Correlation between changes in arterial blood oxygen partial pressure, oxygen uptake and carbon dioxide elimination by the lungs with changes in positive end expiratory pressure: a prospective observational study
#2022-4
PDF_2022-4_36-43 (Русский)
HTML_2022-4_36-43 (Русский)

Keywords

mechanical ventilation
positive end expiratory pressure
pulmonary gas exchange
oxygen consumption
blood gas analysis

How to Cite

Ovsiannikov RI, Lebedinskii KM Correlation between changes in arterial blood oxygen partial pressure, oxygen uptake and carbon dioxide elimination by the lungs with changes in positive end expiratory pressure: a prospective observational study. Annals of Critical Care. 2022;(4):36–43. doi:10.21320/1818-474X-2022-4-36-43.

Statistic

Abstract Views: 29
PDF_2022-4_36-43 (Русский) Downloads: 12
HTML_2022-4_36-43 (Русский) Downloads: 2
Plum Analytics

Language

English Русский

Social Networks

Keywords

Up

Abstract

INTRODUCTION: Since mechanical ventilation remains the main tool of respiratory support, ventilatory aspect of lung function fixed researchers’ attention during last decades, which is reflected by open lung concept and lung-protective ventilation strategy. However, it seems logical to assess function of the lung — biphasic mass exchanger with limited capacity — measuring its gas exchange performance, depending upon lung perfusion the same extent as ventilation. Recently clinicians have got routine access to metabolographers, providing figures of lungs oxygen absorption (VO2) and carbon dioxide exhalation (VCO2). OBJECTIVE: To evaluate interchangeability of metabolographer data and arterial blood gases analysis as tools for positive end-expiratory pressure (PEEP) titration by comparison of dynamic VO2 and VCO2 changes with PaO2 shifts after standardized PEEP changing. MATERIALS AND METHODS: A single-center prospective observational study included 41 patients underwent mechanical ventilation during general anesthesia for elective non-cardiothoracic surgery. After anesthesia induction and monitored parameters stabilization, PaO2, VCO2 and VO2 were measured before and after PEEP increasing from 2 to 5 mbar. Correlation was evaluated using Spearman coefficient in R-Studio with ggplot2 visualization package. RESULTS: After PEEP level increase, in 14 patients PaO2 changes were < 5 %, in 15 patients PaO2 increase was observed, and in 12 patients PaO2 has decreased. The Spearman correlation coefficient (rh) between VCO2 and PaO2 was 0.77 (р-value = 3.75 × 10−9), between VO2 and PaO2 — rh = 0.92 (p-value = 2.2 × 10−16). CONCLUSIONS: The VCO2 and VO2 dynamic changes obtained using metabolographer demonstrates high correlation with PaO2 shifts followed PEEP changes, which makes the dynamic analysis of the first two indicators a possible non-invasive alternative for repeated arterial blood gases analysis during РЕЕР level titration. Notable fact is that in significant proportion of observations, PEEP level of 5 mbar, often recommended “by default” for lung-protective ventilation, is excessive from gas exchange performance point of view.

https://doi.org/10.21320/1818-474X-2022-4-36-43
PDF_2022-4_36-43 (Русский)
HTML_2022-4_36-43 (Русский)

