Анестезиолого-реанимационное обеспечение пациентов с новой коронавирусной инфекцией COVID-19. Методические рекомендации Общероссийской общественной организации «Федерация анестезиологов и реаниматологов»
#2022-1
PDF_2022-1_5-140
HTML_2022-1_5-140
HTML_2022-1_5-140-S

Ключевые слова

новая коронавирусная инфекция
COVID-19
мониторинг
особенности интубации трахеи
особенности респираторной поддержки
особенности анестезии
особенности интенсивной терапии
особенности экстракорпоральной детоксикации
особенности экстракорпоральной мембранной оксигенации
особенности ведения пациентов с сопутствующими заболеваниями
особенности тромбопрофилактики
средства индивидуальной защиты
транспортировка пациентов

Как цитировать

Заболотских И.Б., Киров М.Ю., Лебединский К.М., Проценко Д.Н., Авдеев С.Н., Андреенко А.А., Арсентьев Л.В., Афончиков В.С., Афуков И.И., Белкин А.А., Боева Е.А., Буланов А.Ю., Васильев Я.И., Власенко А.В., Горбачев В.И., Григорьев Е.В., Григорьев С.В., Еременко А.А., Ершов Е.Н., Замятин М.Н., Иванова Г.Е., Кузовлев А.Н., Куликов А.В., Куликов А.В., Лахин Р.Е. Анестезиолого-реанимационное обеспечение пациентов с новой коронавирусной инфекцией COVID-19. Методические рекомендации Общероссийской общественной организации «Федерация анестезиологов и реаниматологов». Вестник интенсивной терапии имени А.И. Салтанова. 2022;(1):5–140. doi:10.21320/1818-474X-2022-1-5-140.

Статистика

Просмотров аннотации: 155
PDF_2022-1_5-140 загрузок: 25
HTML_2022-1_5-140 загрузок: 124
HTML_2022-1_5-140-S загрузок: 16
Статистика с 21.01.2023

Аннотация

В процессе разработки рекомендаций были проанализированы публикации официальных сайтов Российской Федерации, электронных баз данных РИНЦ, PubMed, MEDLINE, EMBASE и Cochrane Central Register of Controlled Trials (CENTRAL) разработчиками независимо друг от друга. Дата последнего поискового запроса — 1 ноября 2021 г. Для разработки положений рекомендаций были использованы документы непосредственно описывающие особенности ведения пациентов с новой коронавирусной инфекцией (НКИ) COVID-19 (руководства и гайдлайны — 35; рандомизированные клинические исследования и Кокрейновские обзоры — 23; наблюдательные и сравнительные исследования — 134; прочие документы, заметки и комментарии — 72). По сравнению с предыдущей, 5-й, версией рекомендаций скорригированы 35 положений в 10 разделах. Положения текущей версии рекомендаций освещают особенности проведения анестезии, интенсивной терапии, реабилитации, реанимационных мероприятий, проведения манипуляций, транспортировки, предупреждения распространения НКИ COVID-19 при осуществлении данных видов деятельности. Рассмотрены методы защиты персонала от заражения НКИ COVID-19 при проведении манипуляций, анестезии и интенсивной терапии. Описаны особенности респираторной поддержки, экстракорпоральной детоксикации, экстракорпоральной мембранной оксигенации, тромбопрофилактики, лекарственных взаимодействий. Рассмотрены особенности ведения беременных, детей разных возрастных групп, пациентов с сопутствующими заболеваниями, принципы формирования запасов лекарственных препаратов и расходных материалов. Применительно к НКИ CОVID-19 уточнены и дополнены: 1) показания и противопоказания к назначению препаратов (ацетоминофена, глюкокортикостероидов, ремдесевира, тоцилизумаба, барицитинаба, статинов, плазмы реконвалесцентов) в зависимости от тяжести течения заболевания; 2) особенности интенсивной терапии при сопутствующих заболеваниях (сердечно-сосудистой системы, воспалительные заболевания кишечника, онкологические заболевания, нарушения ритма сердца); 3) срок проведения плановых операций у пациентов, перенесших НКИ CОVID-19, и после вакцинации; 4) вопросы тромбопрофилактики и лечения расстройств системы гемостаза; 5) нормативно-правовые документы, касающиеся деятельности медработников в связи с распространением НКИ CОVID-19.
