Possibilities of inhalation anesthetics in blocking an excessive inflammatory response: a review
ISSN (print) 1726-9806     ISSN (online) 1818-474X
#3 2022
PDF_2022-3_102-110 (Russian)
HTML_2022-3_102-110 (Russian)

Keywords

inflammation
reactive oxygen species (ROS)
NF-κB
cytokines
inhalational anesthetics
isoflurane
sevoflurane
desflurane

How to Cite

1.
Sitkin S.I. Possibilities of inhalation anesthetics in blocking an excessive inflammatory response: a review. Annals of Critical Care. 2022;(3):102-110. doi:10.21320/1818-474X-2022-3-102-110

Statistic

Abstract Views: 74
PDF_2022-3_102-110 (Russian) Downloads: 57
HTML_2022-3_102-110 (Russian) Downloads: 36
Statistic from 01.07.2024

Language

English Русский

Social Networks

Abstract

The aim of the review is to analyze the available literature data on the effect of inhalation anesthetics on inflammation. Inflammation is the most important protective and adaptive, genetically determined process that occurs in response to damage or the action of a pathogenic factor, such as bacteria, fungi and viruses. This protective reaction is based on the activation of immune cells (neutrophilic granulocytes, monocytes, macrophages) with subsequent release of reactive oxygen species (ROS), activation of the nuclear factor κappa B (NF-κB), which causes the expression of inflammation genes and, as a result, the production of pro-inflammatory cytokines.

The analysis of the results of experimental and clinical studies on this topic showed that inhalation anesthetics such as isoflurane, sevoflurane, desflurane have a powerful anti-inflammatory effect. The analysis of the results of experimental and clinical studies on this topic showed that inhalation anesthetics, and primarily sevoflurane, have a powerful anti-inflammatory effect. The anti-inflammatory effect of inhalation anesthetics is multifactorial. Experimental studies have shown that inhalation anesthetics reduce the production of reactive oxygen species.

Inhalation anesthetics also block the activation of the main trigger of inflammation, namely NF-κB, and reduce the production of pro-inflammatory cytokines. Inhalation anesthetics also block the activation of the main trigger of inflammation, namely NF-κB. In addition to the anti-inflammatory effect, inhalation anesthetics are characterized by an antiviral effect. Serious clinical studies are needed to explore the possibility of using inhalational anesthetics to block the inflammatory response.

PDF_2022-3_102-110 (Russian)
HTML_2022-3_102-110 (Russian)

