laboratory status and intensive care measures in children with severe polytrauma, which determine the outcome of a critical condition. Materials and methods. Design: A retrospective cohort multicenter uncontrolled study. 230 children were examined. The age of patients was 9.5 (4–14) years. The score on the Abbreviated Injury Score (AIS) was 34 points, the Pediatric Traumatic Score (PTS) — 5 (2–8) points. As a primary outcome, the duration of control mechanical ventilation and ICU length of stay were evaluated. Secondary outcome was divided into recovery, presence of neurological deficiency and death. Results. Minimum duration of treatment in ICU is noted with short-term sedation during the day, an AIS score of less than 30 points and a PTS score of more than 5 points. The presence of intracranial hematoma (ICH) is associated with a doubling of treatment duration in ICU. The maximum statistically significant difference in mean values was revealed when assessing the effect on the outcome of the following features: catecholamine index (F = 109.4; p = 0.000); transfusion volume of freshly frozen plasma (F = 42.0; p = 0.000) and transfusion volume of erythrocytes (F = 33.4; p = 0.000). Conclusions. The need for prolonged sedation, an AIS score of more than thirty points, a PTS score of more than five points, and the presence of ICH is associated with an increase ICU length of stay and adverse outcome. The use of high doses of catecholamines and massive blood transfusion on the first day of treatment in ICU are independent predictors of the death of polytrauma in children.

PDF_2021-4_69-78 (Russian)
HTML_2021-4_69-78 (Russian)

