Possibilities of transesophageal echocardiography for assessing the volemic status of patients during direct myocardial revascularization operations on the beating heart: a review
ISSN (print) 1726-9806     ISSN (online) 1818-474X
#2021-4
PDF_2021-4_88-97 (Russian)
HTML_2021-4_88-97 (Russian)

Keywords

coronary artery bypass off-pump
myocardial revascularization
hemodynamics
transesophageal echocardiography
fluid therapy
blood volume

How to Cite

1.
Batigyan O.A., Lebedeva E.A., Martynov D.V. Possibilities of transesophageal echocardiography for assessing the volemic status of patients during direct myocardial revascularization operations on the beating heart: a review. Annals of Critical Care. 2022;(4):88-97. doi:10.21320/1818-474X-2021-4-88-97

Statistic

Abstract Views: 46
PDF_2021-4_88-97 (Russian) Downloads: 31
HTML_2021-4_88-97 (Russian) Downloads: 15
Statistic from 01.07.2024

Language

English Русский

Social Networks

Abstract

Introduction. Uncertainty about approaches to optimizing monitoring and tactics of hemodynamic correction today directly affects the effectiveness of interventions. This problem is especially pronounced in the case of patients with high cardiac risk, as well as in the case of rapidly developing intraoperative hemodynamic disorders, which are a specific feature of some cardiac surgical interventions, such as myocardial revascularization operations on a beating heart. In such a situation, the key factor for the success of the operation is the coordination of the work of the surgeon and the anesthesiologist. Objectives. To determine the main approaches to monitoring and assessing the volemic status of a patient during direct myocardial revascularization operations on a working heart and to evaluate the possibility of transesophageal echocardiography as such a monitoring tool. Materials and methods. The search was carried out in the electronic databases PubMed, Scopus, Web of Science Core Collection; the analysis was carried out based on works published in the period from 2001 to 2021. Results. The resulting material, which includes validated peer-reviewed studies, randomized clinical trials, major systematic reviews and meta-analyzes, provides an overview of global experience in optimizing fluid loading and its characteristics in cardiac surgery patients. According to the analyzed data, there is no consensus among specialists on the above issues, and many important factors remain outside the framework of everyday clinical practice. For high-quality interaction, a combination of highly informative monitoring and proven tactics of conducting perioperative infusion therapy in response to the dynamically changing condition of the patient is required. Conclusions. To develop unified criteria for hemodynamic correction in each individual situation, it is necessary to assess the volemic status in patients who undergo myocardial revascularization on a beating heart in real time. In this vein, transpesophageal echocardiography is presented by the authors as the tool of choice for optimizing monitoring during off-pump coronary artery bypass graft surgery.

PDF_2021-4_88-97 (Russian)
HTML_2021-4_88-97 (Russian)

