Abstract
The aim of the review is to analyze the available literature data on the effect of inhalation anesthetics on inflammation. Inflammation is the most important protective and adaptive, genetically determined process that occurs in response to damage or the action of a pathogenic factor, such as bacteria, fungi and viruses. This protective reaction is based on the activation of immune cells (neutrophilic granulocytes, monocytes, macrophages) with subsequent release of reactive oxygen species (ROS), activation of the nuclear factor κappa B (NF-κB), which causes the expression of inflammation genes and, as a result, the production of pro-inflammatory cytokines.
The analysis of the results of experimental and clinical studies on this topic showed that inhalation anesthetics such as isoflurane, sevoflurane, desflurane have a powerful anti-inflammatory effect. The analysis of the results of experimental and clinical studies on this topic showed that inhalation anesthetics, and primarily sevoflurane, have a powerful anti-inflammatory effect. The anti-inflammatory effect of inhalation anesthetics is multifactorial. Experimental studies have shown that inhalation anesthetics reduce the production of reactive oxygen species.
Inhalation anesthetics also block the activation of the main trigger of inflammation, namely NF-κB, and reduce the production of pro-inflammatory cytokines. Inhalation anesthetics also block the activation of the main trigger of inflammation, namely NF-κB. In addition to the anti-inflammatory effect, inhalation anesthetics are characterized by an antiviral effect. Serious clinical studies are needed to explore the possibility of using inhalational anesthetics to block the inflammatory response.
References
- Новиков В.Е., Левченкова О.С., Пожилова Е.В. Роль активных форм кислорода в физиологии и патологии клетки и их фармакологическая регуляция. Обзоры по клинической фармакологии и лекарственной терапии. 2014; 12: 13–21. DOI: 17816/RCF12413-21 [Novikov V.E, Levchenkova O.S., Pozhilova Ye.V. Role of reactive oxygen species in cell physiology and pathology and their pharmacological regulation. Reviews on clinical pharmacology and drug therapy. 2014; 12: 13–21. DOI: 10.17816/RCF12413-21 (In Russ)]
- Долинная Н.Г, Кубарева Е.А., Казанова Е.В. и др. Низкомолекулярные ингибиторы различных компонентов сигнального каскада фактора транскрипции NF-kB. Успехи химии. 2008; 77(11): 1036–52. DOI:1070/RC2008v077n11ABEH003881 [Dolinnaya N.G., Kubareva E.A., Kazanova E.V., et al. Low-molecular-weight inhibitors of NF-κB signalling pathways. Russ chem. rev. 2008; 77(11): 1036–52. DOI: 10.1070/RC2008v077n11ABEH003881 (In Russ)]
- Никитин Е.А., Клейменов К.В., Батиенко Д.Д. и др. Новые подходы к воздействию на патогенетические звенья сепсиса. Медицинский Совет. 2019; 21: 240–6. DOI: 21518/2079-701X-2019-21-240-246 [Nikitin E.A., Kleymenov K.V., Batienco D.D., et al. New approaches to the impact on the pathogenetic links of sepsis. Meditsinskiy sovet. 2019; 21: 240–6. DOI: 10.21518/2079-701X-2019-21-240-246 (In Russ)]
