Abstract
INTRODUCTION: The severity of the patient's condition that required ECMO and the changes observed in the pituitary — thyroid system (decreased T4 and T3 levels, low-normal or decreased TSH level) can be considered as a lack of body reserves due to the developed critical illness. OBJECTIVES: Study changes of TSH, T3, T4 levels during the ECMO procedure, during weaning/death on the ECMO. MATERIALS AND METHODS: The prospective observational study was performed in intensive care unit (47 patients on ECMO). After connecting ECMO (D0), (D1-D3-D5-D7-D9), and until the completion of ECMO, assessment of TSH, FT4, FT3 levels was carried out. OBJECTIVE: Analysis of changes in thyroid hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3) levels in blood plasma during ECMO, at ECMO weaning/death on ECMO. RESULTS: On the day of ECMO (D 0) and every second day, median FT4 levels were D0 (p = 0.03); D1 (p = 0.03); D3 (p = 0.05), D11 (p = 0.02) and last observation day (p = 0.009) between surviving and dying patients respectively. T3 level D5 (3.1–1.9; p = 0.002); D11 (3.7–2.5; p = 0.05), last day of follow-up (3.1–2; p = 0.001), respectively. On the last day of ECMO between the survived and non-survived patients there were the following: differences in TSH levels; negative correlation of lactate levels, SOFA score and FT3, TSH, FT4. The analysis of the ROC curve (low levels of FT3, FT4, TSH in plasma in patients on the last day of ECMO) indicates a prognostically unfavorable outcome. CONCLUSIONS: The moment of ECMO connection initiation is regarded as subacute phase critical illness. Along with a high level of plasma lactate and high score of SOFA scale, the level of decrease in FT3, FT4 and TSH in patients correlates with the lethal outcome. Low levels of TSH, FT4, and FT3 may be considered as a predictor of adverse outcome at the time of weaning/death on ECMO.
References
- Rubartelli A., Lotze M.T. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 2007; 28(10): 429–6. DOI: 10.1016/j.it.2007.08.004
- Zindel J., Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol. 2020; 15: 493–518. DOI: 10.1146/annurev-pathmechdis-012419-032847
- Кроненберг Г.М., Мелмед Ш., Полонски K.С. и др. Эндокринология по Вильямсу. М.:Рид Элсивер, ГЭОТАР-Медиа; 2010. [Kronenberg H.M., Melmed Sh., Polonski K.S., Larsen P.R. Williams Textbook of Endocrinology, 11th edition. M.: Elsevier Ltd, GEOTAR-Media; 2010. (In Russ)]
- Тучина О.П. Нейро-иммунные взаимодействия в холинергическом противовоспалительном пути. Гены и Клетки. 2020; (1): 23–8. DOI: 10.23868/202003003 [Tuchina O.P. Neuro-immune interactions in the cholinergic anti-inflammatory pathway. Geny i kletki. 2020; 15(1): 23–8. DOI: 10.23868/202003003 (In Russ)]
- Akrout N., Sharshar T., Annane D. Mechanisms of brain signaling during sepsis. Curr Neuropharmacol. 2009; 7(4): 296–301. DOI: 10.2174/157015909790031175
- Ganong W.F. Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol. 2000; 27: 422–7. DOI: 10.1046/j.1440-1681.2000.03259.x
- McCann S.M., Kimura M., Karanth S., et al. The mechanism of action of cytokines to control the release of hypothalamic and pituitary hormones in infection. Ann NY Acad Sci. 2000; 917: 4–18. DOI: 10.1111/j.1749-6632.2000.tb05368.x
- Téblick A, Langouche L, Van den Berghe G. Anterior pituitary function in critical illness. Endocr Connect. 2019; 8 (8): R131–R143. DOI: 10.1530/EC-19-0318
- Балаболкин М.И., Клебанова Е.М., Креминская В.М. Фундаментальная и клиническая тироидология. Руководство. М.: Медицина, 2007 [Balabolkin M.I., Klebanova E.M., Kreminskaya V.M. Fundamental’naya i klinicheskaya tireodologiya. Rukovodstvo. M.: Meditsina, 2007. (In Russ)]
- Van Dyken P., Lacoste B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood–Brain Barrier. Frontiers Neuroscience. 2018; 12: 930. DOI: 10.3389/fnins.2018.00930
