Intraoperative transfusion is a risk factor for cerebral injury after cardiac surgery in children: a prospective observational study
ISSN (print) 1726-9806     ISSN (online) 1818-474X
#2023-1
PDF_2023-1_101-114 (Russian)
HTML_2023-1_101-114 (Russian)

Keywords

children
congenital heart defects
systemic inflammatory response syndrome
transfusion

How to Cite

1.
Ivkin A.A., Grigoryev E.V., D. G. Balakhnin D.G.B., Chermnykh I.I. Intraoperative transfusion is a risk factor for cerebral injury after cardiac surgery in children: a prospective observational study. Annals of Critical Care. 2023;(1):101-114. doi:10.21320/1818-474X-2023-1-101-114

Statistic

Abstract Views: 491
PDF_2023-1_101-114 (Russian) Downloads: 82
HTML_2023-1_101-114 (Russian) Downloads: 34
Statistic from 01.07.2024

Language

English Русский

Social Networks

Abstract

INTRODUCTION: Donor blood components are able to initiate a systemic inflammatory response syndrome (SIRS) and potentiate neuroinflammation with subsequent cerebral damage. OBJECTIVE: To study the effect of transfusion on the development of cerebral damage during the surgical correction of congenital heart defects in children. MATERIALS AND METHODS: 78 patients aged from 1 to 78 months, weighing from 3.3 to 21.5 kg, were studied. All patients underwent correction of a septal defect under cardiopulmonary bypass. All patients were divided to group 1 — without the use of transfusion and group 2 — with the use of red blood cell transfusion. Cerebral damage markers (S-100-β protein, neuron-specific enolase (NSE) and glial fibrillar acidic protein (GFAP)) and SIRS (interleukins 1 (ILb-1), 6 (IL-6), 10 (IL-10) and tumor necrosis factor alpha (TNF-α) were studied. Markers ware studied at three control points: 1 — before the start of surgery, 2 — immediately after end of cardiopulmonary bypass, 3 — 16 hours after the end of the operation. RESULTS: The peak concentration of most markers in the blood in both groups of patients was noted at the 2nd control point. The concentration of all markers of cerebral damage was significantly higher in the transfusion group at the 2nd control point: S-100-β protein (ng/ml) — 509.90 [379.30–871.70] and 717.10 [517.90–1195.33] (р = 0.024); NSE (ng/ml) — 17.55 [11.19–26.41] and 34.05 [17.06–44.90] (р = 0,023); GFAP (ng/ml) — 0.1190 [0.1135–0.1245] and 0.1231 [0.1138–0.1493]. Correlations were found between markers of cerebral damage and SIRS, the strongest of which was the relationship between NSE and TNF-α at the 3rd control point — Rho = 0.43 (p = 0.0001). A correlation of S-100-β protein with transfusion volume was observed at the 2nd (Rho = 0.48, p = 0.00065) and 3rd control points (Rho = 0.36, p = 0.01330). CONCLUSIONS: The influence of the fact of transfusion and the dose of red blood cell on the development of cerebral damage during cardiac surgery in children has been proven.

PDF_2023-1_101-114 (Russian)
HTML_2023-1_101-114 (Russian)