References

  1. Новиков В.Е., Левченкова О.С., Пожилова Е.В. Роль активных форм кислорода в физиологии и патологии клетки и их фармакологическая регуляция. Обзоры по клинической фармакологии и лекарственной терапии. 2014; 12: 13–21. DOI: 17816/RCF12413-21 [Novikov V.E, Levchenkova O.S., Pozhilova Ye.V. Role of reactive oxygen species in cell physiology and pathology and their pharmacological regulation. Reviews on clinical pharmacology and drug therapy. 2014; 12: 13–21. DOI: 10.17816/RCF12413-21 (In Russ)]
  2. Долинная Н.Г, Кубарева Е.А., Казанова Е.В. и др. Низкомолекулярные ингибиторы различных компонентов сигнального каскада фактора транскрипции NF-kB. Успехи химии. 2008; 77(11): 1036–52. DOI:1070/RC2008v077n11ABEH003881 [Dolinnaya N.G., Kubareva E.A., Kazanova E.V., et al. Low-molecular-weight inhibitors of NF-κB signalling pathways. Russ chem. rev. 2008; 77(11): 1036–52. DOI: 10.1070/RC2008v077n11ABEH003881 (In Russ)]
  3. Никитин Е.А., Клейменов К.В., Батиенко Д.Д. и др. Новые подходы к воздействию на патогенетические звенья сепсиса. Медицинский Совет. 2019; 21: 240–6. DOI: 21518/2079-701X-2019-21-240-246 [Nikitin E.A., Kleymenov K.V., Batienco D.D., et al. New approaches to the impact on the pathogenetic links of sepsis. Meditsinskiy sovet. 2019; 21: 240–6. DOI: 10.21518/2079-701X-2019-21-240-246 (In Russ)]
  4. Zhao S., Chen F., Yin Q., et al. Reactive Oxygen Species Interact With NLRP3 Inflammasomes and Are Involved in the Inflammation of Sepsis: From Mechanism to Treatment of Progression. Front Physiol. 2020; 11: 571810. DOI: 10.3389/fphys.2020.571810
  5. Galley H.F. Oxidative stress and mitochondrial dysfunction in sepsis. BJA. 2011; 107(1): 57–64. DOI: 10.1093/bja/aer093
  6. Лихванцев В.В., Скрипкин Ю.В., Гребенчиков О.А. и др. Механизмы действия и основные эффекты галогенсодержащих анестетиков. Вестник интенсивной терапии. 2013; 3: 44–5. [Likhvancev V.V., Skripkin Yu.V, Grebenchikov O.A.,al. Mechanisms of action and main effects of halogenated anesthetics. Ann Crit Care. 2013; 3: 44–5. (In Russ)]
  7. Лихванцев В.В., Ядгаров М.Я., Di PiazzaM. и др. Ингаляционная vs тотальная внутривенная анестезия: где маятник сейчас? (метаанализ и обзор). Общая реаниматология. 2020; 16(6): 91–104. DOI: 15360/1813-9779-2020-6-91-104 [Likhvantsev V.V., Yadgarov M.Ya., Di Piazza M., et.al. Inhalation vs total intravenous anesthesia: where is the pendulum now? (meta-analysis and review). General reanimatology. 2020; 16(6): 91–104. DOI: 10.15360/1813-9779-2020-6-91-104 (In Russ)]
  8. Esper T., Wehner M., Meinecke C.D.,al. Blood/Gas partition coefficients for isoflurane, sevoflurane, and desflurane in a clinically relevant patient population. Anesthesia and Analgesia. 2015; 120(1): 45–50. DOI:10.1213/ane.0000000000000516
  9. Золотарева Л.С., Папонов О.Н., Степаненко С.М. и др. Сравнительная оценка экономической эффективности применения десфлурана и севофлурана в ЛОР-хирургии. Российский вестник детской хирургии, анестезиологии и реаниматологии. 2019; 9(4): 69–77. DOI:30946/2219-4061-2019-9-4-69-77 [Zolotareva L.S., Paponov O.N., Stepanenko S.M., et al. Comparison of economic effectiveness of desflurane and sevoflurane in ENT surgery Russian Journal of Pediatric Surgery, Anesthesia and Intensive Care. 2019;9(4):69–77. DOI: 10.30946/2219-4061-2019-9-4-69-77 (In Russ)]
  10. Delgado-Herrera L., Ostroff R.D., Rogers S.A. Ideal Inhalational Anesthetic A Pharmacologic, Pharmacoeconomic, and Clinical Review. CNS Drug Rev. 2001; 7(1): 48–120. DOI: 10.1111/j.1527-3458.2001.tb00190.x
