Immunosuppressive profile of patients operated for acquired heart diseases under artificial circulation. A prospective study
#2020-3
PDF_2020-03_74-87 (Русский)
HTML_2020-03_74-87 (Русский)

Keywords

systemic inflammatory response
cardiac surgery
immunosuppression

How to Cite

Matveeva VG, Khanova MY, Ivkin AA, Kornelyuk RA, Grigoryev EV Immunosuppressive profile of patients operated for acquired heart diseases under artificial circulation. A prospective study. Annals of Critical Care. 2020;(3):74–87. doi:10.21320/1818-474X-2020-3-74-87.

Statistic

Abstract Views: 4
PDF_2020-03_74-87 (Русский) Downloads: 0
HTML_2020-03_74-87 (Русский) Downloads: 0
Plum Analytics

Language

English Русский

Social Networks

Keywords

Up

Abstract

Objective. To study the dynamics of immunosuppressive cell populations in patients who underwent heart valve replacement surgery under artificial circulation. Materials and methods. We investigated the dynamics of MDSC, PD-1-positive cells among Th and Tcyt and PD-L1-positive monocytes in patients operated on for the heart under cardiopulmonary bypass in the volume of prosthetic heart valves, the study points were before surgery, immediately after surgery and after 1, 3, 7 days. The study was carried out on a CytoFlex laser flow cytometer. Results. In the group of patients without complications and in the group with complications outside the infection, an increase in all MDSC populations was observed 1 day after surgery, with a return to baseline values within a week. The dynamics of MDSC in a patients with sepsis was characterized by an increase within 3 days with the achievement of maximum figures in comparison with the previous groups. In patients without complications, an increase in PD-L1+, PD-1+ CD4+ and PD-1+CD8+ monocytes were observed immediately after surgery and one day later. In the case of the development of infectious complications in the postoperative period, a relatively moderate increase in the monocyte content was observed only by 3 days after the operation. The content of PD-1 positive T cells increased moderately up to 7 days among Th, and significantly by 7 days, followed by a decrease among Tcyt. Conclusions. A high initial content of Mon-MDSC is a risk factor for the development of postoperative infectious complications. A significant increase in immunosuppressive populations in the early postoperative period can be regarded as an unfavorable variant of the course of the compensatory anti-inflammatory syndrome.
https://doi.org/10.21320/1818-474X-2020-3-74-87
PDF_2020-03_74-87 (Русский)
HTML_2020-03_74-87 (Русский)