References

  1. Staveski S.L., Pickler R.H., Khoury P.R., et al. Prevalence of ICU Delirium in Postoperative Pediatric Cardiac Surgery Patients. Pediatr Crit Care Med. 2021; 22(1): 68–78. DOI: 10.1097/PCC.0000000000002591
  2. Patel A.K., Biagas K.V., Clarke E.C., et al. Delirium in Children After Cardiac Bypass Surgery. Pediatr Crit Care Med. 2017; 18(2): 165–71. DOI: 10.1097/PCC.0000000000001032
  3. Alvarez R.V., Palmer C., Czaja A.S., et al. Delirium is a Common and Early Finding in Patients in the Pediatric Cardiac Intensive Care Unit. J Pediatr. 2018; 195: 206–12. DOI: 10.1016/j.jpeds.2017.11.064
  4. Chomat M.R., Said A.S., Mann J.L., et al. Changes in Sedation Practices in Association with Delirium Screening in Infants After Cardiopulmonary Bypass. Pediatr Cardiol. 2021; 42(6): 1334–40. DOI: 10.1007/s00246-021-02616-y
  5. Goldberg T.E., Chen C., Wang Y., et al. Association of Delirium With Long-term Cognitive Decline: A Meta-analysis. JAMA Neurol. 2020; 77(11): 1373–81. DOI: 10.1001/jamaneurol.2020.2273
  6. Gunn J.K., Beca J., Hunt R.W., et al. Perioperative risk factors for impaired neurodevelopment after cardiac surgery in early infancy. Arch Dis Child. 2016; 101(11): 1010–6. DOI: 10.1136/archdischild-2015-309449
  7. Hansen T.G. Anesthesia-related neurotoxicity and the developing animal brain is not a significant problem in children. Paediatr Anaesth. 2015; 25(1): 65–72. DOI: 10.1111/pan.12548
  8. Jevtovic-Todorovic V. General Anesthetics and Neurotoxicity: How Much Do We Know? Anesthesiology Clinics. 2016; 34(3): 439–51. DOI: 10.1016/j.anclin.2016.0 4.001
  9. Dahmani S., Stany I., Brasher C., et al. Pharmacological prevention of sevoflurane- and desflurane-related emergence agitation in children: a meta-analysis of published studies. Br J Anaesth. 2010; 104: 216–23. DOI: 10.1093/bja/aep376
  10. Hogue C.W. Jr, Palin C.A., Arrowsmith J.E. Cardiopulmonary bypass management and neurologic outcomes: an evidence-based appraisal of current practices. Anesth Analg. 2006; 103(1): 21–37. DOI: 10.1213/01.ane.0000220035.82989.79
  11. Hori D., Brown C., Ono M., et al. Arterial pressure above the upper cerebral autoregulation limit during cardiopulmonary bypass is associated with postoperative delirium. Br J Anaesth. 2014; 113(6): 1009–17. DOI: 10.1093/bja/aeu319
  12. Hirata Y. Cardiopulmonary bypass for pediatric cardiac surgery. Gen Thorac Cardiovasc Surg. 2018; 66(2): 65–70. DOI: 10.1007/s11748-017-0870-1
  13. Toomasian C.J., Aiello S.R., Drumright B.L., et al. The effect of air exposure on leucocyte and cytokine activation in an in-vitro model of cardiotomy suction. Perfusion. 2018; 33(7): 538–45. DOI: 10.1177/0267659118766157
  14. Myers G.J., Wegner J. Endothelial Glycocalyx and Cardiopulmonary Bypass. J Extra Corpor Technol. 2017; 49(3): 174–81.
  15. Pozhilenkova E.A., Lopatina O.L., Komleva Y.K., et al. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Rev Neurosci. 2017; 28(4): 397–415. DOI: 10.1515/revneuro-2016-0071
  16. Cerejeira J., Firmino H., Vazserra A., et al. The neuroinflammatory hypothesis of delirium. Acta Neuropathologica. 2010; 119: 737–54. DOI: 10.1007/s00 401-010-0 674-1
  17. Baker R.A., Nikolic A., Onorati F., et al. 2019 EACTS/EACTA/EBCP guidelines on cardiopulmonary bypass in in adult cardiac surgery: a tool to better clinical practice. Eur J Cardiothorac Surg. 2020; 57(2): 207–9. DOI: 10.1093/ejcts/ezz358
  18. Ferraris V.A., Ballert E.Q., Mahan A. The relationship between intraoperative blood transfusion and postoperative systemic inflammatory response syndrome. Am J Surg. 2013; 205(4): 457–65. DOI: 10.1016/j.amjsurg.2012.07.042
