Катетеризация подмышечной вены малого диаметра под ультразвуковым контролем
#2019-3
PDF_2019-3_84-89
HTML_2019-3_84-89

Ключевые слова

катетеризация центральных вен
подключичная вена
подмышечная вена
ультразвуковой контроль
продольное сечение
площадь поперечного сечения

Как цитировать

Караваев А.В. Катетеризация подмышечной вены малого диаметра под ультразвуковым контролем. Вестник интенсивной терапии имени А.И. Салтанова. 2019;(3):84–89. doi:10.21320/1818-474X-2019-3-84-89.

Статистика

Просмотров аннотации: 54
PDF_2019-3_84-89 загрузок: 11
HTML_2019-3_84-89 загрузок: 15
Статистика с 21.01.2023

Аннотация

Актуальность. Хорошо известно, что малый просвет любого сосуда затрудняет его катетеризацию. Инвазивные манипуляции сегодня рекомендуется осуществлять под ультразвуковым контролем по соображениям их безопасности и эффективности. При катетеризации подключичной вены, однако, ультразвук не повышает эффективности процедуры по данным шести метаанализов.

Цель исследования. Продемонстрировать эффективность катетеризации подмышечной вены малого размера под ультразвуковым контролем.

Материалы и методы. Проведена катетеризация подмышечной вены малого диаметра под контролем ультразвука по модифицированной методике у 12 пациентов.

Результаты. Процедура была успешна с первой пункции кожи и вены без изменения направления иглы в 11 из 12 наблюдений, среднее время до введения проводника составило 171 ± 6 с. Осложнений отмечено не было.

Заключение. Предлагаемый вариант методики эффективен при малом диаметре подмышечной вены и может быть внедрен в клиническую практику.

https://doi.org/10.21320/1818-474X-2019-3-84-89
PDF_2019-3_84-89
HTML_2019-3_84-89