- Zhao S., Chen F., Yin Q., et al. Reactive Oxygen Species Interact With NLRP3 Inflammasomes and Are Involved in the Inflammation of Sepsis: From Mechanism to Treatment of Progression. Front Physiol. 2020; 11: 571810. DOI: 10.3389/fphys.2020.571810
- Galley H.F. Oxidative stress and mitochondrial dysfunction in sepsis. BJA. 2011; 107(1): 57–64. DOI: 10.1093/bja/aer093
- Лихванцев В.В., Скрипкин Ю.В., Гребенчиков О.А. и др. Механизмы действия и основные эффекты галогенсодержащих анестетиков. Вестник интенсивной терапии. 2013; 3: 44–5. [Likhvancev V.V., Skripkin Yu.V, Grebenchikov O.A.,al. Mechanisms of action and main effects of halogenated anesthetics. Ann Crit Care. 2013; 3: 44–5. (In Russ)]
- Лихванцев В.В., Ядгаров М.Я., Di PiazzaM. и др. Ингаляционная vs тотальная внутривенная анестезия: где маятник сейчас? (метаанализ и обзор). Общая реаниматология. 2020; 16(6): 91–104. DOI: 15360/1813-9779-2020-6-91-104 [Likhvantsev V.V., Yadgarov M.Ya., Di Piazza M., et.al. Inhalation vs total intravenous anesthesia: where is the pendulum now? (meta-analysis and review). General reanimatology. 2020; 16(6): 91–104. DOI: 10.15360/1813-9779-2020-6-91-104 (In Russ)]
- Esper T., Wehner M., Meinecke C.D.,al. Blood/Gas partition coefficients for isoflurane, sevoflurane, and desflurane in a clinically relevant patient population. Anesthesia and Analgesia. 2015; 120(1): 45–50. DOI:10.1213/ane.0000000000000516
- Золотарева Л.С., Папонов О.Н., Степаненко С.М. и др. Сравнительная оценка экономической эффективности применения десфлурана и севофлурана в ЛОР-хирургии. Российский вестник детской хирургии, анестезиологии и реаниматологии. 2019; 9(4): 69–77. DOI:30946/2219-4061-2019-9-4-69-77 [Zolotareva L.S., Paponov O.N., Stepanenko S.M., et al. Comparison of economic effectiveness of desflurane and sevoflurane in ENT surgery Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2019;9(4):69–77. DOI: 10.30946/2219-4061-2019-9-4-69-77 (In Russ)]
- Delgado-Herrera L., Ostroff R.D., Rogers S.A. Ideal Inhalational Anesthetic A Pharmacologic, Pharmacoeconomic, and Clinical Review. CNS Drug Rev. 2001; 7(1): 48–120. DOI: 10.1111/j.1527-3458.2001.tb00190.x
- Mitsuhata H., Shimizu R., Yokoyama M. Suppressive effects of volatile anesthetics on cytokine release in human peripheral blood mononuclear cells. Int J Immunopharm. 1995; 17(6): 529– DOI: 10.1016/0192-0561(95)00026-x
- Potočnik I., Novak-Janković V., Šostarič M., et al. Antiinflammatory effect of sevoflurane in open lung surgery with one-lung ventilation. Croat Med J. 2014; 55(6): 628–37. DOI: 10.3325/cmj.2014.55.628
- Yue T., Roth Z’Graggen B., Blumenthal S., et al. Postconditioning with a volatile anaesthetic in alveolar epithelial cells in vitro. Eur Respir J. 2008; 31(1): 118–25. DOI: 10.1183/09031936.00046307
- Bedirli N., Demirtas C.Y., Akkaya T., et al. Volatile anesthetic preconditioning attenuated sepsis induced lung inflammation. J Surg Res. 2012; 178(1): E17–E23. DOI: 10.1016/j.jss.2011.12.037
- Plachinta R.V., Hayes J.K., Cerilli L.A., et al. Isoflurane pretreatment inhibits lipopolysaccharide-induced inflammation in rats. Anesthesiology. 2003; 98(1): 89–95. DOI: 10.1097/00000542-200301000-00017
- Hofstetter C., Boost K.A., Flondor M., et al. Anti-inflammatory effects of sevoflurane and mild hypothermia in endotoxemic rats. Acta Anaesthesiol Scand. 2007; 51(7): 893–9. DOI: 10.1111/j.1399-6576.2007.01353.x
