Влияние вспомогательной вентиляции легких на уровень сывороточных биомаркеров легочного повреждения у пациентов после робот-ассистированной хирургии: проспективное рандомизированное исследование
#3 2022
PDF_2022-3_82-93
HTML_2022-3_82-93
PDF_2022-3_82-93 (English)
HTML_2022-3_82-93 (English)

Ключевые слова

лапароскопия
роботизированные хирургические процедуры
легкие
нервно-мышечная блокада
цитокины
медиаторы воспаления

Как цитировать

Климов А.А., Чотчаева А.А., Панкратова М.А., Субботин В.В. Влияние вспомогательной вентиляции легких на уровень сывороточных биомаркеров легочного повреждения у пациентов после робот-ассистированной хирургии: проспективное рандомизированное исследование. Вестник интенсивной терапии имени А.И. Салтанова. 2022;(3):82–93. doi:10.21320/1818-474X-2022-3-82-93.

Статистика

Просмотров аннотации: 33
PDF_2022-3_82-93 загрузок: 13
HTML_2022-3_82-93 загрузок: 2
PDF_2022-3_82-93 (English) загрузок: 4
HTML_2022-3_82-93 (English) загрузок: 1
Статистика с 21.01.2023

Аннотация

ЦЕЛЬ ИССЛЕДОВАНИЯ. Мы выдвинули гипотезу о том, что режим вспомогательной вентиляции легких с поддержкой давлением и контролем апноэ (Pressure support ventilation Pro, PSVpro) на фоне умеренной нейромышечной блокады во время лапароскопической робот-ассистированной хирургии не будет приводить к увеличению сывороточных маркеров повреждения: интерлейкина-6 (ИЛ-6), интерлейкина-8 (ИЛ-8), сурфактантного белка D (SP-D), фактора некроза опухоли-α (ФНО-α) по сравнению с принудительной протективной вентиляцией на фоне интенсивной нейромышечной блокады. МАТЕРИАЛЫ И МЕТОДЫ. В исследование были включены 35 пациентов, которым выполнили робот-ассистированную простатэктомию в условиях общей анестезии. Пациенты рандомизированы на две группы: 1-я группа — умеренная нейромышечная блокада (1–4 ответа при четырехразрядной стимуляции и отношение T4/T1 < 40 %) со вспомогательной вентиляцией легких в режиме с поддержкой по давлению PSVpro (n = 19); 2-я группа — глубокая нейромышечная блокада (T0 при четырехразрядной стимуляции и менее 2 ответов при посттетаническом счете) с принудительной вентиляцией легких в режиме с контролем по давлению и гарантированным дыхательным объемом PCV–VG (n = 16). Рокурония бромид вводили посредством постоянной инфузии — в 1-й группе со скоростью 0,01–0,3 мг/кг/ч, во 2-й группе — 0,3–0,6 мг/кг/ч. РЕЗУЛЬТАТЫ. Уровни ИЛ-6, ИЛ-8, SP-D, ФНО-α до и после операции в 1-й группе были 2,1 (1,125–16,215), 30,9 (12,85–50,7); 10,6 (8,04–14,75), 13 (8,585–21,25); 4 (4–4,035), 4 (4–4); 66,2 (39,2–91,1), 65,4 (57–109,6), а во 2-й группе 2,20 (1,55–5,33), 26,15 (18,175–42,875); 10,45 (8,6425–16,35), 19,15 (9,77–31,35); 4 (4–4,815), 4 (4–4); 60,65 (49,56–106,73), 63,20 (56,5–106,65). Изменения в послеоперационных образцах сыворотки не различались между сравниваемыми группами (все р > 0,05). ВЫВОДЫ. Использование вспомогательной вентиляции легких в режиме Pressure support ventilation Pro на фоне умеренной нервно-мышечной блокады у пациентов во время лапароскопической робот-ассистированной простатэктомии не приводит к увеличению сывороточных маркеров легочного повреждения (ИЛ-6, ИЛ-8, SP-D, ФНО-α по сравнению с принудительной протективной искусственной вентиляцией легких на фоне интенсивного нервно-мышечного блока.

https://doi.org/10.21320/1818-474X-2022-3-82-93
PDF_2022-3_82-93
HTML_2022-3_82-93
PDF_2022-3_82-93 (English)
HTML_2022-3_82-93 (English)