References

  1. Nesher N., Frolkis I., Vardi M., Sheinberg N., Bakir I., Caselman F. Higher levels of serum cytokines and myocardial tissue markers during on-pump versus off-pump coronary artery bypass surgery. J. Cardiac Surgery. 2006; 21: 395–402. DOI: 10.1111/j.1540-8191.2006.00272
  2. Wang Y., Lin X., Yue H., Kissoon N., Sun B. Evaluation of systemic inflammatory response syndrome-negative sepsis from a Chinese regional pediatric network. Collaborative Study Group for Pediatric Sepsis in Huai’an BMC Pediatric. 2019; 8; 19(1): 11. DOI: 10.1186/s12887-018-1364-8
  3. Toomasian C.J., Aiello S.R., Drumright B.L., Major T.C., Bartlett R.H., Toomasian J.M. The effect of air exposure on leucocyte and cytokine activation in an in-vitro model of cardiotomy suction. Perfusion. 2018; 33: 538–545. DOI: 10.1177/0267659118766157
  4. Барбараш Л.С., Григорьев Е.В., Плотников Г.П., Хаес Б.Л., Моисеенков Г.В., Шукевич Д.Л., Иванов С.В., Одаренко Ю.Н. Полиорганная недостаточность после кардиохирургических вмешательств. Общая реаниматология. 2010; 6(5): 31. DOI: 10.15360/1813-9779-2010-5-31 [Barbarash L.S., Grigor‘ev E.V., Plotnikov G.P., Haes B.L., Moiseenkov G.V., SHukevich D.L., Ivanov S.V., Odarenko YU.N. Poliorgannaya nedostatochnost’ posle kardiohirurgicheskih vmeshatel’stv. Obshchaya reanimatologiya. 2010; 6(5): 31. (In Russ)]
  5. Delaney M., Stark P.C., Suh M., Triulzi D.J., Hess J.R., Steiner M.E., Stowell C.P., Sloan S.R. The Impact of Blood Component Ratios on Clinical Outcomes and Survival. Anesthesia and Analgesia. 2017; 124(6): 1777–1782. DOI: 10.1213/ANE.0000000000001926
  6. Jalkanen J., Maksimow M., Jalkanen S., Hakovirta H. Hypoxia-induced inflammation and purinergic signaling in cross clamping the human aorta. Springerplus. 2016; 5: 2. DOI: 10.1186/s40064-015-1651-x
  7. Аджигалиев Р.Р., Баутин А.Е., Пасюга В.В. Влияние компонентов общей анестезии на системный воспалительный ответ при кардиохирургических вмешательствах. Комплексные проблемы сердечно-сосудистых заболеваний. 2019; 8(4): 145–152. DOI: 10.17802/2306-1278-2019-8-4-145-152 [Аdzhigаliev R.R., Bаutin А.E., Pаsyugа V.V. Effects of general anesthesia on systemic inflammatory response during cardiac surgery with extracorporeal circulation. Kompleksnyye problemy serdechno-sosudistykh zabolevaniy. Complex Issues of Cardiovascular Diseases. 2019; 8(4): 145–152. (In Russ)]
  8. Григорьев Е.В., Михайлова А.А., Шукевич Д.Л., Плотников Г.П., Радивилко А.С., Матвеева В.Г. Восстановление критических пациентов — системный подход. Комплексные проблемы сердечно-сосудистых заболеваний. 2019; 8(2): 116–124. DOI: 10.17802/2306-1278-2019-8-2-116-124 [Grigoryev E.V., Mikhailova A.A., Shukevich D.L., Plotnikov G.P., Radivilko A.S., Matveeva V.G. A comprehensive approach to the management of criticaly ill patients. Kompleksnyye problemy serdechno-sosudistykh zabolevaniy. Complex Issues of Cardiovascular Diseases. 2019; 8(2): 116–124. (In Russ)]
  9. Medzhitov R., Schneider D.S., Soares M.P. Disease tolerance as a defense strategy. Science. 2012; 335: 936–941. DOI: 10.1126/science.1214935
  10. Ward N.S., Casserly B., Ayala A. The compensatory anti-inflammatory response syndrome (CARS) in critically ill patients. Clinics in Chest Medicine. 2008; 29(4): 617–25. DOI: 10.1016/j.ccm.2008.06.010
  11. Hotchkiss R.S., Monneret G., Payen D. Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic approach. The Lancet Infectious Diseases. 2013; 13: 260–268. DOI: 10.1016/S1473-3099(13)70001-X
  12. Monneret G., Venet F., Pachot A., Lepape A. Monitoring immune dysfunctions in the septic patient: A new skin for the old ceremony. Molecular Medicine. 2008; 14: 64–78. DOI: 10.2119/2007-00102.Monneret
  13. Hotchkiss R.S., Monneret G., Payen D. Immunosuppression in sepsis: A novel understanding of the disorder and a new therapeutic. The Lancet Infectious Diseases. 2013; 13: 260–268. DOI: 10.1016/S1473-3099(13)70001-X
  14. Landelle C., Lepape A., Francais A., Tognet E., Thizy H., Voirin N., Timsit J.F., Monneret G., Vanhems P. Nosocomial infection after septic shock among intensive care unit patients. Infection Control and Hospital Epidemiology. 2008; 29: 1054–1065. DOI: 10.1086/591859
  15. Monneret G., Venet F., Kullberg B.J., Netea M.G. ICU-acquired immunosuppression and the risk for secondary fungal infections. Medical Mycology. 2011; 49(Suppl 1): S17–S23.