- Kawamura T., Kadosaki M., Nara N., et al. Effects of sevoflurane on cytokine balance in patients undergoing coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2006; 20(4): 503–8. DOI: 10.1053/j.jvca.2006.01.011
- Sedghia S., Kutscherb H.L., Davidsona B.A., et al. Volatile Anesthetics and Immunity. Immunol Invest. 2017; 46(8): 793–804. DOI: 10.1080/08820139.2017.1373905
- Mobert J., Zahler S., Becker B.F., et al. Inhibition of neutrophil activation by volatile anesthetics decreases adhesion to cultured human endothelial cells. Anesthesiology. 1999; 90(5): 1372–81. DOI: 10.1097/00000542-199905000-00022
- Herrmann I.K., Castellon M., Schwartz D.E., et al. Volatile anesthetics improve survival after cecal ligation and puncture. Anesthesiology. 2013; 119(4): 901–6. DOI: 10.1097/ALN.0b013e3182a2a38c
- Huang Y., Wang X.X., Sun D.D., et al. Sub-anesthesia Dose of Isoflurane in 60 % Oxygen Reduces Inflammatory Responses in Experimental Sepsis Models. Chin Med J. 2017; 130(7): 840–53. DOI: 10.4103/0366-6999.202734
- Wang L., Zha B., Shen Q., et al. Sevoflurane Inhibits the Th2 Response and NLRP3 Expression in Murine Allergic Airway Inflammation. J Immunol Res. 2018; 9021037. DOI: 10.1155/2018/9021037
- Burburan S.M., Silva J.D., Abreu S.C., et al. Effects of inhalational anaesthetics in experimental allergic asthma. Anaesthesia. 2014; 69: 573–82. DOI: 10.1111/anae.12593
- Reuter S., Gupta S.C., Chaturvedi M.M., et al. Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biology and Medicine. 2010; 49(11): 1603–16. DOI: 10.1016/j.freeradbiomed
- Vincent H.K., Taylor A.G. Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int J Obes. 2006; 30(3): 400–18. DOI: 10.1038/sj.ijo.0803177
- Pizzimenti S., Toaldo C., Pettazzoni P., et al. The ‘two-faced’ effects of reactive oxygen species and the lipid peroxidation product 4-Hydroxynonenal in the hallmarks of cancer. 2010; 2(2): 338–63. DOI: 10.3390/cancers2020338
- Коленчукова О.А., Савченко А.А., Смирнова С.В. Особенности люминол- и люцегинин-зависимой хемилюминесценции нейтрофильных гранулоцитов у больных хроническим риносинуситом. Медицинская иммунология. 2010; 12(4–5): 437–40. DOI: 10.15789/1563-0625-2010-4-5-437-440 [Kolenchukova O.A., Savchenko A.A., Smirnova S.V. Features of luminol- and lucigenin-induced chemiluminescence of neutrophilic granulocytes in patients with chronic rhinosinusitis. Medical Immunology. 2010; 12(4–5): 437– DOI: 10.15789/1563-0625-2010-4-5-437-440 (In Russ)]
- Minguet G., Franck T., Joris J., et al. Sevoflurane modulates the release of reactive oxygen species, myeloperoxidase, and elastase in human whole blood: Effects of different stimuli on neutrophil response to volatile anesthetic in vitro. Int J Immunopathol Pharmacol. 2017; 30(4): 362–70. DOI: 10.1177/0394632017739530
- Lee Y.M., Song B.C., Yeum K.J. Impact of Volatile Anesthetics on Oxidative Stress and Inflammation. Biomed Res Int. 2015; 2015: DOI: 10.1155/2015/242709
- Lee H.T., Emala C.W., Joo J.D., et al. Isoflurane improves survival and protects against renal and hepatic injury in murine septic peritonitis. Shock. 2007; 27: 373–9. DOI: 10.1097/01.shk.0000248595.17130.24
