Changes in the pituitary — thyroid system during extracorporeal membrane oxygenation: a prospective observational study
ISSN (print) 1726-9806     ISSN (online) 1818-474X
#2023-1
PDF_2023-1_43-55 (Russian)
HTML_2023-1_43-55 (Russian)
PDF_2023-1_43-55
HTML_2023-1_43-55

Keywords

hypothyroidism
thyrotropin
thyroid hormones
thyroxine
triiodothyronine
extracorporeal membrane oxygenation

How to Cite

1.
Altshuler N.E., Kutcyi M.B., Gubarev K.K., Bagzhanov G.I., Popugaev K.A. Changes in the pituitary — thyroid system during extracorporeal membrane oxygenation: a prospective observational study. Annals of Critical Care. 2023;(1):43-55. doi:10.21320/1818-474X-2023-1-43-55

Statistic

Abstract Views: 125
PDF_2023-1_43-55 (Russian) Downloads: 124
HTML_2023-1_43-55 (Russian) Downloads: 136
PDF_2023-1_43-55 Downloads: 54
HTML_2023-1_43-55 Downloads: 21
Statistic from 01.07.2024

Language

English Русский

Social Networks

Abstract

INTRODUCTION: The severity of the patient's condition that required ECMO and the changes observed in the pituitary — thyroid system (decreased T4 and T3 levels, low-normal or decreased TSH level) can be considered as a lack of body reserves due to the developed critical illness. OBJECTIVES: Study changes of TSH, T3, T4 levels during the ECMO procedure, during weaning/death on the ECMO. MATERIALS AND METHODS: The prospective observational study was performed in intensive care unit (47 patients on ECMO). After connecting ECMO (D0), (D1-D3-D5-D7-D9), and until the completion of ECMO, assessment of TSH, FT4, FT3 levels was carried out. OBJECTIVE: Analysis of changes in thyroid hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3) levels in blood plasma during ECMO, at ECMO weaning/death on ECMO. RESULTS: On the day of ECMO (D 0) and every second day, median FT4 levels were D0 (p = 0.03); D1 (p = 0.03); D3 (p = 0.05), D11 (p = 0.02) and last observation day (p = 0.009) between surviving and dying patients respectively. T3 level D5 (3.1–1.9; p = 0.002); D11 (3.7–2.5; p = 0.05), last day of follow-up (3.1–2; p = 0.001), respectively. On the last day of ECMO between the survived and non-survived patients there were the following: differences in TSH levels; negative correlation of lactate levels, SOFA score and FT3, TSH, FT4. The analysis of the ROC curve (low levels of FT3, FT4, TSH in plasma in patients on the last day of ECMO) indicates a prognostically unfavorable outcome. CONCLUSIONS: The moment of ECMO connection initiation is regarded as subacute phase critical illness. Along with a high level of plasma lactate and high score of SOFA scale, the level of decrease in FT3, FT4 and TSH in patients correlates with the lethal outcome. Low levels of TSH, FT4, and FT3 may be considered as a predictor of adverse outcome at the time of weaning/death on ECMO.

PDF_2023-1_43-55 (Russian)
HTML_2023-1_43-55 (Russian)
PDF_2023-1_43-55
HTML_2023-1_43-55