  19. Патент № 2773741 Российская Федерация, МПК A61M 1/36(2006.01). Способ вакуумной ультрафильтрации перфузата экстракорпорального контура у детей с реинфузией крови: № 2021109617: заявлено 06.04.2021: опубл. 08.06.2022 / Григорьев Е.В., Шукевич Д.Л., Борисенко Д.В., Ивкин А.А., Корнелюк Р.А. Бюл. № 16. 8 с. [Grigoriev E.V., Shukevich D.L., Borisenko D.V., Ivkin A.A., Kornelyuk R.A. The method of vacuum ultrafiltration of the perfusate of the extracorporeal circuit in children with blood reinfusion. Russian Federation. RU 2 773 741 C1. (In Russ)]
  20. Botwinski C.A. Systemic inflammatory response syndrome. Neonatal Network. 2001; 20(5): 21–8. DOI: 10.1891/0730-0832.20.5.21
  21. Smok B., Domagalski K., Pawłowska M. Diagnostic and Prognostic Value of IL-6 and sTREM-1 in SIRS and Sepsis in Children. Mediators Inflamm. 2020; 2020: 8201585. DOI: 10.1155/2020/8201585
  22. Rothoerl R.D., Brawanski A., Woertgen C. S-100B protein serum levels after controlled cortical impact injury in the rat. Acta Neurochir (Wein). 2001; 142(2): 199–203. DOI: 10.1007/s007010050024
  23. Beer C., Blacker D., Bynevelt M., et al. Systemic markers of inflammation are independently associated with S-100B concentration: results of an observational study in subjects with acute ischaemic stroke. Neuroinflammation. 2010; 7: 71. DOI: 10.1186/1742-2094-7-71
  24. Lasek-Bal A., Jedrzejowska-Szypulka H., Student S., et al. The importance of selected markers of inflammation and blood-brain barrier damage for short- term ischemic stroke prognosis. Physiol Pharmacol. 2019; 70(2). DOI: 10.26402/jpp.2019.2.04
  25. Трухачева Н.В. Математическая статистика в медико-биологических исследованиях с применением пакета Statistica. М.: ГЭОТАР-Медиа, 2013. 379 с. [Trukhacheva N.V. Matematicheskaya statistika v mediko-biologicheskikh issledovaniyakh s primeneniem paketa Statistica. (Mathematical statistics in medical and biological studies using Statistica software). M.: GEOTAR-Media, 2013. 379 p. (In Russ)]
  26. Yuan S.M. S-100 and S-100β: biomarkers of cerebral damage in cardiac surgery with or without the use of cardiopulmonary bypass. Rev Bras Cir Cardiovasc. 2014; 29(4): 630–41. DOI: 10.5935/1678-9741.20140084
  27. Rabinowicz A.L., Correale J., Boutros R.B., et al. Neuronspecific enolase is increased after single seizures during inpatient video/EEG monitoring. Epilepsia. 1996; 37(2): 122–5. DOI: 10.1111/j.1528-1157.1996.tb00002.x
  28. Pekny M., Wilhelmsson U., Pekna M. The dual role of astrocyte activation and reactive gliosis. Neuroscience Letters. 2014; 565: 30–8. DOI: 10.1016/j.neulet.2013.12.071
  29. Wiberg S., Holmgaard F., Zetterberg H., et al. Biomarkers of Cerebral Injury for Prediction of Postoperative Cognitive Dysfunction in Patients Undergoing Cardiac Surgery. J Cardiothorac Vasc Anesth. 2022; 36(1): 125–32. DOI: 10.1053/j.jvca.2021.05.016
  30. Barbu M., Jónsson K., Zetterberg H., et al. Serum biomarkers of brain injury after uncomplicated cardiac surgery: Secondary analysis from a randomized trial. Acta Anaesthesiol Scand. 2022; 66(4): 447–53. DOI: 10.1111/aas.14033
  31. DiMeglio M., Furey W., Hajj J., et al. Observational study of long-term persistent elevation of neurodegeneration markers after cardiac surgery. Sci Rep. 2019; 9(1): 7177. DOI: 10.1038/s41598-019-42351-2
  32. Yazdi A.S., Ghoreschi K. The Interleukin-1 Family. Adv Exp Med Biol. 2016; 941: 21–9. DOI: 10.1007/978-94-024-0921-5_2
  33. Kertai M.D., Ji Y., Li Y.J., et al. PEGASUS Investigative Team. Interleukin-1β gene variants are associated with QTc interval prolongation following cardiac surgery: a prospective observational study. Can J Anaesth. 2016; 63(4): 397–410. DOI: 10.1007/s12630-015-0576-8
  34. Ai A.L., Hall D., Bolling S.F. Interleukin-6 and hospital length of stay after open-heart surgery. Biol Psychiatry Psychopharmacol. 2012; 14: 79–82.
  35. Gu J., Hu J., Zhang H.W., et al. Time-dependent changes of plasma inflammatory biomarkers in type A aortic dissection patients without optimal medical management. J Cardiothorac Surg. 2015; 10: 3. DOI: 10.1186/s13019-014-0199-0