References

  1. Юнусов Д.И., Александрович В.Ю., Миронов П.И. и др. Алгоритм оказания помощи детям с сочетанной травмой. Ортопедия, травматология и восстановительная хирургия детского возраста. 2019; 7(4): 67–78. DOI:17816/PTORS7467-78 [Yunusov D.I., Aleksandrovich V.Yu., Mironov P.I., et al. Algorithm of medical care for children with polytrauma. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2019; 7(4): 67–78. DOI: 10.17816/PTOrS7467-78 (In Russ)]
  2. Баиндурашвили А.Г., Виссарионов С.В., Александрович Ю.С., Пшениснов К.В. Позвоночно-спинномозговая травма у детей. СПб.: Онли-пресс, 2016. [Baindurashvili A.G., Vissarionov S.V., Aleksandrovich Yu.S., Pshenisnov K.V. Spinal injury in children. SPb.: Onli-press, 2016. (In Russ)]
  3. MacLeod J.B., Lynn M., McKenney M.G., et al. Early coagulopathy predicts mortality in trauma. J Trauma. 2003; 55(1): 39–44. DOI: 10.1097/01.TA.0000075338.21177.EF
  4. Orwoll B.E., Spicer A.C., Zinter M.S., et al. Elevated soluble thrombomodulin is associated with organ failure and mortality in children with acute respiratory distress syndrome (ARDS): a prospective observational cohort study. Crit Care. 2015; 19: 435. DOI: 10.1186/s13054-015-1145-9
  5. Chaari A., Chelly H., Fourati H., et al. Factors predicting lung contusions in critically ill trauma children: a multivariate analysis of 330 cases. Pediatr Emerg Care. 2018; 34(3): 198–201. DOI: 10.1097/PEC.0000000000000756
  6. Namachivayam P., Taylor A., Montague T., et al. Long-stay children in intensive care: long-term functional outcome and quality of life from a 20-yr institutional study. Pediatr Crit Care Med. 2012; 13(5): 520–8. DOI: 10.1097/PCC.0b013e31824fb989
  7. Hanna K., Hamidi M., Anderson K.T., et al. Pediatric resuscitation: Weight-based packed red blood cell volume is a reliable predictor of mortality. J Trauma Acute Care Surg. 2019; 87(2): 356–63. DOI: 10.1097/TA.0000000000002305
  8. Miles D.K., Ponisio M.R., Colvin R., et al. Predictors of intracranial hypertension in children undergoing ICP monitoring after severe traumatic brain injury. Childs Nerv Syst. 2020; 36(7): 1453–1460. DOI: 10.1007/s00381-020-04516-7
  9. Rajasekaran S., Kort E., Hackbarth R., et al. Red cell transfusions as an independent risk for mortality in critically ill children. J Intensive Care. 2016; 4: 2. DOI: 10.1186/s40560-015-0122-3
  10. Robin E., Futier E., Pires O., et al. Prognostic value of the central venous-to-arterial carbon dioxide difference for postoperative complications in high-risk surgical patients. Crit Care. 2011; 15(Suppl 1): P38. DOI: 10.1186/cc9458
  11. Leite H.P, Rodrigues da Silva A.V., de Oliveira Iglesias S.B., et al. Serum albumin is an independent predictor of clinical outcomes in critically ill children. Pediatr Crit Care Med. 2016; 17(2): e50–7. DOI: 10.1097/PCC.0000000000000596
  12. СкворцовВ.В., Скворцова Е.М., Бангаров Р.Ю. Лактат-ацидоз в практике врача анестезиолога-реаниматолога. Вестник анестезиологии и реаниматологии. 2020; 17(3): 95. DOI: 21292/2078-5658-2020-17-3-95-100 [Skvortsov V.V., Skvortsova E.M., Bangarov R.Yu. Lactic acidosis in the practice of a resuscitator. Messenger of Anesthesiology and Resuscitation. 2020; 17(3): 95–100. DOI: 10.21292/2078-5658-2020-17-3-95-100 (In Russ)]
  13. Huh Y., Ko Y., Hwang K., et al. Admission lactate and base deficit in predicting outcomes of pediatric trauma. Shock. 2021; 55(4): 495–500. DOI: 10.1097/SHK.0000000000001652
  14. Samaraweera S.A., Gibbons B., Gour A., et al. Arterial versus venous lactate: a measure of sepsis in children. Eur J Pediatr. 2017; 176(8): 1055–60. DOI: 10.1007/s00431-017-2925-9
  15. Jaiswal P., Dewan P., Gomber S., et al. Early lactate measurements for predicting in-hospital mortality in paediatric sepsis. J Paediatr Child Health. 2020; 56(10): 1570–76. DOI: 10.1111/jpc.15028
  16. Marikar D., Babu P., Fine-Goulden M. How to interpret lactate. Arch Dis Child Educ Pract Ed. 2021; 106(3): 167–71. DOI: 10.1136/archdischild-2020-319601
  17. Ronco R., Castillo A. The sicker the patient the higher the lactate: a well-known relationship. Pediatr Crit Care Med. 2013; 14(8): 831–2. DOI: 10.1097/PCC.0b013e3182a12652
  18. Nijsten M.W.N., Bakker Lactate monitoring in the ICU. ICU Management & Practice. 2015; 15(2).
  19. Ramanathan R., Parrish D.W., Hartwich J.E., et al. Utility of admission serum lactate in pediatric trauma. J Pediatr Surg. 2015; 50(4): 598–603. DOI: 10.1016/j.jpedsurg.2014.08.013
  20. Muñiz A.E., Foster R., Bartle S., et al. Serum lactate levels in children with major trauma is not predictive of injury, Pediatric Critical Care Medicine. 2005; 6(5): 628.
  21. Marik P.E. Lactate guided resuscitation-nothing is more dangerous than conscientious foolishness. J Thorac Dis. 2019; (Suppl 15): S1969–S1972. DOI: 10.21037/jtd.2019.07.67
  22. Shoemaker W.C., Appel P.L., Kram H.B., et al. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest. 1988; 94(6): 1176–86. DOI: 10.1378/chest.94.6.1176
  23. Vincent J.L., Quintairos E. Silva A, Couto L. Jr., Taccone F.S. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care. 2016; 20(1): 257. DOI: 10.1186/s13054-016-1403-5
  24. Filho N.O., Alves R.L., Fernandes A.T., et al. Association of increased morbidity with the occurrence of hyperglycemia in the immediate postoperative period after elective pediatric neurosurgery. J Neurosurg Pediatr. 2016; 17(5): 625–9. DOI: 10.3171/2015.9.PEDS1559
  25. Chong S.L., Harjanto S., Testoni D., et al. Early hyperglycemia in pediatric traumatic brain injury predicts for mortality, prolonged duration of mechanical ventilation, and intensive care stay. Int J Endocrinol. 2015; 2015: 719476. DOI: 10.1155/2015/719476
  26. Kandil S.B., Faustino E.V. Tight glycaemic control does not improve mortality or morbidity in critically ill children. Evid Based Med. 2014; 19(4): 143. DOI: 10.1136/eb-2014-101749
  27. Patki V.K., Chougule S.B. Hyperglycemia in critically ill children. Indian J Crit Care Med. 2014; 18(1): 8–13. DOI: 10.4103/0972-5229.125427
  28. Fu Y.Q., Chong S.L., Lee J.H., et al. The impact of early hyperglycaemia on children with traumatic brain injury. Brain Inj. 2017; 31(3): 396–400. DOI: 10.1080/02699052.2016.1264629
  29. Ballestero Y., López-Herce J., González R., et al. Relationship between hyperglycemia, hormone disturbances, and clinical evolution in severely hyperglycemic post surgery critically ill children: an observational study. BMC Endocr Disord. 2014; 14: 25. DOI: 10.1186/1472-6823-14-25
  30. Mifsud S., Schembri E.L., Gruppetta M. Stress-induced hyperglycaemia. Br J Hosp Med (Lond). 2018; 79(11): 634–9. DOI: 10.12968/hmed.2018.79.11.634
  31. Smith R.L., Lin J.C., Adelson P.D., et al. Relationship between hyperglycemia and outcome in children with severe traumatic brain injury. Pediatr Crit Care Med. 2012; 13(1): 85–91. DOI: 10.1097/PCC.0b013e3182192c30
  32. Tsai Y.W., Wu S.C., Huang C.Y., et al. Impact of stress-induced hyperglycemia on the outcome of children with trauma: A cross-sectional analysis based on propensity score-matched population. Sci Rep. 2019; 9(1): 16311. DOI: 10.1038/s41598-019-52928-6
  33. Reed C.R., Williamson H., Vatsaas C., et al. Higher mortality in pediatric and adult trauma patients with traumatic coagulopathy, using age-adjusted diagnostic criteria. Surgery. 2019; 165(6): 1108–15. DOI: 10.1016/j.surg.2019.03.003
  34. Braun C.K., Schaffer A., Weber B., et al. The prognostic value of troponin in pediatric polytrauma. Front Pediatr. 2019; 7: 477. DOI: 10.3389/fped.2019.00477
  35. Nozawa M., Mishina H., Tsuji S., et al. Low plasma D-dimer predicts absence of intracranial injury and skull fracture. Pediatr Int. 2020; 62(1): 22–8. DOI: 10.1111/ped.14063
  36. ЗильберА.П. Этюды критической медицины. : МЕДпресс-информ, 2006. [Zilʼber A.P. Essays on critical care medicine M.: MEDpress-inform, 2006. (In Russ)]
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2022 ANNALS OF CRITICAL CARE