Abstract
Introduction. In patients with spontaneous breathing and respiratory failure, various methods of delivering the gas mixture to the respiratory tract have been developed. The use of high-flow oxygen therapy is alternative standard oxygen therapy.
Objectives. Experimental study of the effects of high-flow oxygen therapy and evaluation of its clinical effectiveness in comparison with traditional oxygen therapy in patients with severe community-acquired pneumonia.
Materials and Methods. During the experimental stage of the study, the level of mean airway pressure was determined depending on the flow of the gas mixture using a lung model with parameters of biomechanics of respiration.
During the clinical stage, a comparative analysis of the effectiveness of respiratory support in groups of patients with severe community-acquired pneumonia using high-flow and traditional oxygen therapy was carried out.
Results. During experimental study, flow of gas mixture 30 l/min was determined, at which mean airway pressure registered on models of healthy lungs and lungs with modified respiratory biomechanics significantly increases.
During the clinical phase of the study, a statistically significant decrease in the frequency of initiation of artificial (invasive and non-invasive) lung ventilation, an increase in oxygenation (saturation hemoglobin with oxygen, partial pressure oxygen in arterial blood) and partial pressure carbon dioxide with simultaneous decrease in respiratory rate.
Conclusion. The value of gas flow over 30 l/min has significant effect on the recorded mean airway pressure calculated using models of lungs in experiment. However, clinical significance of this indicator is not clinically significant.
The use of high-flow oxygen therapy in patients with severe community-acquired pneumonia in comparison with standard method reduces the frequency use of ventilation (invasive and non-invasive) with a significant increase in oxygenation indicators. This reduces hyperventilation, which is confirmed by a significant increase in partial pressure carbon dioxide and a decrease in respiratory rate.
References
- Ярошецкий А.И., Власенко А.В., Грицан А.И. и др. Применение неинвазивной вентиляции легких (второй пересмотр). Клинические рекомендации Общероссийской общественной организации «Федерация анестезиологов и реаниматологов». Анестезиология и реаниматология. Анестезиология и реаниматология. 2019; (6): 5–19. DOI: 10.17116/anaesthesiology20190615 [Yaroshetskiy A.I., Vlasenko A.V., Gritsan A.I., et al. Application of non-invasive ventilation (second revision). Clinical guidelines of the public organization “Russian Federation of Anesthesiologists and Reanimatologists”. Anesthesiology and Reanimatology. 2019; (6): 5–19. (In Russ)]
- Чучалин А.Г., Синопальников А.И., Козлов Р.С. Клинические рекомендации по диагностике, лечению и профилактике тяжелой внебольничной пневмонии у взрослых. Клиническая микробиология и антимикробная химиотерапия. 2015; 17(2): 84–127. DOI: 10.18093/0869-0189-2014-0-4-13-48 [Chuchalin A.G., Sinopalnikov A.I., Kozlov R.S. Clinical practice guidelines for the diagnosis, treatment and prevention of severe community-acquired pneumonia in adults. Clinical microbiology and antimicrobial chemotherapy. 2015; 17(2): 84–127. (In Russ)]
- Yealy D.M., Auble T.E., Stone R.A., et al. Effect of increasing the intensity of implementing pneumonia guidelines: a randomized, controlled trial. Annals of internal medicine. 2005; 143(12): 881–894. DOI: 10.7326/0003-4819-143-12-200512200-00006
- Almirall J., Bolıbar I., Vidal J., et al. Epidemiology of community-acquired pneumonia in adults: A population based study. European Respiratory J. 2000; 15(4): 757–763.
- Costa C., Gouveia I., Cunha P., et al. Severe community-acquired pneumonia in the intensive care unit. Critical Care. 2005; 9(1): 1. DOI: 10.1186/cc3064
- Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека [Internet] Available from: https://www.rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=12053 (updated 20.07.2020; cited 21.07.2020).
- Gea J., Roca J., Torres A., Agustí A.G., et al. Mechanisms of abnormal gas exchange in patients with pneumonia. Anesthesiology: J. American Society of Anesthesiologists. 1991; 75(5): 782–789.
- Wijesinghe M., Perrin K., Healy B., Weatherall M., et al. Randomized controlled trial of high concentration oxygen in suspected community-acquired pneumonia. J. Royal Society of Medicine. 2012; 105(5): 208–216. DOI: 10.1258/jrsm.2012.110084
- Mandell L.A., Wunderink R.G., Anzueto A., et al. Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clinical infectious diseases. 2007; 44(2): 27–72. DOI: 10.1086/511159
- Restrepo M.I., Mortensen E.M., Velez J.A., et al. A comparative study of community-acquired pneumonia patients admitted to the ward and the ICU. Chest. 2008; 133(3): 610–617. DOI: 0.1378/chest.07-1456
- Pinhu L., Whitehead T., Evans T., Griffiths M. Ventilator-associated lung injury. The Lancet. 2003; 361(9354): 332–340. DOI: 10.1016/S0140-6736(03)12329-X
- Hasan R.A., Habib R.H. Effects of flow rate and air leak at the nares and mouth opening on positive distending pressure delivery using commercially available high-flow nasal cannula systems: a lung model study. Pediatric Critical Care Medicine. 2011; 12(1): 29–33. DOI: 10.1097/PCC.0b013e3181d9076d
- Chikata Y., Onodera M., Oto J., Nishimura M. FIO2 in an adult model simulating high-flow nasal cannula therapy. Respiratory care. 2017; 62(2): 193–198. DOI: 10.4187/respcare.04963
- Ewig S., Woodhead M., Torres A. Towards a sensible comprehension of severe community-acquired pneumonia. Intensive Care Medicine. 2011; 37(2): 214–223. DOI: 10.1007/s00134-010-2077-0
- Sivieri E.M., Gerdes J.S., Abbasi S. Effect of HFNC flow rate, cannula size, and nares diameter on generated airway pressures: an in vitro study. Pediatric pulmonology. 2013; 48(5): 506–514. DOI: 10.1002/ppul.22636
- Lucangelo U., Vassallo F.G., Marras E., et al. High-flow nasal interface improves oxygenation in patients undergoing bronchoscopy. Critical care research and practice. 2012; 1–6. DOI: 10.1155/2012/506382
- Parke R., McGuinness S., Eccleston M. Nasal high-flow therapy delivers low level positive airway pressure. British J. Anaesthesia. 2009; 103(6): 886–890. DOI: 10.1093/bja/aep280
- Frat J.P., Ragot S., Girault C., et al. Effect of non-invasive oxygenation strategies in immunocompromised patients with severe acute respiratory failure: a post-hoc analysis of a randomised trial. The Lancet Respiratory Medicine. 2016; 4(8): 646–652. DOI: 10.1016/S2213-2600(16)30093-5
- Natalini D., Grieco D.L., Santantonio M.T., et al. Physiological effects of high-flow oxygen in tracheostomized patients. Annals of intensive care. 2019; 9(1): 1–9. DOI: 10.1186/s13613-019-0591-y
- Roca O., Riera J., Torres F., Masclans J.R. High-flow oxygen therapy in acute respiratory failure. Respiratory care. 2010; 201055(4): 408–413.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.