Библиографические ссылки

  1. Parienti J.-J., Mongardon N., Mégarbane B., et al. 3SITES Study Group, Intravascular Complications of Central Venous Catheterization by Insertion Site. N. Engl. J. Med. 2015; 373: 1220–1229. DOI: 10.1056/NEJMoa1500964
  2. Vezzani A., Manca T., Brusasco C., et al. A randomized clinical trial of ultrasound-guided infra-clavicular cannulation of the subclavian vein in cardiac surgical patients: short-axis versus long-axis approach, Intensive Care Medicine. 2017; 43: 1594–1601. DOI: 10.1007/s00134-017-4756-6
  3. Fragou M., Gravvanis A., Dimitriou V., et al. Real-time ultrasound-guided subclavian vein cannulation versus the landmark method in critical care patients: A prospective randomized study. Critical. Care Medicine. 2011; 39: 1607–1612. DOI: 10.1097/CCM.0b013e318218a1ae
  4. Brass P., Hellmich M., Kolodziej L., et al. Ultrasound guidance versus anatomical landmarks for subclavian or femoral vein catheterization, Cochrane Database of Systematic Reviews. 2015. DOI: 10.1002/14651858.CD011447
  5. Wu S.Y., Ling Q., Cao L.H., et al. Real-time two-dimensional ultrasound guidance for central venous cannulation: A metaanalysis. Anesthesiology. 2013; 361–375.
  6. Hind D., Calvert N., McWilliams R., et al. Ultrasonic locating devices for central venous cannulation: meta-analysis, BMJ. 2003; 327: 361.
  7. Calvert N., Hind D., McWilliams R., et al. Ultrasound for central venous cannulation: economic evaluation of cost-effectiveness, Anaesthesia. (2004) 5.
  8. Randolph A.G., Cook D.J., Gonzales C.A. et al., Ultrasound guidance for placement of central venous catheters: A meta-analysis of the literature. Crit. Care Med. 1996; 2053–2058.
  9. Lalu M.M., Fayad A., Ahmed O., et al. Ultrasound-Guided Subclavian Vein Catheterization: A Systematic Review and Meta-Analysis, Critical Care Medicine. 2015; 43: 1498–1507. DOI: 10.1097/CCM.0000000000000973
  10. Saugel B., Scheeren T.W.L., Teboul J.-L. Ultrasound-guided central venous catheter placement: a structured review and recommendations for clinical practice. Critical. Care. 2017; 21(1): 225. DOI: 10.1186/s13054-017-1814-y
  11. Vogel J.A., Haukoos J.S., Erickson C.L., et al. Is Long-Axis View Superior to Short-Axis View in Ultrasound-Guided Central Venous Catheterization? Critical Care Medicine. 2015; 43: 832–839. DOI: 10.1097/CCM.0000000000000823
  12. Brescia F., Biasucci D.G., Fabiani F., et al. A novel ultrasound-guided approach to the axillary vein: Oblique-axis view combined with in-plane puncture, J. Vasc. Access. 2019; 1129729819826034. DOI: 10.1177/1129729819826034
  13. Bodenham A.R. Ultrasound-guided subclavian vein catheterization: beyond just the jugular vein. Crit. Care Med. 2011; 39: 1819–1820. DOI: 10.1097/CCM.0b013e31821b813b
  14. Kim I.-S., Kang S.-S., Park J.-H., et al. Impact of sex, age and BMI on depth and diameter of the infraclavicular axillary vein when measured by ultrasonography. Eur. J. Anaesthesiol. 2011; 28: 346–350. DOI: 10.1097/EJA.0b013e3283416674
  15. Tan B.K., Hong S.W., Huang M.H., et al. Anatomic basis of safe percutaneous subclavian venous catheterization. J. Trauma. 2000; 48: 82–86.
  16. Roger C., Sadek M., Bastide S., et al. Comparison of the visualisation of the subclavian and axillary veins: An ultrasound study in healthy volunteers, Anaesth. Crit. Care Pain Med. 2017; 36: 65–68. DOI: 10.1016/j.accpm.2016.05.007
  17. Mey U., Glasmacher A., Hahn C., et al. Evaluation of an ultrasound-guided technique for central venous access via the internal jugular vein in 493 patients. Support Care Cancer. 2003; 11: 148–155. DOI: 10.1007/s00520-002-0399-3
  18. Jesseph J.M., Conces D.J., Augustyn G.T. Patient positioning for subclavian vein catheterization, Arch. Surg. 1987; 122: 1207–1209.
  19. Lukish J., Valladares E., Rodriguez C., et al. Classical positioning decreases subclavian vein cross-sectional area in children, J. Trauma. 2002; 53: 272–275.
  20. Fortune J.B., Feustel P., Effect of patient position on size and location of the subclavian vein for percutaneous puncture. Arch. Surg. 2003; 138: 996–1000; discussion 1001. DOI: 10.1001/archsurg.138.9.996
  21. Rodriguez C.J., Bolanowski A., Patel K., et al. Classical positioning decreases the cross-sectional area of the subclavian vein. Am. J. Surg. 2006; 192: 135–137. DOI: 10.1016/j.amjsurg.2005.09.005
  22. Nassar B., Deol G.R.S., Ashby A., et al. Trendelenburg position does not increase cross-sectional area of the internal jugular vein predictably. Chest. 2013; 144: 177–182. DOI: 10.1378/chest.11-2462
  23. Pittiruti M., Biasucci D.G., La Greca A., et al. How to make the axillary vein larger? Effect of 90° abduction of the arm to facilitate ultrasound-guided axillary vein puncture, J. Crit. Care. 2016; 33: 38–41. DOI: 10.1016/j.jcrc.2015.12.018
  24. Ahn J.H., Kim I.S., Shin K.M., et al. Influence of arm position on catheter placement during real-time ultrasound-guided right infraclavicular proximal axillary venous catheterization, Br J Anaesth. 2016; 116: 363–369. DOI: 10.1093/bja/aev345
  25. Sadek M., Roger C., Bastide S., et al. The Influence of Arm Positioning on Ultrasonic Visualization of the Subclavian Vein: An Anatomical Ultrasound Study in Healthy Volunteers, Anesth. Analg. 2016; 123: 129–132. DOI: 10.1213/ANE.0000000000001327
  26. Gu Y.J., Lee J.H., Seo J.I., Effect of lumbar elevation on dilatation of the central veins in normal subjects. Am. J. Emerg. Med. 2018. DOI: 10.1016/j.ajem.2018.07.032.
  27. Kim H., Chang J.-E., Lee J.-M., et al. The Effect of Head Position on the Cross-Sectional Area of the Subclavian.Vein, Anesth. Analg. 2018; 126: 1946–1948. DOI: 10.1213/ANE.0000000000002446
  28. Kwon M.-Y., Lee E.-K., Kang H.-J., et al. The effects of the Trendelenburg position and intrathoracic pressure on the subclavian cross-sectional area and distance from the subclavian vein to pleura in anesthetized patients, Anesth. Analg. 2013; 117: 114–118. DOI: 10.1213/ANE.0b013e3182860e3c
  29. Kim J.T., Kim H.S., Lim Y.J., et al. The influence of passive leg elevation on the cross-sectional area of the internal jugular vein and the subclavian vein in awake adults, Anaesth Intensive Care. 2008; 36: 65–68.
  30. Marino P. Marino’s The ICU Book. 4th Edition. Wolters Kluwer Health/Lippincott Williams & Wilkins, n.d.
  31. Быков М.В. Ультразвуковые исследования в обеспечении инфузионной терапии в отделениях реанимации и интенсивной терапии. Тверь: ООО «Издательство “Триада”», 2011. [Bykov M.V. Ultrasound examinations in infusion therapy management in ICUs. Tverʼ: Izdatelstvo ‘Triadaʼ, 2011. (In Russ)]
  32. Ablordeppey E.A., Drewry A.M., Beyer A.B., et al. Diagnostic Accuracy of Central Venous Catheter Confirmation by Bedside Ultrasound Versus Chest Radiography in Critically Ill Patients: A Systematic Review and Meta-Analysis, Critical Care Medicine. 2017; 45: 715–724. DOI: 10.1097/CCM.0000000000002188
  33. Сумин С.А., Горбачев В.И. Катетеризации центральных вен с позиций нормативно-правовых актов. Вестник интенсивной терапии. 2017; 4: 5–11. [Sumin S.A., Gorbachyov V.I. Central venous catheterization according to regulatory legal acts. Intensive Care Herald. 2017; 4: 5–11. (In Russ)]
  34. Kang M., Ryu H.-G., Son I.-S., et al. Influence of shoulder position on central venous catheter tip location during infraclavicular subclavian approach, Br. J. Anaesth. 2011; 106: 344–347. DOI: 10.1093/bja/aeq340
Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.