References

  1. Rubartelli A., Lotze M.T. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 2007; 28(10): 429–6. DOI: 10.1016/j.it.2007.08.004
  2. Zindel J., Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol. 2020; 15: 493–518. DOI: 10.1146/annurev-pathmechdis-012419-032847
  3. Кроненберг Г.М., Мелмед Ш., Полонски K.С. и др. Эндокринология по Вильямсу. М.:Рид Элсивер, ГЭОТАР-Медиа; 2010. [Kronenberg H.M., Melmed Sh., Polonski K.S., Larsen P.R. Williams Textbook of Endocrinology, 11th edition. M.: Elsevier Ltd, GEOTAR-Media; 2010. (In Russ)]
  4. Тучина О.П. Нейро-иммунные взаимодействия в холинергическом противовоспалительном пути. Гены и Клетки. 2020; (1): 23–8. DOI: 10.23868/202003003 [Tuchina O.P. Neuro-immune interactions in the cholinergic anti-inflammatory pathway. Geny i kletki. 2020; 15(1): 23–8. DOI: 10.23868/202003003 (In Russ)]
  5. Akrout N., Sharshar T., Annane D. Mechanisms of brain signaling during sepsis. Curr Neuropharmacol. 2009; 7(4): 296–301. DOI: 10.2174/157015909790031175
  6. Ganong W.F. Circumventricular organs: definition and role in the regulation of endocrine and autonomic function. Clin Exp Pharmacol Physiol. 2000; 27: 422–7. DOI: 10.1046/j.1440-1681.2000.03259.x
  7. McCann S.M., Kimura M., Karanth S., et al. The mechanism of action of cytokines to control the release of hypothalamic and pituitary hormones in infection. Ann NY Acad Sci. 2000; 917: 4–18. DOI: 10.1111/j.1749-6632.2000.tb05368.x
  8. Téblick A, Langouche L, Van den Berghe G. Anterior pituitary function in critical illness. Endocr Connect. 2019; 8 (8): R131–R143. DOI: 10.1530/EC-19-0318
  9. Балаболкин М.И., Клебанова Е.М., Креминская В.М. Фундаментальная и клиническая тироидология. Руководство. М.: Медицина, 2007 [Balabolkin M.I., Klebanova E.M., Kreminskaya V.M. Fundamental’naya i klinicheskaya tireodologiya. Rukovodstvo. M.: Meditsina, 2007. (In Russ)]
  10. Van Dyken P., Lacoste B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood–Brain Barrier. Frontiers Neuroscience. 2018; 12: 930. DOI: 10.3389/fnins.2018.00930
  11. Galiano M., Liu Z.Q., Kalla R., et al. Interleukin-6 (IL6) and cellular response to facial nerve injury: effects on lymphocyte recruitment, early microglial activation and axonal outgrowth in IL6-deficient mice. Eur J Neurosci. 2001; 14: 327–41. DOI: 10.1046/j.0953-816x.2001.01647.x
  12. Guo J., Hong Y., Wang Z., et al. Analysis of the incidence of euthyroid sick syndrome in comprehensive intensive care units and related risk factors. Front Endocrinol. 2021; 12: 656641. DOI: 10.3389/fendo.2021.656641
  13. Van den Berghe G., de Zegher F., Bouillon R. Acute and prolonged critical illness as different neuroendocrine paradigms. The Journal of Clinical Endocrinology & Metabolism. 1998; 83(6): 1827–34. DOI: 10.1210/jcem.83.6.4763
  14. Евдокимова Е.А., Власенко А.В., Авдеева С.Н. Респираторная поддержка пациентов в критическом состоянии. М.: ГЕОТАР-Медиа, 2021 448 с. [Evdokimova E.A., Vlasenko A.V., Avdeeva S.N. Respiratory support for patients in critical condition. M.: GEOTAR-Media, 2021. (In Russ)]
  15. Millar J.E., Fanning J.P., McDonald C.I., et al. The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology. Crit Care. 2016; 20: 387. DOI: 10.1186/s13054-016-1570-4
  16. Combes A., Hajage D., Capellier G. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018; 378(21): 1965–75. DOI: 10.1056/NEJMoa1800385