https://doi.org/10.21320/1818-474X-2022-1-5-140
PDF_2022-1_5-140
HTML_2022-1_5-140
HTML_2022-1_5-140-S

Библиографические ссылки

  1. Han J., Gatheral T., Williams C. Procalcitonin for patient stratification and identification of bacterial co-infection in COVID-19. Clin Med (Lond). 2020; 20(3): e47. DOI: 10.7861/clinmed.Let.20.3.3
  2. Sethuraman N., Stanleyraj S., Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA. 2020. DOI: 10.1001/jama.2020.8259
  3. Denault A.Y., Delisle S., Canty D., Royse A., Royse C., et al. A proposed lung ultrasound and phenotypic algorithm for the care of COVID-19 patients with acute respiratory failure. Can J Anesth/J Can Anesth. 2020. URL: https://doi.org/10.1007/s12630-020-01704-6
  4. Китайский центр поконтролю и профилактике заболеваний (CDC), 02.2020. [China Center for Disease Control and Prevention (CDC), 02/2020. (In Russ)]
  5. Lauer S.A., et al. The incubation period of Coronavirus Disease (COVID-19) from publicity reported confirmed cases: Estimation and application. Ann Intern Med. 2020; 172(9): 577–582. DOI: 10.7326/M20-0504
  6. Ferguson N. Impact of non-pharmacological intervention to reduce COVID-19 mortality and healthcare demand. Imperial College COVID-19 Response Team. 16 March 2020.
  7. Yang L., et al. Viral dynamics in mild and severe cases of COVID-19. The Lancet. 19 Mar 2020; DOI: 10.1016/S1473-3099(20)30232-2
  8. Young B.E., Ong S.W., Kalimuddin S., et al. Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020. DOI:10.1001/jama.2020.32044
  9. Guan W.J., Ni Z.Y., Hu Y., et al., for the China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020. DOI: 10.1056/NEJMoa2002032
  10. Diagnosis and Treatment Plan for COVID-19 (Trial Version 6). Chin Med J. DOI: 10.1097/CM9.0000000000000819
  11. Chen N., Zhou M., Dong X., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395:507–513.
  12. Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020. DOI: 10.1016/S0140-6736(20)30183-5
  13. Ai T., Yang Z., Hou H., et al. Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology. 2020; 200642. DOI: 10.1148/radiol.2020200642
  14. Bernheim A., et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology. 2020. [in press].
  15. Wang D., Hu B., Hu C., et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020. DOI: 10.1001/jama.2020.1585
  16. Gattinoni L., Chiumello D., Caironi P., et al. COVID-19 pneumonia: different respiratory treatment for different phenotypes? Intensive Care Med. 2020. DOI: 10.1007/s00134-020-06033-2
  17. Lippi G., Lavie C.J., Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Progress in Cardiovascular Diseases. 2020, in press.
  18. Xu Z., Shi L., Wang Y., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020: S2213-2600(20)30076-X. DOI: 10.1016/S2213-2600(20) 30076-X
  19. Inciardi R.M., Lupi L., Zaccone G., et al. Cardiac involvement 1 with coronavirus 2019 (COVID-19) infection. JAMA Cardiol. 2020. DOI: 10.1001/jamacardio.2020.109667
  20. Hu H., Ma F., Wei X., Fang Y. Coronavirus fulminant myocarditis saved with glucocorticoid and human immunoglobulin. Eur Heart J. 2020: ehaa190. DOI: 10.1093/eurheartj/ehaa190
  21. Cheng Y., Luo R., Wang K., et al. Kidney disease is associated with in-hospital death of patients with COVID-19 Kidney Int. 2020; 97(5): 829–838. DOI: 10.1016/j.kint.2020.03.005
  22. Classification of the cutaneous manifestations of COVID‐19: a rapid prospective nationwide consensus study in Spain with 375 cases. Brit J Dermatol. 2020. DOI: 10.1111/bjd.19163
  23. Yang X., Yu Y., Xu J., et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020. DOI: 10.1016/S2213-2600(20)30079-5
  24. Временные методические рекомендации. Профилактика, диагностика илечение новой коронавирусной инфекции (COVID-19). Версия 7 (03.06.2020). [Temporary guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version 7 (03/06/2020). (In Russ)]
  25. Guidance “COVID-19: infection prevention and control (IPC)”. Last updated 12 April 2020. https://www.gov.uk/government/publications/wuhan-novel-coronavirus-infection-prevention-and-control
  26. Centers for Disease Control and Prevention (CDC). Interim Infection Prevention and Control Recommendations for Patients with Suspected or Confirmed Coronavirus Disease 2019 (COVID-19) in Healthcare Settings. Updated March 10, 2020. Accessed March 22, 2020.