References

  1. Ярошецкий А.И., Грицан А.И., Авдеев С.Н. и др. Диагностика и интенсивная терапия острого респираторного дистресс-синдрома (Клинические рекомендации Общероссийской общественной организации «Федерация анестезиологов и реаниматологов»). Анестезиология и реаниматология. 2020; 2: 5–39. DOI: 10.17116/anaesthesiology20200215 [Yaroshetsky A.I., Gritsan A.I., Avdeev S.N., et al. Diagnostics and intensive therapy of Acute Respiratory Distress Syndrome (Clinical guidelines of the Federation of Anesthesiologists and Reanimatologists of Russia). Russian Journal of Anaesthesiology and Reanimatology. 2020; 2: 5–39. DOI: 10.17116/anaesthesiology20200215 (In Russ)]
  2. Sahetya S., Goligher E., Brower R. Fifty Years of Research in ARDS. Setting Positive End-expiratory Pressure in the Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017; 195(11): 1429–38. DOI: 10.1164/rccm.201610-2035CI
  3. Gattinoni L., Caironi P., Pelosi P., et a What has computed tomography taught us about the acute respiratory distress syndrome? Am J Respir Crit Care Med. 2001; 164(9): 1701–11. DOI: 10.1164/ajrccm.164.9.2103121
  4. Grasso S., Terragni P., Mascia L., et al. Airway pressure-time curve profile (stress index) detects tidal recruitment/hyperinflation in experimental acute lung injury. Crit Care Med. 2004; 32(4): 1018–27. DOI: 10.1097/01.ccm
  5. Wolf G.K., Gómez-Laberge C., Rettig J.S., et al. Mechanical ventilation guided by electrical impedance tomography in experimental acute lung injury. Crit Care Med. 2013; 41(5): 1296–304. DOI: 10.1097/CCM.0b013e3182771516
  6. Amato M.B.P., Meade M.O., Slutsky A.S., et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med. 2015; 372(8): 747–55. DOI: 10.1056/NEJMsa1410639
  7. Bouhemad B., Brisson H., Le-Guen M., et al. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med. 2011; 183(3): 341–7. DOI: 10.1164/rccm.201003-0369OC
  8. Ручина Е.В., Шарнин А.В., Лебединский К.М., Мазурок В.А. Оценка функциональной остаточной емкости легких и показателя потребления кислорода во время настройки уровня ПДКВ. Анестезиология и реаниматология. 2013; (3): 51–4. [Ruchina E.V., Charnin S.A., Lebedinsky K.M., Mazurok V.A. Assessment of functional residual capacity and oxygen consumption during PEEP trial procedure. Anesteziologiya i Reanimatologiya (Russian Journal of Anaesthesiology and Reanimatology). 2013; (3): 51–4. (In Russ)]
  9. Gattinoni L., Marini J.J. In search of the Holy Grail: identifying the best PEEP in ventilated patients. Intensive Care Med. 2022; 48: 728–31. DOI: 10.1007/s00134-022-06698-x
  10. Заболотских И.Б., Киров М.Ю., Лебединский К.М. и др. Анестезиолого-реанимационное обеспечение пациентов с новой коронавирусной инфекцией COVID-19. Методические рекомендации Общероссийской общественной организации «Федерация анестезиологов и реаниматологов». Вестник интенсивной терапии им. А.И. Салтанова. 2022; 1: 5–140. DOI: 10.21320/1818-474X-2022-1-5-140 [Zabolotskikh I.B., Kirov M.Yu., Lebedinskii K.M., et al. Anesthesia and intensive care for patients with COVID-19. Russian Federation of anesthesiologists and reanimatologists guidelines. Annals of Critical Care. 2022; 1: 5–140. DOI: 10.21320/1818-474X-2022-1-5-140 (In Russ)]
  11. Овезов А.М., Яворовский А.Г., Зыбин К.Д. и др. Эволюция методических рекомендаций по анестезиолого-реанимационному обеспечению пациентов с новой коронавирусной инфекцией COVID-19. Вестник интенсивной терапии им. А.И. Салтанова. 2020; 3: 8–14. DOI: 21320/1818-474X-2020-3-8-14 [Ovezov A.M., Yavorovskiy A.G., Zybin K.D., et al. Evolution of guidelines on anesthesia and intensive care for patients with COVID-19: Editorial. Annals of critical care. 2020; 3: 8–14. DOI: 10.21320/1818-474X-2020-3-8-14 (In Russ)]
  12. ARDSnet.org [Internet]. Massachusetts: The NHLBI ARDS Network. 1p. [cited: 26.06.2022] Available from: http://www.ardsnet.org/files/ventilator_protocol_2008-07.pdf (Accessed June 10, 2022)
  13. Meade M.O., Cook D.J., Guyatt G.H., et al.; Lung Open Ventilation Study Investigators. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008; 299(6): 637–45. DOI: 10.1001/jama.299.6.637
  14. Brower R.G., Lanken P.N., MacIntyre N., et al.; National Heart, Lung, and Blood Institute ARDS Clinical Trials Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med. 2004; 351(4): 327–36. DOI: 10.1056/NEJMoa032193
  15. Blankman P., Shono A., Hermans B.J.M., et al. Detection of optimal PEEP for equal distribution of tidal volume by volumetric capnography and electrical impedance tomography during decreasing levels of PEEP in post cardiac-surgery patients. Br J Anaesth. 2016; 116(6): 862–9. DOI: 10.1093/bja/aew116