- Galiano M., Liu Z.Q., Kalla R., et al. Interleukin-6 (IL6) and cellular response to facial nerve injury: effects on lymphocyte recruitment, early microglial activation and axonal outgrowth in IL6-deficient mice. Eur J Neurosci. 2001; 14: 327–41. DOI: 10.1046/j.0953-816x.2001.01647.x
- Guo J., Hong Y., Wang Z., et al. Analysis of the incidence of euthyroid sick syndrome in comprehensive intensive care units and related risk factors. Front Endocrinol. 2021; 12: 656641. DOI: 10.3389/fendo.2021.656641
- Van den Berghe G., de Zegher F., Bouillon R. Acute and prolonged critical illness as different neuroendocrine paradigms. The Journal of Clinical Endocrinology & Metabolism. 1998; 83(6): 1827–34. DOI: 10.1210/jcem.83.6.4763
- Евдокимова Е.А., Власенко А.В., Авдеева С.Н. Респираторная поддержка пациентов в критическом состоянии. М.: ГЕОТАР-Медиа, 2021 448 с. [Evdokimova E.A., Vlasenko A.V., Avdeeva S.N. Respiratory support for patients in critical condition. M.: GEOTAR-Media, 2021. (In Russ)]
- Millar J.E., Fanning J.P., McDonald C.I., et al. The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology. Crit Care. 2016; 20: 387. DOI: 10.1186/s13054-016-1570-4
- Combes A., Hajage D., Capellier G. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018; 378(21): 1965–75. DOI: 10.1056/NEJMoa1800385
- Ferguson N.D., Fan E., Camporota L., et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012; 38: 1573. DOI: 10.1007/s00134-012-2682-1
- Braune S., Sieweke A., Brettner F., et al. The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case-control study. Intensive Care Med. 2016; 42: 1437. DOI: 10.1007/s00134-016-4452-y
- Grant C., Richards J.B., Frakes M., et al. ECMO and right ventricular failure: review of the literature. J Intensive Care Med. 2021; 36: 352. DOI: 10.1177/0885066619900503
- Ouweneel D.M., Schotborgh J.V., Limpens J., et al. Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis. Intensive Care Med. 2016; 42: 1922. DOI: 10.1007/s00134-016-4536-8
- Vasques F., Romitti F., Gattinoni L., et al. How I wean patients from veno-venous extra-corporeal membrane oxygenation. Crit Care. 2019; 23(1): 316. DOI: 10.1186/s13054-019-2592-5
- Fried J.A., Masoumi A., Takeda K., et al. How I approach weaning from venoarterial ECMO. Crit Care. 2020; 24(1): 307. DOI: 10.1186/s13054-020-03010-5
- Топический диагноз в неврологии по Петеру Дуусу. Анатомия. Физиология. Клиника. Под ред. М. Бера, М. Фротшера; пер. с англ. под ред. О.С. Левина. М.: Практическая медицина, 2018. [Duus’ Topical Diagnosis in Neurology. Anatomy. Physiology. Clinic. Ed. by M. Ber, M. Froshter; Transl. from Engl. Ed. by OS. Levin. M.: Practical Medicine, 2018. (In Russ)]
- Morley J.E. Neuroendocrine control of thyrotropin secretion. Endor Rev. 1981; 2: 396–436. DOI: 10.1210/edrv-2-4-396
- Boonen E., Van den Berghe G.V. Endocrine responses to critical illness: novel insights and therapeutic implications. J Clin Endocrinol Metab. 2014; 99(5): 1569–82. DOI: 10.1210/jc.2013-4115
- Gardner D.F., Kaplan M.M., Stanley C.A., et al. Effect of triiodothyronine replacement on the metabolic and pituitary responses to starvation. N Engl J Med. 1979; 300: 579–84. DOI: 10.1056/NEJM198109033051023
- Chopra I.J., Huang T.S., Beredo A., et al. Evidence for an inhibitor of extrathyroidal conversion of thyroxine to 3,5,3-triiodothyronine in sera of patients with nonthyroidal illnesses. J Clin Endocrinol Metab. 1985; 60: 666–72. DOI: 10.1210/jcem-60-4-666
- Michalaki M., Vagenakis A.G., Makri M., et al. Dissociation of the early decline in serum T(3) concentration and serum IL-6 rise and TNF in nonthyroidal illness syndrome induced by abdominal surgery. J Clin Endocrinol Metab. 2001; 86: 4198–205. DOI: 10.1210/jcem.86.9.7795
- Téblick A., Peeters B., Langouche L., et al. Adrenal function and dysfunction in critically ill patients. Nat Rev Endocrinol. 2019; 15(7): 417–27. DOI: 10.1038/s41574-019-0185-7
- Van den Berghe G., De Zegher F., Veldhuis J.D., et al. Thyrotrophin and prolactin release in prolonged critical illness: dynamics of spontaneous secretion and effects of growth hormone-secretagogues. Clin Endocrinol (Oxf). 1997; 47(5): 599–12. DOI: 10.1046/j.1365-2265.1997.3371118.x