  27. Updated guidance on Personal Protective Equipment (PPE) for clinicians. 11 April 2020. https://icmanaesthesiacovid-19.org/personal-protective-equipment-ppe-for-clinicians
  28. World Health Organization. Infection prevention and control during health care when novel coronavirus (nCoV) infection is suspected: interim guidance. Published Jan 25, 2020; accessed Feb 17, 2020. https://apps.who.int/iris/handle/10665/330674
  29. The Use of Personal Protective Equipment by Anesthesia Professionals during the COVID-19 Pandemic Joint Position Statement. https://www.asahq.org/about-asa/newsroom/news-releases/2020/03/the-use-of-personal-protective-equipment-by-anesthesia-professionals-during-the-covid-19-pandemic
  30. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available at: https://www.covid19treatmentguidelines.nih.gov
  31. Public Health England. COVID-19 personal protective equipment (PPE). 2 Apr 2020. https://www.gov.uk/government/publications/wuhan-novel-coronavirus-infection-prevention-and-control/covid-19-personal-protective-equipment-ppe
  32. Yao W., Wang T., Jiang B., et al. Emergency tracheal intubation in 202 patients with COVID-19 in Wuhan, China: lessons learnt and international expert recommendations. Br J Anaesth. 2020; Apr 10: pii: S0007-0912(20)30203-8. DOI: 10.1016/j.bja.2020.03.026
  33. Chang D., Xu H., Rebaza A., et al. Protecting health-care workers from subclinical coronavirus infection. Lancet Respir Med. 2020; published online Feb 13. DOI: 10.1016/S2213-2600(20)30066-7
  34. Bartoszko J.J., Farooqi M.A., Alhazzani W., Loeb M. Medical masks vs N95 respirators for preventing COVID-19 in healthcare workers: A systematic review and meta-analysis of randomized trials. Influenza Other Respir Viruses. 2020; 14(4):365–373.
  35. Offeddu V., Yung C.F., Low M.S.F., Tam C.C. Effectiveness of Masks and Respirators Against Respiratory Infections in Healthcare Workers: A Systematic Review and Meta-Analysis. Clin Infect Dis. 2017; 65:1934.
  36. Cheng V.C., Wong S.C., Chen J.H.K., et al. Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong. Infect Control Hosp Epidemiol. 2020; 41:493.
  37. Recommended Guidance for Extended Use and Limited Reuse of N95 Filtering Facepiece Respirators in Healthcare Settings. https://www.cdc.gov/niosh/topics/hcwcontrols/recommendedguidanceextuse.html
  38. Strategies for Optimizing the Supply of N95 Respirators: Crisis/Alternate Strategies. https://www.cdc.gov/coronavirus/2019-ncov/hcp/respirators-strategy/crisis-alternate-strategies.html
  39. World Health Organisation, Clinical Management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected Interim Guidance, 2020. WHO Reference number: WHO/2019-nCoV/clinical/2020.4.
  40. Cheung J.C., Ho L.T., Cheng J.V., et al. Staff safety during emergency airway management for COVID-19 in Hong Kong. Lancet respiratory Medicine. Published: February 24, 2020. DOI: 10.1016/S2213-2600(20)30084-9 (Accessed March 13, 2020.)
  41. Wax R.S., Chrisitan M.D. Practical recommendations for critical care and anesthesiology teams caring for novel coronavirus (2019-nCoV) patients. Canadian Journal of Anesthesia. 2020. DOI: 10.1007/s12630-020-01591-x (Accessed March 13, 2020.)
  42. Coronavirus — guidance for anaesthesia and perioperative care providers. https://www.wfsahq.org/resources/coronavirus
  43. Centers for Disease Control and Prevention (CDC). Strategies for Optimizing the Supply of N95 Respirators: Crisis/Alternate Strategies. https://www.cdc.gov/coronavirus/2019-ncov/hcp/respirators-strategy/crisis-alternate-strategies.html. Updated March 17, 2020. Accessed March 19, 2020.