  16. Ярошецкий А.И., Проценко Д.Н., Резепов Н.А., Гельфанд Б.Р. Настройка положительного давления конца выдоха при паренхиматозной ОДН: статическая петля «давление–объем» или транспульмональное давление? Анестезиол. и реаниматол. 2014; (4): 53–9. [Yaroshetskiy A.I., Protsenko D.N., Rezepov N.A., Gelfand B.R. Positive end-expiratory pressure adjustment in parenchymal respiratory failure: static pressure-volume loop or transpulmonary pressure? Anesteziologiya i Reanimatologiya (Russian Journal of Anaesthesiology and Reanimatology). 2014; (4): 53–9. (In Russ)]
  17. Tolnai J., Fodor G.H., Babik B., et al. Volumetric but Not Time Capnography Detects Ventilation/Perfusion Mismatch in Injured Rabbit Lung. Front Physiol. 2018; 9: 1805. DOI: 10.3389/fphys.2018.01805
  18. Kremeier P., Böhm S.H., Tusman G. Clinical use of volumetric capnography in mechanically ventilated patients. J Clin Monit Comput. 2020; 34(1): 7–16. DOI: 10.1007/s10877-019-00325-9
  19. Böhm S.H., Kremeier P., Tusman G., et al. Volumetric capnography for analysis and optimization of ventilation and gas exchange. Anaesthesist. 2020; 69(5): 361–70. [Article in German] DOI: 10.1007/s00101-020-00747-0
  20. Лейдерман И.Н., Грицан А.И., Заболотских И.Б. и др. Метаболический контроль и нутритивная поддержка у пациентов на длительной искусственной вентиляции легких (ИВЛ). Клинические рекомендации. Анестезиология и реаниматология. 2019; 4: 5–19. [Leyderman I.N., Gritsan A.I., Zabolotskikh I.B., et al. Metabolic monitoring and nutritional support on prolonged mechanically ventilated (MV) patients. Clinical guidelines. Anesteziologiya i Reanimatologiya (Russian Journal of Anaesthesiology and Reanimatology). 2019; 4: 5–19. (In Russ)]
  21. Hulley S.B., Cummings S.R., Browner W.S., et al. Designing Clinical Research. 4th Philadelphia: Lippincott, 2013. P. 79.
  22. Деев А.И., Владимиров Ю.А., Рощупкин Д.И., Потапенко А.Я. Потоки веществ в результате диффузии и электродиффузии. Биофизика. М.: Медицина, 1983: 20−4. [Deev A.I., Vladimirov Iu.A., Roschupkin D.I., Potapenko A.Ia. Potoki veshchestv v rezultate diffuzii i elektrodiffuzii. Biofizika. M.: Medicina, 1983: 20−4. (In Russ)]
  23. West J.B. Distribution of gas and blood in the normal lungs. Br Med Bull. 1963; 19: 53–65.
  24. Овсянников Р.Ю., Громова Т.А., Молошнева В.А. и др. Физика и физиология вентиляционно-перфузионного сопряжения: обоснование и начальный опыт выбора конечно-экспираторного давления при механической вентиляции легких. Журнал технической физики. 2022; 92(7): 1004–17. DOI: 21883/JTF.2022.07.52658.27-22 [Ovsiannikov R.Iu., Gromova T.A., Moloshneva V.A., et al. Physics and physiology of ventilation-perfusion coupling: substantiation and initial experience of end-expiratory pressure choice during mechanical ventilation. Technical Physics. 2022; 92(7): 1004–17. DOI: 10.21883/JTF.2022.07.52658.27-22 (In Russ)]
  25. Beachey W. Respiratory Care Anatomy and Physiology. 2nd Mosby, 2007: 160–3.
  26. Кузьков В.В., Суборов Е.В., Фот Е.В. и др. Послеоперационные дыхательные осложнения и ОРДС легче предупредить, чем лечить. Анестезиология и реаниматология. 2016; 61(6): 461–8. DOI: 10.18821/0201-7563-2016-6-461-468 [Kuz’kov V.V., Suborov E.V., Fot E.V. Postoperative pulmonary complications and acute respiratory distress syndrome—better prevent then treat! Anesteziologiya i Reanimatologiya (Russian Journal of Anaesthesiology and Reanimatology). 2016; 61(6): 461–8. DOI: 10.18821/0201-7563-2016-6-461-468 (In Russ)]
  27. Кашерининов И.Ю., Мазурок В.А., Баутин А.Е. и др. Влияние параметров вентиляции на газообмен и механику дыхания у пациентов без выраженных респираторных и гемодинамических расстройств в раннем послеоперационном периоде коронарного шунтирования. Анестезиология и реаниматология. 2017; 62(5): 332–6. DOI: 10.18821/0201-7563-2017-62-5-332-336 [Kasherinov I.Yu., Mazurok V.A., Bautin A.E., et al. The impact of the mechanical ventilation parameters on the respiratory mechanics and gas exchange in postoperative CABG patients without severe gas and hemodynamic disorders. Anesteziologiya i Reanimatologiya (Russian Journal of Anaesthesiology and Reanimatology). 2017; 62(5): 332–6. DOI: 10.18821/0201-7563-2017-62-5-332-336 (In Russ)
  28. Datex-Ohmeda Compact Airway modules. Technical Reference Manual Slot. Document No. 800 1009-1. DATEX-OHMEDA, Finland. 2001. P. 7.
  29. Hedenstierna G., Tokics L., Scaramuzzo G., et al. Oxygenation Impairment during Anesthesia: Influence of Age and Body Weight. Anesthesiology. 2019; 131(1): 46–57. DOI: 10.1097/ALN.0000000000002693. PMID: 31045901
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2022 ANNALS OF CRITICAL CARE

Downloads

Download data is not yet available.