  11. Mitsuhata H., Shimizu R., Yokoyama M. Suppressive effects of volatile anesthetics on cytokine release in human peripheral blood mononuclear cells. Int J Immunopharm. 1995; 17(6): 529– DOI: 10.1016/0192-0561(95)00026-x
  12. Potočnik I., Novak-Janković V., Šostarič M., et al. Antiinflammatory effect of sevoflurane in open lung surgery with one-lung ventilation. Croat Med J. 2014; 55(6): 628–37. DOI: 10.3325/cmj.2014.55.628
  13. Yue T., Roth Z’Graggen B., Blumenthal S., et al. Postconditioning with a volatile anaesthetic in alveolar epithelial cells in vitro. Eur Respir J. 2008; 31(1): 118–25. DOI: 10.1183/09031936.00046307
  14. Bedirli N., Demirtas C.Y., Akkaya T., et al. Volatile anesthetic preconditioning attenuated sepsis induced lung inflammation. J Surg Res. 2012; 178(1): E17–E23. DOI: 10.1016/j.jss.2011.12.037
  15. Plachinta R.V., Hayes J.K., Cerilli L.A., et al. Isoflurane pretreatment inhibits lipopolysaccharide-induced inflammation in rats. Anesthesiology. 2003; 98(1): 89–95. DOI: 10.1097/00000542-200301000-00017
  16. Hofstetter C., Boost K.A., Flondor M., et al. Anti-inflammatory effects of sevoflurane and mild hypothermia in endotoxemic rats. Acta Anaesthesiol Scand. 2007; 51(7): 893–9. DOI: 10.1111/j.1399-6576.2007.01353.x
  17. Kawamura T., Kadosaki M., Nara N., et al. Effects of sevoflurane on cytokine balance in patients undergoing coronary artery bypass graft surgery. J Cardiothorac Vasc Anesth. 2006; 20(4): 503–8. DOI: 10.1053/j.jvca.2006.01.011
  18. Sedghia S., Kutscherb H.L., Davidsona B.A., et al. Volatile Anesthetics and Immunity. Immunol Invest. 2017; 46(8): 793–804. DOI: 10.1080/08820139.2017.1373905
  19. Mobert J., Zahler S., Becker B.F., et al. Inhibition of neutrophil activation by volatile anesthetics decreases adhesion to cultured human endothelial cells. Anesthesiology. 1999; 90(5): 1372–81. DOI: 10.1097/00000542-199905000-00022
  20. Herrmann I.K., Castellon M., Schwartz D.E., et al. Volatile anesthetics improve survival after cecal ligation and puncture. Anesthesiology. 2013; 119(4): 901–6. DOI: 10.1097/ALN.0b013e3182a2a38c
  21. Huang Y., Wang X.X., Sun D.D., et al. Sub-anesthesia Dose of Isoflurane in 60 % Oxygen Reduces Inflammatory Responses in Experimental Sepsis Models. Chin Med J. 2017; 130(7): 840–53. DOI: 10.4103/0366-6999.202734
  22. Wang L., Zha B., Shen Q., et al. Sevoflurane Inhibits the Th2 Response and NLRP3 Expression in Murine Allergic Airway Inflammation. J Immunol Res. 2018; 9021037. DOI: 10.1155/2018/9021037
  23. Burburan S.M., Silva J.D., Abreu S.C., et al. Effects of inhalational anaesthetics in experimental allergic asthma. Anaesthesia. 2014; 69: 573–82. DOI: 10.1111/anae.12593
  24. Reuter S., Gupta S.C., Chaturvedi M.M., et al. Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biology and Medicine. 2010; 49(11): 1603–16. DOI: 10.1016/j.freeradbiomed
  25. Vincent H.K., Taylor A.G. Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int J Obes. 2006; 30(3): 400–18. DOI: 10.1038/sj.ijo.0803177
  26. Pizzimenti S., Toaldo C., Pettazzoni P., et al. The ‘two-faced’ effects of reactive oxygen species and the lipid peroxidation product 4-Hydroxynonenal in the hallmarks of cancer. 2010; 2(2): 338–63. DOI: 10.3390/cancers2020338
  27. Коленчукова О.А., Савченко А.А., Смирнова С.В. Особенности люминол- и люцегинин-зависимой хемилюминесценции нейтрофильных гранулоцитов у больных хроническим риносинуситом. Медицинская иммунология. 2010; 12(4–5): 437–40. DOI: 10.15789/1563-0625-2010-4-5-437-440 [Kolenchukova O.A., Savchenko A.A., Smirnova S.V. Features of luminol- and lucigenin-induced chemiluminescence of neutrophilic granulocytes in patients with chronic rhinosinusitis. Medical Immunology. 2010; 12(4–5): 437– DOI: 10.15789/1563-0625-2010-4-5-437-440 (In Russ)]