  16. Григорьев Е.В., Плотников Г.П., Шукевич Д.Л., Головкин А.С. Персистирующая полиорганная недостаточность. Патология кровообращения и кардиохирургия. 2014; 18(3): 82–86. DOI: 10.21688/1681-3472-2014-3-82-86 [Grigor‘ev E.V., Plotnikov G.P., SHukevich D.L., Golovkin A.S. Persistiruyushchaya poliorgannaya nedostatochnost’. Patologiya krovoobrashcheniya i kardiohirurgiya. 2014; 18(3): 82–86. (In Russ)]
  17. Руднов В.А., Кулабухов В.В. Сепсис и терагностика. На пути к персонализированной медицине. Вестник анестезиологии и реаниматологии. 2015; 12(6): 60–67. DOI: 10.21292/2078-5658-2015-12-6-60-67 [Rudnov V.A., Kulabuhov V.V. Sepsis i teragnostika. Na puti k personalizirovannoj medicine. Vestnik anesteziologii i reanimatologii. 2015; 12(6): 60–67. (In Russ)]
  18. Young M.R.I., Newby M., Wepsic T.H. Hematopoiesis and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors. Cancer Research. 1987; 47: 100–106.
  19. Buessow S.C., Paul R.D., Lopez D.M. Influence of mammary tumor progression on phenotype and function of spleen and in situ lymphocytes in mice. J. National Cancer Institute. 1984; 73: 249–255.
  20. Seung L., Rowley D., Dubeym P., Schreiber H. Synergy between T-cell immunity and inhibition of paracrine stimulation causes tumor rejection. Proceedings of the National Academy of Sciences. 1995; 92: 6254–6258. DOI: 10.1073/pnas.92.14.6254
  21. Gabrilovich D.I, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology. 2009; 9: 162–174. DOI: 10.1038/nri2506
  22. Ostrand-Rosenberg S., Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunology. 2009; 182: 4499–4506. DOI: 10.4049/jimmunol.0802740
  23. Григорьев Е.В., Шукевич Д.Л., Матвеева В.Г., Пугачев С.В., Каменева Е.А., Корнелюк Р.А. Миелоидные супрессорные клетки в патогенезе критических состояний. Патология кровообращения и кардиохирургия. 2016; 20(3): 20–25. DOI: 10.21688/1681-3472-2016-3-20-25 [Grigor’ev E.V., SHukevich D.L., Matveeva V.G., Pugachev S.V., Kameneva E.A., Kornelyuk R.A. Mieloidnye supressornye kletki v patogeneze kriticheskih sostoyanij. Patologiya krovoobrashcheniya i kardiohirurgiya. 2016; 20(3): 20–25. (In Russ)]
  24. Juan C.M., Scott C.B., Lyle L.M., Frederick A.M. Persistent Inflammation, Immunosuppression and Catabolism Syndrome. Critical Care Clinics. 2017; 33: 245–258. DOI: 10.1016/j.ccc.2016.12.001
  25. Boomer J.S., To K., Chang K.C., Takasu O., Osborne D.F., Walton A.H., Bricker T.L., Jarman S.D. 2nd, Kreisel D., Krupnick A.S., Srivastava A., Swanson P.E., Green J.M., Hotchkiss R.S. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011; 306(23): 2594–2605. DOI: 10.1001/jama.2011.1829 PMID: 22187279
  26. Keir M.E., Butte M.J., Freeman G.J., Sharpe A.H. PD‐1 and its ligands in tolerance and immunity. Annual Review of Immunology. 2008; 26: 677–704. DOI: 10.1146/annurev.immunol.26.021607.090331 PMID: 18173375.
  27. Wherry E.J., Kurachi M. Molecular and cellular insights into T cell exhaustion. Nature Reviews Immunology. 2015; 15(8): 486–499. DOI: 10.1038/nri3862 PMID: 26205583
  28. Hotchkiss R.S., Monneret G., Payen D. Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. The Lancet Infectious Diseases. 2013; 13(3): 260–268. DOI: 10.1016/S1473-3099(13)70001-X PMID: 23427891
  29. Hotchkiss R.S., Monneret G., Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nature Reviews Immunology. 2013; 13(12): 862–874. DOI: 10.1038/nri3552. PMID: 24232462
  30. Niu B., Zhou F., Su Y., Wang L., Xu Y., Yi Z., et al. Different expression characteristics of LAG3 and PD-1 in sepsis and their synergistic effect on T cell exhaustion: a new strategy for immune checkpoint blockade. Frontiers in Immunology. 2019; 10: 1888. DOI: 10.3389/fimmu.2019.01888
  31. Guignant C., Lepape A., Huang X., Kherouf H., Denis L., Poitevin F., et al. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Critical Care Medicine. 2011; 15: R99. DOI: 10.1186/cc10112
  32. Zhang Y., Li J., Lou J., Zhou Y., Bo L., Zhu J., et al. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. Critical Care Medicine. 2011; 15(1): 70. Available at: http://dx.doi.org/10.1186/cc10059