- Vanhorebeek I., Langouche L., Van den Berghe G. Endocrine aspects of acute and prolonged critical illness. Nat Clin Pract Endocrinol Metab. 2006; 2(1): 20–31. DOI: 10.1038/ncpendmet0071
- Bacci V., Schussler G.C., Kaplan T.B. The relationship between serum triiodothyronine and thyrotropin during systemic illness. J Clin Endocrinol Metab. 1982; 54: 1229–35. DOI: 10.1210/jcem-54-6-1229
- Moshang T., Parks J.S., Baker L., et al. Low serum triiodothyronine in patients with anorexia nervosa. J Clin Endocrinol Metab. 1975; 40: 470–3. DOI: 10.1210/jcem-40-3-470
- Peeters R.P., Wouters P.J., Van Toor H., et al. Serum 3,3,5-triiodothyronine (rT3) and 3,5,3-triiodo-thyronine/rT3 are prognostic markers in critically ill patients and are associated with postmortem tissue deiodinase activities. J Clin Endocrinol Metab. 2005; 90: 4559–65. DOI: 10.1210/jc.2005-0535
- Fliers E., Guldenaar S.E., Wiersinga W.M., et al. Decreased hypothalamic thyrotropin-releasing hormone gene expression in patients with nonthyroidal illness. J Clin Endocrinol Metab. 1997; 82: 4032–6. DOI: 10.1210/jcem.82.12.4404
- Boelen A., Kwakkel J., Thijssen-Timmer D.C., et al. Simultaneous changes in central and peripheral components of the hypothalamus-pituitary-thyroid axis in lipopolysaccharide-induced acute illness in mice. J Endocrinol. 2004; 182: 315–23. DOI: 10.1677/joe.0.1820315
- Mebis L., Debaveye Y., Ellger B., et al. Changes in the central component of the hypothalamus-pituitary-thyroid axis in a rabbit model of prolonged critical illness. Crit Care. 2009; 13: R147. DOI: 10.1186/cc8043
- Mebis L., Langouche L., Visser T.J., et al. The type II iodothyronine deiodinase is upregulated in skeletal muscle during prolonged critical illness. J Clin Endocrinol Metab. 2007; 92: 3330–3. DOI: 10.1210/jc.2007-0510
- Артыкбаева Г.М. Роль дейодиназ 1-го и 2-го типа в метаболизме тиреоидных гормонов (обзор литературы). Проблемы эндокринологии. 2016; 62(2): 46–51. DOI: 10.14341/probl201662246-52 [Artykbaeva G.M. Role of type 1 and 2 deiodinases in thyroid metabolism (review). Problemy Endokrinologii. 2016;62(2):46–51. DOI: 10.14341/probl201662246-52 (In Russ)]
- Mebis L., Paletta D., Debaveye Y. et al. Expression of thyroid hormone transporters during critical illness. Eur J Endocrinol. 2009; 161: 243–50. DOI: 10.1530/eje-09-0290.
- Ma S.F., Xie L., Pino-Yanes M., et al. Type 2 deiodinase and host responses of sepsis and acute lung injury [published correction appears. Am J Respir Cell Mol Biol. 2013; 49(4): 689. DOI: 10.1165/rcmb.2011-0179OC
- Berghe Van den G., de Zegher F., Lauwers P. Dopamine and the sick euthyroid syndrome in critical illness. Clin Endocrinol (Oxf). 1994; 41: 731–7. DOI: 10.1111/j.1365-2265.1994.tb02787.x
- Faglia G., Ferrari C., Beck-Peccoz P., et al. Reduced plasma thyrotropin response to thyrotropin releasing hormone after dexamethasone administration in normal subjects. Horm Metab Res. 1973; 5: 289–92. DOI: 10.1055/s-0028-1093930
- Crowder C.M., Evers A.S. Mechanisms of anesthetic action. Cambridge: Cambridge University Press, 2011; 359–84. DOI: 10.1017/CBO9780511781933.025
- Peeters R.P., van der Geyten S., Wouters P.J., et al. Tissue thyroid hormone levels in critical illness. J Clin Endocrin Metabolism. 2005; 90(12): 6498–507. DOI: 10.1210/jc.2005-1013
- Liu J., Wu X., Lu F., et al. Low T3 syndrome is a strong predictor of poor outcomes in patients with community-acquired pneumonia. Sci Rep. 2016; 6: 22271. DOI: 10.1038/srep22271
- Vincent J.L., Quintairos E., Silva A., et al. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care. 2016; 20(1): 257. DOI: 10.1186/s13054-016-1403-5
- Рябов Г.А. Гипоксия критических состояний. М.: Медицина; 1988. [Ryabov G.A. Hypoxia of critical conditions. Moscow: Medicine, 1988. (In Russ)]
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.