  17. Ferguson N.D., Fan E., Camporota L., et al. The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012; 38: 1573. DOI: 10.1007/s00134-012-2682-1
  18. Braune S., Sieweke A., Brettner F., et al. The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case-control study. Intensive Care Med. 2016; 42: 1437. DOI: 10.1007/s00134-016-4452-y
  19. Grant C., Richards J.B., Frakes M., et al. ECMO and right ventricular failure: review of the literature. J Intensive Care Med. 2021; 36: 352. DOI: 10.1177/0885066619900503
  20. Ouweneel D.M., Schotborgh J.V., Limpens J., et al. Extracorporeal life support during cardiac arrest and cardiogenic shock: a systematic review and meta-analysis. Intensive Care Med. 2016; 42: 1922. DOI: 10.1007/s00134-016-4536-8
  21. Vasques F., Romitti F., Gattinoni L., et al. How I wean patients from veno-venous extra-corporeal membrane oxygenation. Crit Care. 2019; 23(1): 316. DOI: 10.1186/s13054-019-2592-5
  22. Fried J.A., Masoumi A., Takeda K., et al. How I approach weaning from venoarterial ECMO. Crit Care. 2020; 24(1): 307. DOI: 10.1186/s13054-020-03010-5
  23. Топический диагноз в неврологии по Петеру Дуусу. Анатомия. Физиология. Клиника. Под ред. М. Бера, М. Фротшера; пер. с англ. под ред. О.С. Левина. М.: Практическая медицина, 2018. [Duus’ Topical Diagnosis in Neurology. Anatomy. Physiology. Clinic. Ed. by M. Ber, M. Froshter; Transl. from Engl. Ed. by OS. Levin. M.: Practical Medicine, 2018. (In Russ)]
  24. Morley J.E. Neuroendocrine control of thyrotropin secretion. Endor Rev. 1981; 2: 396–436. DOI: 10.1210/edrv-2-4-396
  25. Boonen E., Van den Berghe G.V. Endocrine responses to critical illness: novel insights and therapeutic implications. J Clin Endocrinol Metab. 2014; 99(5): 1569–82. DOI: 10.1210/jc.2013-4115
  26. Gardner D.F., Kaplan M.M., Stanley C.A., et al. Effect of triiodothyronine replacement on the metabolic and pituitary responses to starvation. N Engl J Med. 1979; 300: 579–84. DOI: 10.1056/NEJM198109033051023
  27. Chopra I.J., Huang T.S., Beredo A., et al. Evidence for an inhibitor of extrathyroidal conversion of thyroxine to 3,5,3-triiodothyronine in sera of patients with nonthyroidal illnesses. J Clin Endocrinol Metab. 1985; 60: 666–72. DOI: 10.1210/jcem-60-4-666
  28. Michalaki M., Vagenakis A.G., Makri M., et al. Dissociation of the early decline in serum T(3) concentration and serum IL-6 rise and TNF in nonthyroidal illness syndrome induced by abdominal surgery. J Clin Endocrinol Metab. 2001; 86: 4198–205. DOI: 10.1210/jcem.86.9.7795
  29. Téblick A., Peeters B., Langouche L., et al. Adrenal function and dysfunction in critically ill patients. Nat Rev Endocrinol. 2019; 15(7): 417–27. DOI: 10.1038/s41574-019-0185-7
  30. Van den Berghe G., De Zegher F., Veldhuis J.D., et al. Thyrotrophin and prolactin release in prolonged critical illness: dynamics of spontaneous secretion and effects of growth hormone-secretagogues. Clin Endocrinol (Oxf). 1997; 47(5): 599–12. DOI: 10.1046/j.1365-2265.1997.3371118.x
  31. Vanhorebeek I., Langouche L., Van den Berghe G. Endocrine aspects of acute and prolonged critical illness. Nat Clin Pract Endocrinol Metab. 2006; 2(1): 20–31. DOI: 10.1038/ncpendmet0071
  32. Bacci V., Schussler G.C., Kaplan T.B. The relationship between serum triiodothyronine and thyrotropin during systemic illness. J Clin Endocrinol Metab. 1982; 54: 1229–35. DOI: 10.1210/jcem-54-6-1229