  33. Ханова М.Ю., Григорьев Е.В. Роль рецепторов PD-1 и PD-L1 в развитии системного воспалительного ответа и методы иммуноадъювантной терапии. Патология кровообращения и кардиохирургия. 2019; 23(3): 76–83. DOI: 10.21688/1681-3472-2019-3-76-83 [Khanova M.Yu., Grigoryev E.V. Roles of PD-1 and PD-L1 receptors in the development of systemic inflammatory response and immunoadjuvant therapy. Patologiya krovoobrashcheniya i kardiokhirurgiya. Circulation Pathology and Cardiac Surgery. 2019; 23(3): 76–83. (In Russ)]
  34. Zhang Y., Zhou Y., Lou J., Li J., Bo L., Zhu K., et al. PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Critical Care Medicine. 2010; 14: R220. DOI: 10.1186/cc9354
  35. Brahmamdam P., Inoue S., Unsinger J., Chang K.C., McDunn J.E., Hotchkiss R.S. Delayed administration of anti-PD-1 antibody reverses immune dysfunction and improves survival during sepsis. J. Leukocyte Biology. 2010; 88: 233–240. DOI: 10.1189/jlb.0110037
  36. Zhang Q., Qi Z., Bo-Liu, Li C.S. Programmed Cell Death-1/Programmed Death-Ligand 1 Blockade Improves Survival of Animals with Sepsis: A Systematic Review and Meta-Analysis. BioMed Research International. 2018; 1969474. DOI: 10.1155/2018/1969474
  37. Shao R., Fang Y., Yu H., Zhao L., Jiang Z., Li C.S. Monocyte programmed death ligand-1 expression after 3–4 days of sepsis is associated with risk stratification and mortality in septic patients: a prospective cohort study. Critical Care Medicine. 2016; 20(1): 124. DOI: 10.1186/s13054-016-1301-x. PMID: 27156867.
  38. Guignant C., Lepape A., Huang X., Kherouf H., Denis L., Poitevin F., Malcus C., Chéron A., Allaouchiche B., Gueyffier F., Ayala A., Monneret G., Venet F. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Critical Care Medicine. 2011; 15(2): R99. DOI: 10.1186/cc10112. PMID: 21418617
  39. Bronte V., Brandau S., Chen S.-H., Colombo M.P., Frey A.B., Greten T.F., Mandruzzato S., Murray P.J., Ochoa A., Ostrand-Rosenberg S., Rodriguez P.C., Sica A., Umansky V., Vonderheide R.H., Gabrilovich D.I. Recommendations for Myeloid-Derived Suppressor Cell Nomenclature and Characterization Standards. Nature Communications. 2016; 7: 12150. DOI: 10.1038/ncomms12150
  40. Dai J., Gazzar M.El., Li G.Y., Moorman J.P., Yao Z.Q. Myeloid-Derived Suppressor Cells: Paradoxical Roles in Infection and Immunity. Innate immune system. 2015; 7: 116–126. DOI: 10.1159/000368233
  41. Vester H., Dargatz P., Huber-Wagner S., Biberthaler P., van Griensven M. HLA-DR expression on monocytes is decreased in polytraumatized patients. European J. Medical Research. 2015; 20: 84. DOI: 10.1186/s40001-015-0180-y
  42. Lukaszewicz A. C., Grienay M., Resche-Rigon M., Pirracchio R., Faivre V., Boval B., Payen D. Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction. Critical Care Medicine. 2009; 37: 2746–2752. DOI: 10.1097/CCM.0b013e3181ab858a
  43. Monneret G., Finck M. E., Venet F., Debar, A. L., Bohe J., Bienvenu J., Lepape A. The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration. Immunology Letters. 2004; 95: 193–198. DOI: 10.1016/j.imlet.2004.07.009
  44. Janols H., Bergenfelz C., Allaoui R., Larsson A., Rydén L., Björnsson S., Janciauskiene S., Wullt M., Bredberg A., Leandersson K. A high frequency of MDSCs in sepsis patients, with the granulocytic subtype dominating in gram-positive cases. JLB. 2014; 9: 1–9. DOI: 10.1189/jlb.5HI0214-074R
  45. Zhang Y., Li J., Lou J. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. Critical Care Medicine. 2011; 15(1): R70. DOI: 10.1186/cc10059
  46. Patil N.K., Guo Y., Luan L., Sherwood E.R. Targeting Immune Cell Checkpoints during Sepsis. Int. J. Molecular Sciences. 2017; 18(11): 2413. DOI: 10.3390/ijms18112413
  47. Guignant C., Lepape A., Huang X. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Critical Care Medicine. 2011; 15(2): R99. DOI: 10.1186/cc10112
  48. Григорьев Е.В., Матвеева В.Г., Шукевич Д.Л., Радивилко А.С., Великанова Е.А., Ханова М.Ю. Индуцированная иммуносупрессия в критических состояниях: диагностические возможности в клинической практике. Бюллетень сибирской медицины. 2019; 18(1): 18–29. DOI: 10.20538/1682-0363-2019-1-18-29 [Grigoryev E.V., Matveeva V.G., Shukevich D.L., Radivilko A.S., Velikanova E.A., Khanova M.Yu. Induced immunosuppression in critical care: diagnostic opportunities in clinical practice. Byulleten’ sibirskoy meditsiny. Bulletin of Siberian Medicine. 2019; 18(1): 18–29. (In Russ)]
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Downloads

Download data is not yet available.