- Wang H., Wang L., Li N.L., et al. Subanesthetic isoflurane reduces zymosan-induced inflammation in murine Kupffer cells by inhibiting ROS-activated p38 MAPK/NF-κB signaling. Oxid Med Cell Longev. 2014; 2014: 851692. DOI: 10.1155/2014/851692
- Mu J., Xie K., Hou L., et al. Subanesthetic dose of isoflurane protects against zymosan-induced generalized inflammation and its associated acute lung injury in mice. Shock. 2010; 34(2): 183–9. DOI: 10.1097/SHK.0b013e3181cffc3f
- Lindsay M. Stollings, Li-Jie Jia, Pei Tang, et al. Immune Modulation by Volatile Anesthetics. Anesthesiology. 2016; 125(2): 399–411. DOI: 10.1097/ALN.0000000000001195
- Wagner J., Strosing K.M., Spassovet S.G., al. Sevoflurane posttreatment prevents oxidative and inflammatory injury in ventilator-induced lung injury. PLoS One. 2018; 13(2): e0192896. DOI: 10.1371/journal.pone.0192896
- Lin X., Ju Y., Gao W., et al. Desflurane Attenuates Ventilator-Induced Lung Injury in Rats with Acute Respiratory Distress Syndrome. Biomed Res Int. 2018; 7507314 DOI: 10.1155/2018/7507314
- Thompson J.E., Phillips R.J., Erdjument-Bromage H., et al. IκB-β regulates the persistent response in a biphasic activation of NF-κB. Cell. 1995; 80(4): 573–82. DOI: 10.1016/0092-8674(95)90511-1
- Bates P.W., Miyamoto S. Expanded Nuclear Roles for Iκ Science. 2004; 254: 48. DOI: 10.1126/stke.2542004pe48
- Cruz F.F., Rocco P.R., Pelosi P. Anti-inflammatory properties of anesthetic agents. Crit Care. 2017; 21: 67. DOI: 10.1186/s13054-017-1645-x
- Boost K.A., Leipold T., Scheiermann P., et al. Sevoflurane and isoflurane decrease TNF-alpha-induced gene expression in human monocytic THP-1 cells: potential role of intracellular IkappaBalpha regulation. Int J Mol Med. 2009; 23(5): 665–71. DOI: 10.3892/ijmm_00000178
- Li J.T., Wang H., Li W., et al. Anesthetic Isoflurane Posttreatment Attenuates Experimental Lung Injury by Inhibiting Inflammation and Apoptosis. Mediators Inflamm. 2013; 108928. DOI: 10.1155/2013/108928
- Sun X.J., Li X.Q., Wang X.L., et al. Sevoflurane inhibits nuclear factor-κB activation in lipopolysaccharide-induced acute inflammatory lung injury via toll-like receptor 4 signaling. PLoS One. 2015; 10(4): e0122752. DOI: 10.1371/journal.pone.0122752
- Rodríguez-González R., Baluja A., del Río S.V., et al. Effects of sevoflurane postconditioning on cell death, inflammation and TLR expression in human endothelial cells exposed to LPS. J Transl Med. 2013; 11: 87. DOI: 10.1186/1479-5876-11-87
- Sabroe I., Parker L.C., Dower S.K., et al. The role of TLR activation in inflammation. J Pathol. 2008; 214: 126–35. DOI: 10.1002/path.2264
- Sriskandan S., Altmann D.M. The immunology of sepsis. J Pathol. 2008; 214: 211–23. DOI: 10.1002/path.2274
- Gerber T.J, Fehr V.C., Oliveira S.D., et al. Sevoflurane Promotes Bactericidal Properties of Macrophages through Enhanced Inducible Nitric Oxide Synthase Expression in Male Mice. Anesthesiology 2019; 131: 1301–15. DOI: 10.1097/ALN.0000000000002992
- Bedows E., Davidson B.A., Knight P.R. Effect of halothane on the replication of animal viruses. Antimicrob Agents Chemother. 1984; 25(6): 719–24. DOI: 10.1128/aac.25.6.719
