Abstract
Multiple organ failure (MOF) is the most severe outcome of the critical care patients of any reason (sepsis, trauma, ischemia and reperfusion), the mortality rate with this syndrome has no tendency to decrease. The review article offers, first of all, an introduction to the key research areas in which the MOF theory is currently developing (alarmines, mitochondrial dysfunction, barrier insufficiency, immunological and neurological conjugation, forms of programmed cell death, induced immunosuppression, resolution of inflammation). Studies prove the feasibility of introducing a personalized approach to the diagnosis of MOF by substantiating the endophenotype of the critical care patients on the basis of a complex of immunological, genomic and clinical indicators.References
- Ciesla D.J., Moore E.E., Johnson J.L., et al. A 12-year prospective study of postinjury multiple organ failure: has anything changed? Arch. Surg. 2005; 140(5): 432–438. DOI: 10.1001/archsurg.140.5.432
- Davidson G.H., Hamlat C.A., Rivara F.P., et al. Long-term survival of adult trauma patients. JAMA. 2011; 305(10): 1001–1007. DOI: 10.1001/jama.2011.259
- Eiseman B., Beart R., Norton L. Multiple organ failure. Surg. Gynecol. Obstet. 1977; 144(3): 323–326.
- Deitch E.A., Vincent J.L., Windsor A. Sepsis and multiple organ dysfunction: multidisciplinary approach. Philadelphia: WB Sanders company, 2002.
- Minei J.P., Cuschieri J., Sperry J., et al. The changing pattern and implications of multiple organ failure after blunt injury with hemorrhagic shock. Crit. Care Med. 2012; 40(4): 1129–1135. DOI: 10.1097/CCM.0b013e3182376e9f
- Lelubre C., Vincent J.L. Mechanisms and treatment of organ failure in sepsis. Nature Review. Nephrology. 2018; 14: 417–427. DOI: 10.1038/s41581-018-0005-7
- Григорьев Е.В., Плотников Г.П., Шукевич Д.Л., Головкин А.С. Персистирующая полиорганная недостаточность. Патология кровообращения и кардиохирургия. 2014; 18(3): 82–86.DOI: 10.21688/1681-3472-2014-3-82-86. [Grigoryev Ye.V., Plotnikov G.P., Shukevich D.L., Golovkin A.S. Persistent multiorgan failure. Patologiya krovoobrascheniya i kardiohirurgiya. Circulation Pathology and Cardiac Surgery. 2014; 18(3): 82–86. (In Russ)]
- Schaefer L. Complexity of danger: The diverse nature of damage-associated molecular patterns. J. Biol. Chem. 2014; 289: 35237–35245. DOI: 10.1074/jbc.R114.619304
- Ma K.C., Schenck E.J., Pabon M.A., Choi A.M.K. The role of danger signals in the pathogenesis and perpetuation of critical illness. Am. J. Respir. Crit. Care Med. 2018; 197(3): 300–309. DOI: 10.1164/rccm.201612–2460PP
- Zhang Q., Raoof M., Chen Y., et al. Circulating mitochondrial DAMPs cause in inflammatory responses to injury. Nature. 2010; 464: 104–107. DOI: 10.1038/nature08780
- Harris H.E., Raucci A. Alarmin(g) news about danger: Workshop on innate danger signals and HMGB1. EMBO Rep. 2006; 7: 774–778. DOI: 10.1038/sj.embor.7400759
- Guo H., Callaway J.B., Ting J.P. Infammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med. 2015; 21: 677–687. DOI: 10.1038/nm.3893
- Cobb J.P., Buchman T.G., Karl I.E., Hotchkiss R.S. Molecular biology of multiple organ dysfunction syndrome: Injury, adaptation, and apoptosis. Surg. Infect (Larchmt). 2000; 1: 207–213; discussion 214. DOI: 10.1089/109629600750018132