Библиографические ссылки

  1. Дон Е.С., Тарасов А.В., Эпштейн О.И., Тарасов С.А. Биомаркеры в медицине: поиск, выбор, изучение и валидация. Клиническая лабораторная диагностика. 2017; 62(1): 52–9. DOI: 10.18821/0869-2084-2017-62-1-52-59 [Don E.S., Tarasov A.V., Epshtein O.I., Tarasov S.A. The biomarkers in medicine: search, choice, study and validation. Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory diagnoistics). 2017; 62(1): 52–9. DOI: 10.18821/0869-2084-2017-62-1-52-59 (In Russ)]
  2. Мороз В.В., Голубев А.М., Кузовлев А.Н., Писарев В.М. Новые диагностические кандидатные молекулярные биомаркеры острого респираторного дистресс-синдрома. Общая реаниматология. 2014; 10(4): 6–10. DOI: 10.15360/1813-9779-2014-4-6-10 [Moroz V.V., Golubev A.M., Kuzovlev A.N., Pisarev V.M. New Diagnostic Candidate Molecular Biomarkers of Acute Respiratory Distress Syndrome. General Reanimatology. 2014; 10(4): 6–10. DOI: 10.15360/1813-9779-2014-4-6-10 (In Russ)]
  3. Blondonnet R., Constantin J.M., Sapin V., Jabaudon M. A Pathophysiologic Approach to Biomarkers in Acute Respiratory Distress Syndrome. Dis Markers. 2016; 2016: 3501373. DOI: 10.1155/2016/3501373
  4. D’Journo X.B., Michelet P., Marin V., et al. An early inflammatory response to oesophagectomy predicts the occurrence of pulmonary complications. Eur J Cardiothorac Surg. 2010; 37(5): 1144–51. DOI: 10.1016/j.ejcts.2009.11.033
  5. Wen X.H., Kong H.Y., Zhu S.M., et al. Plasma levels of tumor necrotic factor-alpha and interleukin-6, -8 during orthotopic liver transplantation and their relations to postoperative pulmonary complications. Hepatobiliary Pancreat Dis Int. 2004; 3(1): 38–41.
  6. de la Gala F., Piñeiro P., Garutti I., et al. Systemic and alveolar inflammatory response in the dependent and nondependent lung in patients undergoing lung resection surgery: A prospective observational study. Eur J Anaesthesiol. 2015; 32(12): 872–80. DOI: 10.1097/EJA.0000000000000233
  7. Wrigge H., Uhlig U., Baumgarten G., et al. Mechanical ventilation strategies and inflammatory responses to cardiac surgery: a prospective randomized clinical trial. Intensive Care Med. 2005; 31(10): 1379–87. DOI: 10.1007/s00134-005-2767-1
  8. Serpa Neto A., Campos P.P., Hemmes S.N., et al. Kinetics of plasma biomarkers of inflammation and lung injury in surgical patients with or without postoperative pulmonary complications. Eur J Anaesthesiol. 2017; 34(4): 229–38. DOI: 10.1097/EJA.0000000000000614
  9. Kim J.E., Min S.K., Ha E., et al. Effects of deep neuromuscular block with low-pressure pneumoperitoneum on respiratory mechanics and biotrauma in a steep Trendelenburg position. Sci Rep. 2021; 11(1): 1935. DOI: 10.1038/s41598-021-81582-0
  10. Choi G., Wolthuis E.K., Bresser P., et al. Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology. 2006; 105(4): 689–95. DOI: 10.1097/00000542-200610000-00013
  11. Engels G.E., Gu Y.J., van Oeveren W., et al. The utility of lung epithelium specific biomarkers in cardiac surgery: a comparison of biomarker profiles in on- and off-pump coronary bypass surgery. J Cardiothorac Surg. 2013; 8: 4. DOI: 10.1186/1749-8090-8-4
  12. Park J., Pabon M., Choi A.M.K., et al. Plasma surfactant protein-D as a diagnostic biomarker for acute respiratory distress syndrome: validation in US and Korean cohorts. BMC Pulm Med. 2017; 17(1): 204. DOI: 10.1186/s12890-017-0532-1
  13. Dahmer M.K., Flori H., Sapru A., et al. Surfactant Protein D Is Associated With Severe Pediatric ARDS, Prolonged Ventilation, and Death in Children With Acute Respiratory Failure. Chest. 2020; 158(3): 1027–35. DOI: 10.1016/j.chest.2020.03.041
  14. Пугач В.А., Тюнин М.А., Власов Т.Д. и др. Биомаркеры острого респираторного дистресс-синдрома: проблемы и перспективы их применения. Вестник анестезиологии и реаниматологии. 2019; 16(4): 38–46. DOI: 21292/2078-5658-2019-16-4-38-46 [Pugach V.A., Tyunin M.A., Vlasov T.D., et al. Biomarkers of acute respiratory distress syndrome: problems and prospects of their application. Messenger of anesthesiology and resuscitation. 2019; 16(4): 38–46. DOI: 10.21292/2078-5658-2019-16-4-38-46 (In Russ)]