- Knight P.R., Nahrwold M.L., Bedows E. Inhibiting Effects of Enflurane and Isoflurane Anesthesia on Measles Virus Replication: Comparison with Halothane. Antimicrob Agents Chemother. 1981; (3): 298–306. DOI: 10.1128/AAC.20.3.298
- Penna A.M., Johnson K.J., Camilleri J., et al. Alterations in influenza A virus specific immune injury in mice anesthetized with halothane or ketamine. Intervirology. 1990; 31: 188–96. DOI: 10.1159/000150153
- Togashi N., Kaida K., Hongo Y., et al. A 53-year-old man with herpes encephalitis showing acceleration of improvement in higher brain function after general anesthesia with sevoflurane: a case report. Rinsho Shinkeigaku. 2014; 54(9): 743– DOI: 10.5692/clinicalneurol.54.743
- Suleiman A., Qaswal A.B., Alnouti M., et al. Sedating Mechanically Ventilated COVID-19 Patients with Volatile Anesthetics: Insights on the Last-Minute Potential Weapons. Sci Pharm. 2021; 89: 6. DOI: 10.3390/scipharm89010006
- Potočnik I., Novak-Janković V., Šostarič M., Jerin A. Antiinflammatory effect of sevoflurane in open lung surgery with one-lung ventilation. Croat Med J. 2014; 55(6): 628–37. DOI: 10.3325/cmj.2014.55.628
- Breuer T., Emontzpohl C., Coburn M., et al. Xenon triggers pro-inflammatory effects and suppresses the anti-inflammatory response compared to sevoflurane in patients undergoing cardiac surgery. Crit Care. 2015; 19: 365. DOI: 10.1186/s13054-015-1082-7
- Chutipongtanate A., Prukviwat S., Pongsakul N., et al. Effects of Desflurane and Sevoflurane anesthesia on regulatory T cells in patients undergoing living donor kidney transplantation: a randomized intervention trial. BMC Anesthesiol. 2020; 20: 215. DOI: 10.1186/s12871-020-01130-7
- Koraki E., Mantzoros I., Chatzakis C., et al. Metalloproteinase expression after desflurane preconditioning in hepatectomies: A randomized clinical trial. World J Hepatol. 2020; 12(11): 1098–114. DOI: 10.4254/wjh.v12.i11.1098
- Guerrero-Orriach J.L., Carmona-Luque M.D., Gonzalez-Alvarez L. Heart Failure after Cardiac Surgery: The Role of Halogenated Agents, Myocardial Conditioning and Oxidative Stress. Int J Mol Sci. 2022; 23(3): 1360. DOI: 10.3390/ijms23031360
- Guerrero-Orriach J.L., Ortega M.G., Aliaga M.R., et al. Prolonged sevoflurane administration in the off-pump coronary artery bypass graft surgery: Beneficial effects. J Crit Care. 2013; 28: 879.e13–879.e18. DOI: 10.1016/j.jcrc.2013.06.004
- Jabaudon M., Boucher P., Imhoff E., et al. Sevoflurane for sedation in acute respiratory distress syndrome. A randomized controlled pilot study. Am J Respir Crit Care Med. 2017; 195(6): 792–800. DOI: 10.1164/rccm.201604-0686OC
- Sevoflurane in COVID-19 ARDS (SevCov). US National Library of Medicine. ClinicalTrials.gov. 2020. University of Zurich. Available online: https://clinicaltrials.gov/ct2/show/NCT04355962 (accessed on 16 October 2020).
- Imbernon-Moya A., Ortiz-de Frutos F.J., Sanjuan-Alvarez M., et al. Treatment of chronic venous ulcers with topical sevoflurane: a retrospective clinical study. Br J Anaesth. 2017; 119(4): 846–7. DOI: 10.1093/bja/aex269
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) 2022 ANNALS OF CRITICAL CARE