- Conrad M., Angeli J.P., Vandenabeele P., Stockwell B.R. Regulated necrosis: Disease relevance and therapeutic opportunities. Nat. Rev. Drug. Discov. 2016; 15: 348–366. DOI: 10.1038/nrd.2015.6
- Kaczmarek A., Vandenabeele P., Krysko D.V. Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013; 38: 209–223. DOI: 10.1016/j.immuni.2013.02.003
- Krysko D.V., Agostinis P., Krysko O., et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 2011; 32: 157–164. DOI: 10.1016/j.it.2011.01.005
- Zhang Q., Raoof M., Chen Y., et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010; 464: 104–107. DOI: 10.1038/nature08780
- Deutchman C.S., Tracey K.J. Sepsis: Current dogma and new perspectives. Immunity. 2014; 40: 463–475. DOI: 10.1016/j.immuni.2014.04.001
- Bosmann M., Ward P.A. The inflammatory response in sepsis. Trends Immunol. 2013; 34: 129–136. DOI: 10.1016/j.it.2012.09.004
- Matsuda N. Alert cell strategy in SIRS-induced vasculitis: sepsis and endothelial cells Journal of Intensive Care. 2016; 4: 21. DOI: 10.1186/s40560-016-0147-2
- Johansson P.I., Henriksen H.H., Stensballe J., et al. Traumatic endotheliopathy: a prospective observational study of 424 severely injured patients. Ann. Surg. 2017; 265(3): 597–603. DOI: 10.1097/SLA.0000000000001751
- Hirase T, Node K. Endothelial dysfunction as a cellular mechanism for vascular failure. Am. J. Physiol. Heart Circ. Physiol. 2012; 302(3): 499–505. DOI: 10.1152/ajpheart.00325.2011
- Aird W.C. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003; 101(10): 3765–3777. DOI: 10.1182/blood-2002-06-1887
- Szotowski B., Antoniak S., Rauch U. Alternatively spliced tissue factor: a previously unknown piece in the puzzle of hemostasis. Trends Cardiovasc. Med. 2006; 16(5): 177–182. DOI: 10.1016/j.tcm.2006.03.005
- Monroe D.M., Key N.S. The tissue factor-factor VIIa complex: procoagulant activity, regulation, and multitasking. J. Thromb. Haemost. 2007; 5(6): 1097–1105. DOI: 10.1111/j.1538-7836.2007.02435.x
- Danese S., Vetrano S., Zhang L., et al. The protein C pathway in tissue inflammation and injury: pathogenic role and therapeutic implications. Blood. 2010; 115(6): 1121–1130. DOI: 10.1182/blood-2009-09-201616
- Brinkmann V., Zychlinsky A. Beneficial suicide: why neutrophils die to, make NETs. Nature Rev. 2007; 5: 577–582. DOI: 10.1038/nrmicro1710
- Camicia G., Pozner R., de Larrañaga G. Neutrophil extracellular traps in Sepsis. Shock. 2014; 42(4): 286–294. DOI: 10.1097/SHK.0000000000000221
- Wang X., Qin W., Sun B. New strategy for sepsis: Targeting a key role of platelet-neutrophil interaction. Burns Trauma. 2014; 2(3): 114–120. DOI: 10.4103/2321–3868.135487
- Salmon A.H., Satchell S.C. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J. Pathol. 2012; 226: 562–574. DOI: 10.1002/path.3964
- Pries A.R., Secomb T.W., Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000; 440: 653–666. DOI: 10.1007/s004240000307
- Reitsma S., Slaaf D.W., Vink H., et al. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007; 454: 345–359. DOI: 10.1007/s00424-007-0212-8
- Lekakis J., Abraham P., Balbarini A., et al. Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation. Eur. J. Cardiovasc. Prev. Rehabil. 2011; 18: 775–789. DOI: 10.1177/1741826711398179
- Woodcock T.E., Woodcock T.M. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br. J. Anaesth. 2012; 108: 384–394. DOI: 10.1093/bja/aer515