  28. Minguet G., Franck T., Joris J., et al. Sevoflurane modulates the release of reactive oxygen species, myeloperoxidase, and elastase in human whole blood: Effects of different stimuli on neutrophil response to volatile anesthetic in vitro. Int J Immunopathol Pharmacol. 2017; 30(4): 362–70. DOI: 10.1177/0394632017739530
  29. Lee Y.M., Song B.C., Yeum K.J. Impact of Volatile Anesthetics on Oxidative Stress and Inflammation. Biomed Res Int. 2015; 2015: DOI: 10.1155/2015/242709
  30. Lee H.T., Emala C.W., Joo J.D., et al. Isoflurane improves survival and protects against renal and hepatic injury in murine septic peritonitis. Shock. 2007; 27: 373–9. DOI: 10.1097/01.shk.0000248595.17130.24
  31. Wang H., Wang L., Li N.L., et al. Subanesthetic isoflurane reduces zymosan-induced inflammation in murine Kupffer cells by inhibiting ROS-activated p38 MAPK/NF-κB signaling. Oxid Med Cell Longev. 2014; 2014: 851692. DOI: 10.1155/2014/851692
  32. Mu J., Xie K., Hou L., et al. Subanesthetic dose of isoflurane protects against zymosan-induced generalized inflammation and its associated acute lung injury in mice. Shock. 2010; 34(2): 183–9. DOI: 10.1097/SHK.0b013e3181cffc3f
  33. Lindsay M. Stollings, Li-Jie Jia, Pei Tang, et al. Immune Modulation by Volatile Anesthetics. Anesthesiology. 2016; 125(2): 399–411. DOI: 10.1097/ALN.0000000000001195
  34. Wagner J., Strosing K.M., Spassovet S.G., al. Sevoflurane posttreatment prevents oxidative and inflammatory injury in ventilator-induced lung injury. PLoS One. 2018; 13(2): e0192896. DOI: 10.1371/journal.pone.0192896
  35. Lin X., Ju Y., Gao W., et al. Desflurane Attenuates Ventilator-Induced Lung Injury in Rats with Acute Respiratory Distress Syndrome. Biomed Res Int. 2018; 7507314 DOI: 10.1155/2018/7507314
  36. Thompson J.E., Phillips R.J., Erdjument-Bromage H., et al. IκB-β regulates the persistent response in a biphasic activation of NF-κB. Cell. 1995; 80(4): 573–82. DOI: 10.1016/0092-8674(95)90511-1
  37. Bates P.W., Miyamoto S. Expanded Nuclear Roles for Iκ Science. 2004; 254: 48. DOI: 10.1126/stke.2542004pe48
  38. Cruz F.F., Rocco P.R., Pelosi P. Anti-inflammatory properties of anesthetic agents. Crit Care. 2017; 21: 67. DOI: 10.1186/s13054-017-1645-x
  39. Boost K.A., Leipold T., Scheiermann P., et al. Sevoflurane and isoflurane decrease TNF-alpha-induced gene expression in human monocytic THP-1 cells: potential role of intracellular IkappaBalpha regulation. Int J Mol Med. 2009; 23(5): 665–71. DOI: 10.3892/ijmm_00000178
  40. Li J.T., Wang H., Li W., et al. Anesthetic Isoflurane Posttreatment Attenuates Experimental Lung Injury by Inhibiting Inflammation and Apoptosis. Mediators Inflamm. 2013; 108928. DOI: 10.1155/2013/108928
  41. Sun X.J., Li X.Q., Wang X.L., et al. Sevoflurane inhibits nuclear factor-κB activation in lipopolysaccharide-induced acute inflammatory lung injury via toll-like receptor 4 signaling. PLoS One. 2015; 10(4): e0122752. DOI: 10.1371/journal.pone.0122752
  42. Rodríguez-González R., Baluja A., del Río S.V., et al. Effects of sevoflurane postconditioning on cell death, inflammation and TLR expression in human endothelial cells exposed to LPS. J Transl Med. 2013; 11: 87. DOI: 10.1186/1479-5876-11-87
  43. Sabroe I., Parker L.C., Dower S.K., et al. The role of TLR activation in inflammation. J Pathol. 2008; 214: 126–35. DOI: 10.1002/path.2264
  44. Sriskandan S., Altmann D.M. The immunology of sepsis. J Pathol. 2008; 214: 211–23. DOI: 10.1002/path.2274