  36. Yuan S.M. Interleukin-6 and cardiac operations. Eur Cytokine Netw. 2018; 29(1): 1–15. DOI: 10.1684/ecn.2018.0406. PMID: 29748154
  37. Allen M.L., Hoschtitzky J.A., Peters M.J., et al. Interleukin-10 and its role in clinical immunoparalysis following pediatric cardiac surgery. Crit Care Med. 2006; 34(10): 2658–65. DOI: 10.1097/01.CCM.0000240243.28129.36
  38. Kawamura T., Wakusawa R., Inada K. Interleukin-10 and interleukin-1 receptor antagonists increase during cardiac surgery. Can J Anaesth. 1997; 44(1): 38–42. DOI: 10.1007/BF03014322
  39. Gorjipour F., Totonchi Z., Gholampour Dehaki M. Serum levels of interleukin-6, interleukin-8, interleukin-10, and tumor necrosis factor-α, renal function biochemical parameters and clinical outcomes in pediatric cardiopulmonary bypass surgery. Perfusion. 2019; 34(8): 651–9. DOI: 10.1177/0267659119842470
  40. de Fontnouvelle A., Greenberg J.H., Thiessen-Philbrook H.R., et al. TRIBE-AKI Consortium. Interleukin-8 and Tumor Necrosis Factor Predict Acute Kidney Injury After Pediatric Cardiac Surgery. Ann Thorac Surg. 2017; 104(6): 2072–9. DOI: 10.1016/j.athoracsur.2017.04.038
  41. Delaney M., Stark P.C., Suh M., et al. The Impact of Blood Component Ratios on Clinical Outcomes and Survival. Anesthesia and Analgesia. 2017; 124(6): 1777–82. DOI: 10.1213/ANE.0000000000001926
  42. Ивкин А.А., Григорьев Е.В., Цепокина А.В., Шукевич Д.Л. Послеоперационный делирий у детей при коррекции врожденных септальных пороков сердца. Вестник анестезиологии и реаниматологии. 2021; 18(2): 62–8. DOI: 10.21292/2078-5658-2021-18-2-62-68 [Ivkin А.А., Grigoriev E.V., Tsepokina А.V., Shukevich D.L. Postoperative delirium in children in undergoing treatment of congenital septal heart defects. Vestnik anesteziologii i reanimatologii (Messenger of Anesthesiology and Resuscitation). 2021; 18(2): 62–8. DOI: 10.21292/2078-5658-2021-18-2-62-68 (In Russ)]
  43. Naguib A.N., Winch P.D., Tobias J.D., et al. A single-center strategy to minimize blood transfusion in neonates and children undergoing cardiac surgery. Paediatr Anaesth. 2015; 25(5): 477–86. DOI: 10.1111/pan.12604
  44. Пшениснов К.В., Александрович Ю.С. Массивная кровопотеря в педиатрической практике. Гематология и трансфузиология. 2020; 65(1): 70–86. DOI: 10.35754/0234-5730-2020-65-1-70-86 [Pshenisnov K.V., Aleksandrovich Yu.S. Massive blood loss in pediatric practice. Gematologiya i transfuziologiya. Russian Journal of Hematology and Transfusiology. 2020; 65(1): 70–86. DOI: 10.35754/0234-5730-2020-65-1-70-86 (In Russ)]
  45. Ивкин А.А., Корнелюк Р.А., Борисенко Д.В. и др. Искусственное кровообращение без компонентов донорской крови при операции на сердце у ребенка весом 8 кг. Патология кровообращения и кардиохирургия. 2018; 20(2): 62–7. DOI: 10.21688/1681-3472-2018-2-63-6 [Ivkin A.A., Kornelyuk R.A., Borisenko D.V., et al. Cardiopulmonary bypass without the use of donor blood components in heart surgery in an 8-kg infant: case report. Patologiya krovoobrashcheniya i kardiokhirurgiya. Circulation Pathology and Cardiac Surgery. 2018; 22(2): 63–7. DOI: 10.21688/1681-3472-2018-2-63-6 (In Russ)]
  46. Борисенко Д.В., Ивкин А.А., Шукевич Д.Л., Корнелюк Р.А. Значение эритроцитсодержащих компонентов донорской крови в объеме первичного заполнения контура искусственного кровообращения в развитии системного воспаления при коррекции врожденных пороков сердца у детей. Общая реаниматология. 2022; 18(3): 30–7. DOI: 10.15360/1813-9779-2022-3-30-37 [Borisenko D.V., Ivkin A.A., Shukevich D.L., Kornelyuk R.A. The Effect of Erythrocyte-Containing Donor Blood Components in the Priming of the Cardiopulmonary Bypass Circuit on the Development of Systemic Inflammation During Correction of Congenital Heart Defects in Children. General Reanimatology. 2022; 18(3): 30–7. DOI: 10.15360/1813-9779-2022-3-30-37 (In Russ)]
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.