  44. Centers for Disease Control and Prevention (CDC). Checklist for Healthcare Facilities: Strategies for Optimizing the Supply of N95 Respirators during the COVID-19 Response. https://www.cdc.gov/coronavirus/2019-ncov/hcp/checklist-n95-strategy.html. Updated March 5, 2020. Accessed March 19, 2020.
  45. Ti L.K., Ang L.S., Foong T.W., Ng B.S.W. What we do when a COVID-19 patient needs an operation: operating room preparation and guidance. Can J Anaesth. 2020; 67(6):756–758. DOI: 10.1007/s12630-020-01617-4
  46. Wong J., Goh Q.Y., Tan Z., et al. Preparing for a COVID-19 pandemic: a review of operating room outbreak response measures in a large tertiary hospital in Singapore. Can J Anesth. 2020; 67(6):732–745. DOI: 10.1007/s12630-020-01620-9
  47. Zucco L., Levy N., Ketchandji D., et al. Perioperative considerations for the 2019 novel coronavirus (COVID-19); 12.02.2020. https://www.apsf.org/news-updates/perioperative-considerations-for-the-2019-novel-coronavirus-covid-19/
  48. Handbook of COVID-19 Prevention and Treatment Compiled According to Clinical Experience The First Affiliated Hospital, Zhejiang University School of Medicine.
  49. APSF/ASA Guidance on Purposing Anesthesia Machines as ICU Ventilators. 2020. https://www.asahq.org/-/media/files/spotlight/anesthesia-machines-as-icu-ventilators416.pdf?la=en&hash=21BD7C35FAA31F2F8E06B9A547DCD6A193B37352
  50. Adhikari S.P., Meng S., Wu Y.J., et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty. 2020; 9(1): 29. DOI: 10.1186/s40249-020-00646-x
  51. Rice T.W., Wheeler A.P., Bernard G.R., et al. Comparison of the SpO2/FIO2 ratio and the PaO2/FIO2 ratio in patients with acute lung injury or ARDS. Chest. 2007; 132(2): 410–417.
  52. Cecconi M., De Backer D., Antonelli M., et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014; 40(12):1795–815. DOI: 10.1007/s00134-014-3525-z
  53. Bednarczyk J.M., Fridfinnson J.A., Kumar A., et al. Incorporating dynamic assessment of fluid responsiveness into goal-directed therapy: a systematic review and meta-analysis. Crit Care Med. 2017; 45(9):1538–1545. DOI: 10.1097/CCM.0000000000002554
  54. Bentzer P., Griesdale D.E., Boyd J., et al. Will this hemodynamically unstable patient respond to a bolus of intravenous fluids? JAMA. 2016; 316(12):1298–1309. DOI: 10.1001/jama.2016.12310
  55. Pan J., Peng M., Liao C., et al. Relative efficacy and safety of early lactate clearance-guided therapy resuscitation in patients with sepsis: a meta-analysis. Medicine (Baltimore). 2019; 98(8): e14453. DOI: 10.1097/MD.0000000000014453
  56. Zuo M.Z., Huang Y.G., Ma W.H., et al.; Chinese Society of Anesthesiology Task Force on Airway Management: Expert recommendations for tracheal intubation in critically ill patients with noval coronavirus disease 2019. Chin Med Sci J. 2020. [Epub ahead of print]. DOI: 10.24920/003724
  57. Brewster D.J., Chrimes N.C., Do T.B.T., et al. Consensus statement: Safe Airway Society principles of airway management and tracheal intubation specific to the COVID-19 adult patient group. Med J Aust 2020; https://www.mja.com.au/journal/2020/consensus-statement-safe-airway-society-principles-airway-management-and-tracheal [Preprint, 1 April 2020].
  58. COVID-19 airway management principles https://icmanaesthesiacovid-19.org/covid-19-airway-management-principles
  59. Luo M., Cao S., Wei L., et al. Precautions for Intubating Patients with COVID-19. Anesthesiology. 2020; 132: 1616–1618. DOI: 10.1097/ALN.0000000000003288
  60. Higgs A., McGrath B.A., Goddard C., et al. Guidelines for the management of tracheal intubation in critically ill adults. Br J Anaesth. 2018; 120: 323–352.