References

  1. Shaefi S., Mittel A., Loberman D., Ramakrishna H. Off-Pump Versus On-Pump Coronary Artery Bypass Grafting—A Systematic Review and Analysis of Clinical Outcomes. J Cardiothorac Vasc Anesth. 2019; 33(1): 232–44. DOI: 10.1053/j.jvca.2018.04.012
  2. Gaudino M., Angelini G.D., Antoniades C., et al. Off-Pump Coronary Artery Bypass Grafting: 30 Years of Debate. J Am Heart Assoc. 2018; 7(16): e009934. DOI: 10.1161/JAHA.118.009934
  3. Jacob M., Chappell D., Rehm M. The ‘third space’ fact or fiction? Best Pract Res Clin Anaesthesiol. 2009; 23: 145–57.
  4. Kendrick J.B., Kaye A.D., Tong Y., et al. Goal-directed fluid therapy in the perioperative setting. J Anaesthesiol Clin Pharmacol. 2019; 35: 29– DOI: 10.4103/joacp.JOACP_26_18
  5. Lomivorotov V.V., Efremov S.M., Kirov M.Y., et al. Low-Cardiac-Output Syndrome After Cardiac Surgery. Journal of Cardiothoracic and Vascular Anesthesia. 2017; 31(1): 291–308. DOI: 10.1053/j.jvca.2016.05.029
  6. Marik P.E., Baram M., Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest. 2008; 134: 172–8. DOI: 10.1378/chest.07-2331
  7. Danielsson E.J.D., Lejbman I., Åkeson J. Fluid deficits during prolonged overnight fasting in young healthy adults. Acta Anaesthesiol Scand. 2019: 63(2): 195– DOI: 10.1111/aas.13254
  8. Miller T.E., Myles P.S. Perioperative Fluid Therapy for Major Surgery. Anesthesiology. 2019; 130(5): 825– DOI: 10.1097/ALN.000000000000260
  9. Lee C.W., Kory P.D., Arntfield R.T. Development of a fluid resuscitation protocol using inferior vena cava and lung ultrasound. J Crit Care. 2016; 31(1): 96– DOI: 10.1016/j.jcrc.2015.09.016
  10. Jozwiak M., Monnet X., Teboul J.L. Pressure Waveform Analysis. Anesth Analg. 2018; 126(6): 1930– DOI: 10.1213/ANE.0000000000002527
  11. Atallah H.A, Gaballah K.M, Khattab A.N.A. Fluid responsiveness in hemodynamically unstable patients: a systematic review. Menoufia Medical Journal. 2019; 32: 397–404. DOI: 10.4103/mmj.mmj_8_182019
  12. Monnet X., Teboul J.L. Transpulmonary thermodilution: advantages and limits. Crit Care. 2017; 21(1): 147. DOI: 10.1186/s13054-017-1739-5
  13. Peake S.L., Delaney A., Bellomo R.; ARISE Investigators. Goal-directed resuscitation in septic shock. N Engl J Med. 2015; 372(2): 190– DOI: 10.1056/NEJMc1413936
  14. Marik P.E. Fluid Responsiveness and the Six Guiding Principles of Fluid Resuscitation. Crit Care Med. 2016; 44(10): 1920– DOI: 10.1097/CCM.0000000000001483
  15. Monnet X., Teboul J.L. Passive leg raising: five rules, not a drop of fluid! Crit Care. 2015; 19(1): 18. DOI: 10.1186/s13054-014-0708-5
  16. Dong Z.Z., Fang Q., Zheng X., Shi H. Passive leg raising as an indicator of fluid responsiveness in patients with severe sepsis. World J Emerg Med. 2012; 3(3): 191–6. DOI: 10.5847/wjem.j.issn.1920-8642.2012.03.006
  17. Monnet X., Marik P., Teboul J.L. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016; 42(12): 1935– DOI:10.1007/s00134-015-4134-1
  18. Fayad A., Shillcutt S.K. Perioperative transesophageal echocardiography for non-cardiac surgery. L’échocardiographie transœsophagienne périopératoire pour les chirurgies non cardiaques. Can J Anaesth. 2018; 65(4): 381–98. DOI: 10.1007/s12630-017-1017-7
  19. Chengode S. Left ventricular global systolic function assessment by echocardiography. Ann Card Anaesth. 2016; 19(Supplement): S26–S34. DOI: 10.4103/0971-9784.192617
  20. Muralidhar K. Utility of perioperative transesophageal echocardiography. Ann Card Anaesth. 2016; 19(Supplement): S2–S5. DOI: 10.4103/0971-9784.192573