  45. Gerber T.J, Fehr V.C., Oliveira S.D., et al. Sevoflurane Promotes Bactericidal Properties of Macrophages through Enhanced Inducible Nitric Oxide Synthase Expression in Male Mice. Anesthesiology 2019; 131: 1301–15. DOI: 10.1097/ALN.0000000000002992
  46. Bedows E., Davidson B.A., Knight P.R. Effect of halothane on the replication of animal viruses. Antimicrob Agents Chemother. 1984; 25(6): 719–24. DOI: 10.1128/aac.25.6.719
  47. Knight P.R., Nahrwold M.L., Bedows E. Inhibiting Effects of Enflurane and Isoflurane Anesthesia on Measles Virus Replication: Comparison with Halothane. Antimicrob Agents Chemother. 1981; (3): 298–306. DOI: 10.1128/AAC.20.3.298
  48. Penna A.M., Johnson K.J., Camilleri J., et al. Alterations in influenza A virus specific immune injury in mice anesthetized with halothane or ketamine. Intervirology. 1990; 31: 188–96. DOI: 10.1159/000150153
  49. Togashi N., Kaida K., Hongo Y., et al. A 53-year-old man with herpes encephalitis showing acceleration of improvement in higher brain function after general anesthesia with sevoflurane: a case report. Rinsho Shinkeigaku. 2014; 54(9): 743– DOI: 10.5692/clinicalneurol.54.743
  50. Suleiman A., Qaswal A.B., Alnouti M., et al. Sedating Mechanically Ventilated COVID-19 Patients with Volatile Anesthetics: Insights on the Last-Minute Potential Weapons. Sci Pharm. 2021; 89: 6. DOI: 10.3390/scipharm89010006
  51. Potočnik I., Novak-Janković V., Šostarič M., Jerin A. Antiinflammatory effect of sevoflurane in open lung surgery with one-lung ventilation. Croat Med J. 2014; 55(6): 628–37. DOI: 10.3325/cmj.2014.55.628
  52. Breuer T., Emontzpohl C., Coburn M., et al. Xenon triggers pro-inflammatory effects and suppresses the anti-inflammatory response compared to sevoflurane in patients undergoing cardiac surgery. Crit Care. 2015; 19: 365. DOI: 10.1186/s13054-015-1082-7
  53. Chutipongtanate A., Prukviwat S., Pongsakul N., et al. Effects of Desflurane and Sevoflurane anesthesia on regulatory T cells in patients undergoing living donor kidney transplantation: a randomized intervention trial. BMC Anesthesiol. 2020; 20: 215. DOI: 10.1186/s12871-020-01130-7
  54. Koraki E., Mantzoros I., Chatzakis C., et al. Metalloproteinase expression after desflurane preconditioning in hepatectomies: A randomized clinical trial. World J Hepatol. 2020; 12(11): 1098–114. DOI: 10.4254/wjh.v12.i11.1098
  55. Guerrero-Orriach J.L., Carmona-Luque M.D., Gonzalez-Alvarez L. Heart Failure after Cardiac Surgery: The Role of Halogenated Agents, Myocardial Conditioning and Oxidative Stress. Int J Mol Sci. 2022; 23(3): 1360. DOI: 10.3390/ijms23031360
  56. Guerrero-Orriach J.L., Ortega M.G., Aliaga M.R., et al. Prolonged sevoflurane administration in the off-pump coronary artery bypass graft surgery: Beneficial effects. J Crit Care. 2013; 28: 879.e13–879.e18. DOI: 10.1016/j.jcrc.2013.06.004
  57. Jabaudon M., Boucher P., Imhoff E., et al. Sevoflurane for sedation in acute respiratory distress syndrome. A randomized controlled pilot study. Am J Respir Crit Care Med. 2017; 195(6): 792–800. DOI: 10.1164/rccm.201604-0686OC
  58. Sevoflurane in COVID-19 ARDS (SevCov). US National Library of Medicine. ClinicalTrials.gov. 2020. University of Zurich. Available online: https://clinicaltrials.gov/ct2/show/NCT04355962 (accessed on 16 October 2020).
  59. Imbernon-Moya A., Ortiz-de Frutos F.J., Sanjuan-Alvarez M., et al. Treatment of chronic venous ulcers with topical sevoflurane: a retrospective clinical study. Br J Anaesth. 2017; 119(4): 846–7. DOI: 10.1093/bja/aex269
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2022 ANNALS OF CRITICAL CARE