  61. Tran K., Cimon K., Severn M., et al. (2012) Aerosol Generating Procedures and Risk of Transmission of Acute Respiratory Infections to Healthcare Workers: A Systematic Review. PLoS ONE 7(4): e35797. DOI: 10.1371/journal.pone.0035797
  62. Li Y., Huang X., Yu I.T., et al. Role of air distribution in SARS transmission during the largest nosocomial outbreak in Hong Kong. Indoor Air. 2005; 15: 83–95.
  63. Bein T., Bischoff M., Brückner U., et al. S2e guideline: positioning and early mobilisation in prophylaxis or therapy of pulmonary disorders Revision. Anaesthesist. 2015; 64: 1–26. DOI: 10.1007/s00101-015-0071-1
  64. Romaguera R., et al. Consideraciones sobre el abordaje invasivo de la cardiopatía isquémica y estructural durante el brote de coronavirus COVID-19.REC Interv Cardiol. 2020. DOI: 10.24875/RECIC.M20000119
  65. RECOVERY Collaborative Group, Horby P., Lim W.S., et al. Dexamethasone in hospitalized patients with COVID-19–preliminary report. N Engl J Med. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32678530
  66. RECOVERY trial. http://www.ox.ac.uk/news/2020-06-16-low-cost-dexamethasone-reduces-death-one-third-hospitalised-patients-severe
  67. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Sterne J.A.C., Murthy S., et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA. 2020; 324: 1330. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32876694
  68. Loh N.W., Tan Y., Taculod J., et al. The impact of high-flow nasal cannula (HFNC) on coughing distance: implications on its use during the novel coronavirus disease outbreak. Can J Anaesth. 2020. DOI: 10.1007/s12630-020-01634-3. Accessed Mar 18.
  69. Wu C.N., Xia L.Z., Li K.H., et al. High-flow nasal-oxygenation-assisted fibreoptic tracheal intubation in critically ill patients with COVID-19 pneumonia: a prospective randomised controlled trial. Br J Anaesth. 2020; 125: e166–e8.
  70. Canelli R., Connor C.W., Gonzalez M., et al. Barrier Enclosure during Endotracheal Intubation. New England Journal of Medicine. 2020; 382(20): 1957–1958.
  71. Hall D., Steel A., Heij R., et al. Videolaryngoscopy increases ‘mouth-to-mouthʼ distance compared with direct laryngoscopy. Anaesthesia. Mar 27, 2020. DOI: 10.1111/anae.15047
  72. Meng L., Qiu H., Wan L., et al.Intubation and Ventilation amid the COVID-19 Outbreak: Wuhanʼs Experience. Anesthesiology. Mar 26, 2020. DOI: 10.1097/ALN.0000000000003296
  73. Cook T.M., Harrop-Griffiths W.G. Capnography prevents avoidable deaths. BMJ. 2019; 364: 1439. DOI: 10.1136/bmj.l439
  74. Guay J., Choi P., Suresh S., et al. Neuraxial blockade for the prevention of postoperative mortality and major morbidity: an overview of Cochrane systematic reviews. Cochrane Database of Systematic Reviews 2014, Issue 1. Art. No.: CD010108. DOI: 10.1002/14651858.CD010108.pub2
  75. Kristensen M.S., Sloth E., Jensen T.K. Relationship between anesthetic procedure and contact of anesthesia personnel with patient body fluids. Anesthesiology. 1990; 73: 619e24.
  76. D’Silva D.F., McCulloch T.J., Lim J.S., Smith S.S., Carayannis D. Extubation of patients with COVID-19. Br J Anaesth. 2020. URL: https://doi.org/10.1016/j.bja.2020.03.016. S0007-0912(20)30172-0 [online ahead of print]
  77. Resuscitation Council. Resuscitation Council UK Statement on COVID-19 in relation to CPR and resuscitation in healthcare settings. March 2020. https://www.resus.org.uk/media/statements/resuscitation-council-uk-statements-on-covid-19-coronavirus-cpr-and-resuscitation/covid-healthcare (Accessed 13 March 2020.)