- Chelazzi C., Villa G., Mancinelli P. Glycocalyx and sepsis-induced alterations in vascular permeability. Crit. Care. 2015; 19(1): 26. DOI: 10.1186/s13054-015-0741-z
- Uchimido R., Schmidt E.P., Shapiro N.I. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit. Care. 2019; 23(1): 16. DOI: 10.1186/s13054-018-2292-6
- Steppan J., Hofer S., Funke B., et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalyx. J. Surg. Res. 2011; 165: 136–141. DOI: 10.1016/j.jss.2009.04.034
- Tracey K.J. The inflammatory reflex. Nature. 2002; 420: 853–859. DOI: 10.1038/nature01321
- Tracey K.J. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest. 2007; 117: 289–296. DOI: 10.1172/JCI30555
- Григорьев Е.В., Шукевич Д.Л., Плотников Г.П. и др. Нейровоспаление в критических состояниях: механизмы и протективная роль гипотермии. Фундаментальная и клиническая медицина. 2016; 1(3): 88–96. [Grigoryev E.V., Shukevich D.L., Plotnikov G.P., et al. Neuroinflammation in critical care: neuroprotective role role of hypothermia. Fundamental and clinical medicine. 2016; 1(3): 88–96. (In Russ)]
- Qin S., Wang H., Yuan R., et al. Role of HMGB1 in apoptosis mediated sepsis lethality. J. Exp. Med. 2006; 203: 1637–1642. DOI: 10.1084/jem.20052203
- Lu H., Wen D., Wang X., et al. Host genetic variants in sepsis risk: a field synopsis and meta-analysis. Crit. Care. 2019; 23(1): 26. DOI: 10.1186/s13054-019-2313-0
- Thayer J.F., Sternberg E.M. Neural aspects of immunomodulation: focus on the vagus nerve. Brain Behav. Immun. 2010; 24: 1223–1228. DOI: 10.1016/j.bbi.2010.07.247
- Karbowski M., Youle R.J. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death. Differ. 2003, 10: 870–880. DOI: 10.1038/sj.cdd.4401260
- Kuznetsov A.V., Kehrer I., Kozlov A.V., et al. Mitochondrial ROS production under cellular stress: comparison of different detection methods. Anal. Bioanal. Chem. 2011, 400: 2383–2390. DOI: 10.1007/s00216-011-4764-2
- Li C., Jackson R.M. Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am. J. Physiol. Cell Physiol. 2002; 282: 227–241. DOI: 10.1152/ajpcell.00112.2001
- Pellegrini M., Baldari C.T. Apoptosis and oxidative stress-related diseases: the p66Shc connection. Curr. Mol. Med. 2009; 9: 392–398. DOI: 10.2174/156652409787847254
- Butow R.A., Avadhani N.G. Mitochondrial signalling: the retrograde response. Mol. Cell. 2004, 14: 1–15. DOI: 10.1016/S1097–2765(04)00179–0
- Wendel M., Heller A.R. Mitochondrial function and dysfunction in sepsis. Wien. Med. Wochenschr. 2010; 160: 118–123. DOI: 10.1007/s10354-010-0766-5
- Basanez G., Zhang J., Chau B.N., et al. Pro-apoptotic cleavage products of Bcl-xL form cytochrome c-conducting pores in pure lipid membranes. J. Biol. Chem. 2001, 276: 31083–31091. DOI: 10.1074/jbc.M103879200
- Orrenius S., Gogvadze A., Zhivotovsky B. Mitochondrial oxidative stress: implications for cell death. Annu Rev. Pharmacol. Toxicol. 2007, 47: 143–183. DOI: 10.1146/annurev.pharmtox.47.120505.105122
- Glick D., Barth S., Macleod K.F. Autophagy: cellular and molecular mechanisms. J. Pathology. 2010; 221: 3–12. DOI: 10.1002/path.2697
- Lee I., Huttemann M. Energy crisis: the role of oxidative phosphorylation in acute inflammation and sepsis. Biochim. Biophys. Acta. 2014; 1842(9): 1579–1586. DOI: 10.1016/j.bbadis.2014.05.031