  33. Moshang T., Parks J.S., Baker L., et al. Low serum triiodothyronine in patients with anorexia nervosa. J Clin Endocrinol Metab. 1975; 40: 470–3. DOI: 10.1210/jcem-40-3-470
  34. Peeters R.P., Wouters P.J., Van Toor H., et al. Serum 3,3,5-triiodothyronine (rT3) and 3,5,3-triiodo-thyronine/rT3 are prognostic markers in critically ill patients and are associated with postmortem tissue deiodinase activities. J Clin Endocrinol Metab. 2005; 90: 4559–65. DOI: 10.1210/jc.2005-0535
  35. Fliers E., Guldenaar S.E., Wiersinga W.M., et al. Decreased hypothalamic thyrotropin-releasing hormone gene expression in patients with nonthyroidal illness. J Clin Endocrinol Metab. 1997; 82: 4032–6. DOI: 10.1210/jcem.82.12.4404
  36. Boelen A., Kwakkel J., Thijssen-Timmer D.C., et al. Simultaneous changes in central and peripheral components of the hypothalamus-pituitary-thyroid axis in lipopolysaccharide-induced acute illness in mice. J Endocrinol. 2004; 182: 315–23. DOI: 10.1677/joe.0.1820315
  37. Mebis L., Debaveye Y., Ellger B., et al. Changes in the central component of the hypothalamus-pituitary-thyroid axis in a rabbit model of prolonged critical illness. Crit Care. 2009; 13: R147. DOI: 10.1186/cc8043
  38. Mebis L., Langouche L., Visser T.J., et al. The type II iodothyronine deiodinase is upregulated in skeletal muscle during prolonged critical illness. J Clin Endocrinol Metab. 2007; 92: 3330–3. DOI: 10.1210/jc.2007-0510
  39. Артыкбаева Г.М. Роль дейодиназ 1-го и 2-го типа в метаболизме тиреоидных гормонов (обзор литературы). Проблемы эндокринологии. 2016; 62(2): 46–51. DOI: 10.14341/probl201662246-52 [Artykbaeva G.M. Role of type 1 and 2 deiodinases in thyroid metabolism (review). Problemy Endokrinologii. 2016;62(2):46–51. DOI: 10.14341/probl201662246-52 (In Russ)]
  40. Mebis L., Paletta D., Debaveye Y. et al. Expression of thyroid hormone transporters during critical illness. Eur J Endocrinol. 2009; 161: 243–50. DOI: 10.1530/eje-09-0290.
  41. Ma S.F., Xie L., Pino-Yanes M., et al. Type 2 deiodinase and host responses of sepsis and acute lung injury [published correction appears. Am J Respir Cell Mol Biol. 2013; 49(4): 689. DOI: 10.1165/rcmb.2011-0179OC
  42. Berghe Van den G., de Zegher F., Lauwers P. Dopamine and the sick euthyroid syndrome in critical illness. Clin Endocrinol (Oxf). 1994; 41: 731–7. DOI: 10.1111/j.1365-2265.1994.tb02787.x
  43. Faglia G., Ferrari C., Beck-Peccoz P., et al. Reduced plasma thyrotropin response to thyrotropin releasing hormone after dexamethasone administration in normal subjects. Horm Metab Res. 1973; 5: 289–92. DOI: 10.1055/s-0028-1093930
  44. Crowder C.M., Evers A.S. Mechanisms of anesthetic action. Cambridge: Cambridge University Press, 2011; 359–84. DOI: 10.1017/CBO9780511781933.025
  45. Peeters R.P., van der Geyten S., Wouters P.J., et al. Tissue thyroid hormone levels in critical illness. J Clin Endocrin Metabolism. 2005; 90(12): 6498–507. DOI: 10.1210/jc.2005-1013
  46. Liu J., Wu X., Lu F., et al. Low T3 syndrome is a strong predictor of poor outcomes in patients with community-acquired pneumonia. Sci Rep. 2016; 6: 22271. DOI: 10.1038/srep22271
  47. Vincent J.L., Quintairos E., Silva A., et al. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care. 2016; 20(1): 257. DOI: 10.1186/s13054-016-1403-5
  48. Рябов Г.А. Гипоксия критических состояний. М.: Медицина; 1988. [Ryabov G.A. Hypoxia of critical conditions. Moscow: Medicine, 1988. (In Russ)]
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.