  78. Interim guidance to reduce COVID-19 transmission during resuscitation care [press release]. Dallas, Texas: American Heart Association. https://newsroom.heart.org/news/interim-guidance-to-reduce-covid-19-transmission-during-resuscitation-care. Published March 19, 2020. Accessed March 24, 2020.
  79. COVID-19: Protected Controlled Intubation & Cardiac Arrest. https://www.bcemergencynetwork.ca/clinical_resource/covid-19-patients-protected-controlled-intubation-cardiac-arrest/?fbclid=IwAR0bI711iDmk5kPl0qX-aPDxGWEPJRtbdM-5G5o0O5eENlwxvb0o9pPLenUhttps://www.cdc.gov/ coronavirus/2019-ncov/hcp/guidance-for-ems.html
  80. COVID-19 infection risk to rescuers from patients in cardiac arrest. https://costr.ilcor.org/document/covid-19-infection-risk-to-rescuers-from-patients-in-cardiac-arrest (accessed April 19th 2020)
  81. Perkins G.D., et al. International Liaison Committee on Resuscitation: COVID-19 Consensus on Science, Treatment Recommendations and Task Force Insights. Resuscitation. 2020. [in press]
  82. Couper K., Taylor-Phillips S., Grove A., et al. COVID-19 in cardiac arrest and infection risk to rescuers: a systematic review. Resuscitation. URL: https://doi.org/10.1016/j.resuscitation.2020.04.022
  83. Peng P.W., Ho P.L., Hota S.S. Outbreak of a new coronavirus: what anaesthetists should know. Br J Anaesth. 2020 Feb 27. pii: S0007-0912(20)30098-2. DOI: 10.1016/j.bja.2020.02.008
  84. Italian Group for the Evaluation of Interventions in Intensive Care Medicine http://giviti.marionegri.it/covid-19-en/; Johns Hopkins COVID-19 Clinician Pocket Reference Guide v1.3.
  85. Kangelaris K.N., Ware L.B., Wang C.Y., et al. Timing of intubation and clinical outcomes in adults with acute respiratory distress syndrome. Crit Care Med. 2016; 44(1): 120–129.
  86. Antonelli M., Conti G., Esquinas A., et al. A multiple-center survey on the use in clinical practice of noninvasive ventilation as a first-line intervention for acute respiratory distress syndrome. Crit Care Med. 2007; 35(1):18–25.
  87. Alraddadi B.M., et al. Noninvasive ventilation in critically ill patients with the Middle East respiratory syndrome. Influenza Other Respir Viruses. 2019; 13:382–390.
  88. Wu Z., McGoogan J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020. DOI: 10.1001/jama.2020.2648
  89. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Временные методические рекомендации. Версия10 (08.02.2021). М., Министерство здравоохранения РФ, 2021. [Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Temporary guidelines. Version 10 (08/02/2021). Moscow, Ministry of Health of the Russian Federation, 2021. (In Russ)]
  90. Ma J., Shi Y., Mao Q., Liu H.-M. Inhalation of Heliox as a potential treatment for the ARDS caused by COVID-19. Research Square. 2020. https://doi.org/10.21203/rs.3.rs-82407/v1
  91. Hernandez-Romieu A.C., Adelman M.W., Hockstein M.A., et al. Timing of Intubation and Mortality Among Critically Ill Coronavirus Disease 2019 Patients: A Single-Center Cohort Study. Crit Care Med. 2020; 48(11): e1045–e1053. DOI: 10.1097/CCM.0000000000004600
  92. Lee Y.H., Choi K.-J., Choi S.H., et al. Clinical Significance of Timing of Intubation in Critically Ill Patients with COVID-19: A Multi-Center Retrospective Study. Journal of Clinical Medicine. 2020; 9(9): 2847. https://doi.org/10.3390/jcm9092847
  93. Hyman J.B., Leibner E.S., Tandon P., et al. Timing of Intubation and In-Hospital Mortality in Patients With Coronavirus Disease 2019. Crit Care Explor. 2020; 2(10): e0254. DOI: 10.1097/CCE.0000000000000254
  94. Barrot L., Asfar P., Mauny F., et al. Liberal or Conservative Oxygen Therapy for Acute Respiratory Distress Syndrome. N Engl J Med. 2020; 382(11): 999.