  15. Мороз В.В., Лихванцев В.В., Федоров С.А. и др. Общая анестезия с сохраненным спонтанным дыханием через интубационную трубку. Общая реаниматология. 2010; 6(4): 43. DOI: 15360/1813-9779-2010-4-43 [Moroz V.V., Likhvantsev V.V., Fedorov S.A., et al. General Anesthesia with Preserved Spontaneous Breathing through an Intubation Tube. General Reanimatology. 2010; 6(4): 43. DOI: 10.15360/1813-9779-2010-4-43 (In Russ)]
  16. Mulier J., Sels A., Dillemans B., et al. Use of pressure support ventilation during laparoscopic bariatric surgery is possible and facilitates weaning and extubation. Eur J Anaesthesiol. 2008; 25: 78. DOI: 1097/00003643-200805001-00248
  17. Othenin-Girard A., Grandjean C., Monnard E., et al. Postoperative atelectasis prevention by application of PEEP and pressure support ventilation. Eur J Anaesthesiol. 2014; 31: 79. DOI: 10.1097/00003643-201406001-00216
  18. Loeckinger A., Hoermann C., Keller C., et al. Augmented spontaneous breathing and pulmonary gas exchange during pneumoperitoneum. Eur J Anaesthesiol. 2002; 19(6): 424–7. DOI: 10.1017/s0265021502000674
  19. Букарев А.Е., Субботин В.В., Ильин С.А. и др. Вспомогательная вентиляция легких в комплексе анестезиологического обеспечения высокотравматичных оперативных вмешательств в сосудистой хирургии. Анестезиология и реаниматология. 2016; 61 (5): 380–5. DOI:18821/0201-7563-2016-61-5-380-385 [Bukarev A.E., Subbotin V.V., Ilyin S.A., et al. Auxiliary ventilation of the lungs in the complex of anesthetic management of highly traumatic surgical interventions in vascular surgery. Anesthesiologiya i reanimatologiya. (Russian journal of Anaesthesiology and Reanimatology) 2016; 61 (5): 380–5. DOI: 10.18821/0201-7563-2016-61-5-380-385 (In Russ)]
  20. Weingarten T.N., Whalen F.X., Warner D.O., et al. Comparison of two ventilatory strategies in elderly patients undergoing major abdominal surgery. Br J Anaesth. 2010; 104(1): 16–22. DOI: 10.1093/bja/aep319
  21. van der Woude M.C., Bormans L., van der Horst R.P., et al. Pulmonary levels of biomarkers for inflammation and lung injury in protective versus conventional one-lung ventilation for oesophagectomy: A randomised clinical trial. Eur J Anaesthesiol. 2020; 37(11): 1040–9. DOI: 10.1097/EJA.0000000000001126
  22. Kokulu S., Günay E., Baki E.D., et al. Impact of a lung-protective ventilatory strategy on systemic and pulmonary inflammatory responses during laparoscopic surgery: is it really helpful? Inflammation. 2015; 38(1): 361–7. DOI: 10.1007/s10753-014-0039-3
  23. Determann R.M., Wolthuis E.K., Choi G., et al. Lung epithelial injury markers are not influenced by use of lower tidal volumes during elective surgery in patients without preexisting lung injury. Am J Physiol Lung Cell Mol Physiol. 2008; 294(2): L344–L350. DOI: 10.1152/ajplung.00268.2007
  24. Wrigge H., Zinserling J., Stüber F., et al. Effects of mechanical ventilation on release of cytokines into systemic circulation in patients with normal pulmonary function. Anesthesiology. 2000; 93(6): 1413–7. DOI: 10.1097/00000542-200012000-00012
  25. Wrigge H., Uhlig U., Zinserling J., et al. The effects of different ventilatory settings on pulmonary and systemic inflammatory responses during major surgery. Anesth Analg. 2004; 98(3): 775–81. DOI: 10.1213/01.ane.0000100663.11852.bf
  26. Engels G.E., Gu Y.J., van Oeveren W., et al. The utility of lung epithelium specific biomarkers in cardiac surgery: a comparison of biomarker profiles in on- and off-pump coronary bypass surgery. JCardiothorac Surg. 2013; 8: DOI: 10.1186/1749-8090-8-4
Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.

Copyright (c) 2022 ВЕСТНИК ИНТЕНСИВНОЙ ТЕРАПИИ имени А.И. САЛТАНОВА