  21. Kapoor PM., Chowdhury U., Mandal B., et al. Trans-esophageal echocardiography in off-pump coronary artery bypass grafting. Ann Card Anaesth. 2009; 12(2); 174–4. DOI: 10.4103/0971-9784.534382009
  22. Hahn R.T., Abraham T., Adams M.S., et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. Anesth Analg. 2014; 118(1): 21–68. DOI: 10.1213/ANE.0000000000000016
  23. Patil T.A., Santosh Kumar Ambli, Vaishali S.B. Trans-esophageal echocardiography during off-pump coronary artery bypass grafting. J Indian Acad Echocardiogr Cardiovasc Imaging. 2019; 3(1): 12–6. DOI: 10.4103/jiae.jiae_38_18
  24. Borde D.P., Asegaonkar B., Apsingekar P., et al. Monitoring diastolic dysfunction using a simplified algorithm in patients undergoing off-pump coronary artery bypass grafting surgery. Ann Card Anaesth. 2016; 19(2): 231– DOI: 10.4103/0971-9784.179591
  25. Al-Ghamdi A.A. Intraoperative fluid management: Past and future, where is the evidence? Saudi J Anaesth. 2018; 12(2): 311–7. DOI: 10.4103/sja.SJA_689_17
  26. Nieto O.R. P., Wong A., Fermin L., Lopez E.I.Z. Aiming for zero fluid accumulation: First? Do not harm. Anaestesiology Intensive Therapy. 2021; 53: 162–76. DOI 10.5114/ait.2021.105252207
  27. Myles P., Bellomo R., Corcoran T., et al. Restrictive versus liberal fluid therapy in major abdominal surgery (RELIEF): rationale and design for a multicentre randomised trial. BMJ Open. 2017; 7(3): e015358. DOI: 10.1136/bmjopen-2016-015358
  28. Finfer S., Myburgh J., Bellomo R. Intravenous fluid therapy in critically ill adults. Nat Rev Nephrol. 2018; 14(11): 717. DOI: 10.1038/s41581-018-0060-0
  29. Chen B.P., Chen M., Bennett S., et al. Systematic Review and Meta-analysis of Restrictive Perioperative Fluid Management in Pancreaticoduodenectomy. World J Surg. 2018; 42(9): 2938–50. DOI: 10.1007/s00268-018-4545-6
  30. Jia F.J., Yan Q.Y., Sun Q., et al. Liberal versus restrictive fluid management in abdominal surgery: a meta-analysis. Surg Today. 2017; 47(3): 344–56. DOI: 10.1007/s00595-016-1393-6
  31. Myles P.S., Bellomo R., Corcoran T., et al. Restrictive versus Liberal Fluid Therapy for Major Abdominal Surgery. N Engl J Med. 2018; 379(13): 1283. DOI: 10.1056/NEJMc1810465
  32. Rivers E., Nguyen B., Havstad S., et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001; 345: 1368–77.
  33. Phan T.D., D’Souza B., Rattray M.J., et al. A randomised controlled trial of fluid restriction compared to oesophageal Doppler-guided goal-directed fluid therapy in elective major colorectal surgery within an enhanced recovery after surgery program. Anaesth Intensive Care. 2014; 42: 752–60.
  34. Hasanin A., Mourad K.H., Farouk I., et al. The Impact of Goal-Directed Fluid Therapy in Prolonged Major Abdominal Surgery on Extravascular Lung Water and Oxygenation: A Randomized Controlled Trial. Open Access Maced J Med Sci. 2019; 7(8): 1276–81. DOI: 10.3889/oamjms.2019.173
  35. Chong M.A., Wang Y., Berbenetz N.M., McConachie I. Does goal-directed haemodynamic and fluid therapy improve peri-operative outcomes?: A systematic review and meta-analysis. Eur J Anaesthesiol. 2018; 35(7): 469–83. DOI: 10.1097/EJA.0000000000000778
  36. Qi-Wen D., Wen-Cheng T., Bing-Cheng Z., et al. Is goal-directed fluid therapy based on dynamic variables alone sufficient to improve clinical outcomes among patients undergoing surgery? A meta-analysis, Critical Care. 2018; 22: 298. DOI: 10.1186/s13054-018-2251-2