  95. Gajic O., Dara S.I., Mendez J.L., et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004; 32(9): 1817–1824.
  96. Raboud J., Shigayeva A., McGeer A., et al. Risk factors for SARS transmission from patients requiring intubation: a multicentre investigation in Toronto, Canada. PLoS One. 2020; 5: e10717.
  97. Leonard S., Atwood C.W. Jr, Walsh B.K., et al. Preliminary findings of сontrol of dispersion of aerosols and droplets during high velocity nasal insufflation therapy using a simple surgical mask: implications for high flow nasal cannula. Chest. 2020. URL: https://doi.org/10.1016/j.chest.2020.03.043
  98. Coppadoro A., Benini A., Fruscio R., et al. Helmet CPAP to treat hypoxic pneumonia outside the ICU: an observational study during the COVID-19 outbreak. Crit Care. 2021; 25(1): 80. DOI: 10.1186/s13054-021-03502-y
  99. Sartini C., et al. Respiratory Parameters in Patients With COVID-19 After Using Noninvasive Ventilation in the Prone Position Outside the Intensive Care Unit. JAMA. 2020. DOI: 10.1001/jama.2020.7861
  100. Begley J.L., Lavery K.E., Nickson C.P., et al. The aerosol box for intubation in COVID-19 patients: an in-situ simulation crossover study. 2020 May 12 [Epub ahead of print].
  101. Dupuis C., Bouadma L., de Montmollin E., et al. Association Between Early Invasive Mechanical Ventilation and Day-60 Mortality in Acute Hypoxemic Respiratory Failure Related to Coronavirus Disease-2019 Pneumonia. Crit Care Explor. 2021; 3(1): e0329. DOI: 10.1097/CCE.0000000000000329
  102. Papoutsi E., Giannakoulis V.G., Xourgia E., et al. Effect of timing of intubation on clinical outcomes of critically ill patients with COVID-19: a systematic review and meta-analysis of non-randomized cohort studies. Crit Care. 2021; 25, 121. DOI: 10.1186/s13054-021-03540-6
  103. Brusasco C., Corradi F., Di Domenico A., et al. Continuous positive airway pressure in COVID-19 patients with moderate-to-severe respiratory failure. Eur Respir J. 2021; 57(2): 2002524. DOI: 10.1183/13993003.02524-2020. PMID: 33033151; PMCID: PMC7545055.
  104. Carteaux G., Pons M., Morin F., et al. Continuous positive airway pressure for respiratory support during COVID-19 pandemic: a frugal approach from bench to bedside. Ann Intensive Care. 2021; 11(1): 38. DOI: 10.1186/s13613-021-00828-2
  105. Bellani G., Grasselli G., Cecconi M., et al. Noninvasive Ventilatory Support of Patients with COVID-19 outside the Intensive Care Units (WARd-COVID). Ann Am Thorac Soc. 2021; 18(6): 1020–26. DOI: 10.1513/AnnalsATS.202008-1080OC
  106. Frat J.-P., Thille A.W., Mercat A., et al. High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure. N Engl J Med. 2015; 372(23): 2185–2196.
  107. Hui D.S., et al. Exhaled Air Dispersion During Noninvasive Ventilation via Helmets and a Total Facemask. Chest. 2015; 147(5):1336–1343.
  108. Sun Q., Qiu H., Huang M., Yang Y. Lower mortality of COVID-19 by early recognition and intervention: experience from Jiangsu Province. Ann Intensive Care. 2020; 10(1): 33. DOI: 10.1186/s13613-020-00650-2
  109. Caputo N.D., Strayer R.J., Levitan R. Early self-proning in awake, non-intubated patients in emergency department: a single ED’s experience during the COVID-19 pandemic. Acad Emerg Med. 2020; Accepted Author Manuscript. DOI: 10.1111/acem.13994
  110. Elharrar X., et al. Use of Prone Positioning in Nonintubated Patients With COVID-19 and Hypoxemic Acute Respiratory Failure. JAMA. 2020. DOI: 10.1001/jama.2020.8255
  111. Telias I., Katira B.H., Brochard L. Is the Prone Position Helpful During Spontaneous Breathing in Patients With COVID-19? JAMA. 2020. DOI: 10.1001/jama.2020.8539
  112. Combes A., Hajage D., Capellier G., et al. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N Engl J Med. 2018; 378(21):1965–1975.