- Merz T.M., Pereira A.J., Schürch R., et al. Mitochondrial function of immune cells in septic shock: A prospective observational cohort study. PLoS One. 2017; 12(6): e0178946. DOI: 10.1371/journal.pone.0178946
- Grigoryev E.V., Shukevich D.L., Matveeva V.G., Kornekyuk R.A. Immunosuppression as a component of multiple organ dysfunction syndrome following cardiac surgery. Complex issues of cardiovascular diseases. 2018; 7(4): 84–91. DOI: 10.17802/2306-1278-2018-7-4-84-91
- Boomer J.S., Green J.M., Hotchkiss R.S. The changing immune system in sepsis: Is individualized immuno-modulatory therapy the answer? Virulence. 2014; 5(1), 45–56. DOI: 10.4161/viru.26516
- Rock K.L., Latz E., Ontiveros F., Kono H. The sterile inflammatory response. Annu Rev. Immunol. 2010; 28: 321–342. DOI: 10.1146/annurev-immunol-030409-101311
- Warren O.J., Smith A.J., Alexiou C., et al. The inflammatory response to cardiopulmonary bypass: part 1 — mechanisms of pathogenesis. Journal of cardiothoracic and vascular anaesthesia. 2009; 23(2): 223–231. DOI: 10.1053/j.jvca.2008.08.007
- Callahan L.A., Supinski G.S. Sepsis-induced myopathy. Crit. Care Med. 2009; 37(10 Suppl.): 354–367. DOI: 10.1007/s13539-010-0010-6
- Hermans G., Van den Berghe G. Clinical review: intensive care unit acquired weakness. Crit. Care. 2015; 19(1): 274. DOI: 10.1186/s13054-015-0993-7
- Klaude M., Mori M., Tjader I., et al. Protein metabolism and gene expression in skeletal muscle of critically ill patients with sepsis. Clin. Sci (Lond.). 2012; 122(3): 133–142. DOI: 10.1042/CS20110233
- Preiser J.-C. High protein intake during the early phase of critical illness: yes or no? Crit. Care. 2018; 22: 261. DOI: 10.1186/s13054-018-2196-5
- Cuenca A.G., Cuenca A.L., Winfield R.D., et al. Novel role for tumor-induced expansion of myeloid-derived cells in cancer cachexia. J. Immunol. 2014; 192(12): 6111–6119. DOI: 10.4049/jimmunol.1302895
- Mittal R., Coopersmith C.M. Redefining the gut as the motor of critical illness. Trends Mol. Med. 2014; 20: 214–223. DOI: 10.1016/j.molmed.2013.08.004
- Moore F.A., Moore E.E., Poggetti R. Gut bacterial translocation via the portal vein: A clinical perspective with major torso trauma. J. Trauma. 1991; 31: 629–636.
- Assimakopoulos S.F., Triantos C., Thomopoulos K., et al. Gut-origin sepsis in the critically ill patient: pathophysiology and treatment. Infection. 2018; 46(6): 751–760. DOI: 10.1007/s15010-018-1178-5
- Zahs A., Bird M.D., Ramirez L., et al. Inhibition of long myosin light chain kinase activation alleviates intestinal damage after binge ethanol exposure and burn injury. Am. J. Physiol. Gastrointest Liver Physiol. 2012; 303: G705–G712. DOI: 10.1152/ajpgi.00157.2012
- Nathan C., Ding A. Nonresolving inflammation. Cell. 2010; 140 (6): 871–882. DOI: 10.1016/j.cell.2010.02.029
- Carcillo J.A., Halstead E.S., Hall M.W., et al. Three Hypothetical Inflammation Pathobiology Phenotypes and Pediatric Sepsis-Induced Multiple Organ Failure Outcome. Pediatric Critical Care Medicine. 2017, 18(6): 513–523. DOI: 10.1097/PCC.0000000000001122
- Scicluna B.P., Vught L.A., Zwinderman A.H, et al., on behalf of the MARS consortium. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir. Med. 2017. DOI: 10.1016/S2213–2600(17)30294-1
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.