  37. Calvo-Vecino J.M., Ripollés-Melchor J., Mythen M.G., et al. Effect of goal-directed haemodynamic therapy on postoperative complications in low-moderate risk surgical patients: a multicentre randomised controlled trial (FEDORA trial). Br J Anaesth. 2018; 120(4): 734– DOI: 10.1016/j.bja.2017.12.018
  38. Kaufmann T., Clement R.P., Scheeren T.W.L., et al. Perioperative goal‐directed therapy: A systematic review without meta‐ Acta Anaesthesiol Scand. 2018; 62: 1340–55. DOI: 10.1111/aas.13212
  39. Schmid S., Kapfer B., Heim M., et al. Algorithm-guided goal-directed haemodynamic therapy does not improve renal function after major abdominal surgery compared to good standard clinical care: a prospective randomised trial. Crit Care. 2016; 20: 50. DOI: 10.1186/s13054-016-1237-1
  40. Saleh R., Mohamed E.L., Gamil K., et al. Hemodynamic Changes during Off-Pump Coronary Artery Bypass Graft. Al-Azhar Med. J. 2011; 40(4): 879–88.
  41. Kara A., Akin S., Ince C. The response of the microcirculation to cardiac surgery. Curr Opin Anaesthesiol. 2016; 29(1): 85–93. DOI: 10.1097/ACO.0000000000000280
  42. Bennett V.A., Cecconi M. Perioperative fluid management: From physiology to improving clinical outcomes. Indian J Anaesth. 2017; 61(8); 614– DOI: 10.4103/ija.IJA_456_17
  43. van Haren F. Personalised fluid resuscitation in the ICU: still a fluid concept? Crit Care. 2017; 21(Suppl 3): 313. DOI: 10.1186/s13054-017-1909-5
  44. Mathis M.R., Duggal N.M., Likosky D.S., et al. Intraoperative Mechanical Ventilation and Postoperative Pulmonary Complications after Cardiac Surgery Anesthesiology. 2019; 131(5); 1046–62. DOI: 10.1097/ALN.0000000000002909
  45. Cecconi M., Hernandez G., Dunser M., et al. Fluid administration for acute circulatory dysfunction using basic monitoring: narrative review and expert panel recommendations from an ESICM task force. Intensive Care Med. 2019; 45(1): 21–32. DOI: 10.1007/s00134-018-5415-2
  46. Toscani L., Aya H.D., Antonakaki D., et al. What is the impact of the fluid challenge technique on diagnosis of fluid responsiveness? A systematic review and meta-analysis. Crit Care. 2017; 21(1): 207. DOI: 10.1186/s13054-017-1796-9
  47. Piccioni F., Bernasconi F., Tramontano G.T.A., Langer M. A systematic review of pulse pressure variation and stroke volume variation to predict fluid responsiveness during cardiac and thoracic surgery. J Clin Monit Comput. 2017; 31(4): 677–84. DOI: 10.1007/s10877-016-9898-5
  48. Harjola V.P., Mebazaa A., Čelutkienė J., et al. Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail. 2016; 18(3): 226–41. DOI: 10.1002/ejhf.478
  49. Sanfilippo F., Scolletta S. Fluids in cardiac surgery: sailing calm on a stormy sea? Common sense is the guidance. Minerva Anestesiol. 2017; 83(6): 537–9. DOI: 10.23736/S0375-9393.17.11990-5
  50. Kaw R., Hernandez A.V., Pasupuleti V., et al. Effect of diastolic dysfunction on postoperative outcomes after cardiovascular surgery: A systematic review and meta-analysis. J Thorac Cardiovasc Surg. 2017; 152(4): 1142–53. DOI: 10.1016/j.jtcvs.2016.05.057
  51. Metkus T.S., Suarez-Pierre A., Crawford T.C., et al. Diastolic dysfunction is common and predicts outcome after cardiac surgery. J Cardiothorac Surg. 2018; 13(1): 67. DOI: 10.1186/s13019-018-0744-3
  52. Smith P.K., Puskas J.D., Ascheim D.D., et al. Surgical treatment of moderate ischemic mitral regurgitation. N Engl J Med. 2014; 371: 2178–88. DOI: 10.1056/NEJMoa1410490
  53. Meineri M. Transesophageal echocardiography: what the anesthesiologist has to know. Minerva Anestesiol. 2016; 82: 895–907.
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2022 ANNALS OF CRITICAL CARE