  113. Chan A. Should we use an “aerosol box” for intubation? Life in the Fastlane Web site. https://litfl.com/should-we-use-an-aerosol-box-for-intubation/. Published 2020. Accessed June 1, 2020.
  114. Laghi F., Tobin M.J. Indications for mechanical ventilation. In: Tobin, M.J. (ed). Principles and Practice of Mechanical Ventilation. 3rd ed. McGraw-Hill Inc. N Y. 2012. P. 129–162.
  115. Protti A., Andreis D.T., Iapichino G.E., et al. Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome. N Engl J Med. BioMed Central. 2000; 342(18): 1301–1308.
  116. Serpa Neto A., Cardoso S.O., Manetta J.A., et al. Association Between Use of Lung-Protective Ventilation With Lower Tidal Volumes and Clinical Outcomes Among Patients Without Acute Respiratory Distress Syndrome. JAMA. 2012; 308(16):1651.
  117. Patel B.V., Arachchillage D.J., Ridge C.A., et al. Pulmonary Angiopathy in Severe COVID-19: Physiologic, Imaging, and Hematologic Observations. Am J Respir Crit Care Med. 2020; 202(5): 690–699. DOI: 10.1164/rccm.202004-1412OC
  118. Avdeev S.N., Yaroshetskiy A.I., Tsareva N.A., et al. Noninvasive ventilation for acute hypoxemic respiratory failure in patients with COVID-19. The American Journal of Emergency Medicine 2020; published September 30, 2020. DOI: 10.1016/j.ajem.2020.09.075
  119. Roesthuis L., van den Berg M., van der Hoeven H. Advanced respiratory monitoring in COVID-19 patients: use less PEEP! Crit Care. 2020; 24(1): 230. https://doi.org/10.1186/s13054-020-02953-z
  120. Pan C., Chen L., Lu C., et al. Lung Recruitability in SARS-CoV-2 Associated Acute Respiratory Distress Syndrome: A Single-center Observational Study. Am J Respir Crit Care Med. 2020. DOI: 10.1164/rccm.202003-0527LE
  121. Ziehr D., et al. Respiratory Pathophysiology of Mechanically Ventilated Patients with COVID-19: A Cohort Study. Am J Respir Crit Care Med. 2020. DOI: 10.1164/rccm.202004-1163LE
  122. Bos L.D.J., et al. Subphenotyping ARDS in COVID-19 Patients: Consequences for Ventilator Management. Annals ATS. 2020. DOI: 10.1513/AnnalsATS.202004-376RL
  123. Bonny V., Janiak V., Spadaro S., et al. Effect of PEEP decremental on respiratory mechanics, gasses exchanges, pulmonary regional ventilation, and hemodynamics in patients with SARS-Cov-2-associated acute respiratory distress syndrome. Crit Care. 2020;24(1): 596. DOI: 10.1186/s13054-020-03311-9
  124. Guérin C., Reigner J., Richard J.-C., et al., for the PROCEVA Study Group. Prone Positioning in Severe Acute Respiratory Distress Syndrome. N Engl J Med. 2013; 368(23):2159–2168. DOI: 10.1056/NEJMoa1214103
  125. Sud S., Friedrich J.O., Taccone P., et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: Systematic review and meta-analysis. Intensive Care Med. 2010: 585–599.
  126. Cavalcanti A.B., Suzumura É.A., Laranjeira L.N., et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome. JAMA. 2017; 318(14): 1335.
  127. Rodriguez-Morales A.J., Cardona-Ospina J., Gutiérrez-Ocampo E., et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020 Mar 13: 101623. DOI: 10.1016/j.tmaid.2020.101623
  128. Extracorporeal Life Support Organisation (ELSO). Guidelines for all ECLS Cases August, 2017.
  129. Meyhoff T.S., Møller M.H., Hjortrup P.B., et al. Lower vs Higher Fluid Volumes During Initial Management of Sepsis: A Systematic Review With Meta-Analysis and Trial Sequential Analysis. Chest. 2020 Jan 23. pii: S0012-3692(20)30123-9. DOI: 10.1016/j.chest.2019.11.050
  130. Silversides J.A., Major E., Ferguson A.J., et al. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: a systematic review and meta-analysis. Intensive Care Med. 2017; 43(2): 155–170. DOI: 10.1007/s00134-016-4573-3
  131. Maitland K., Kiguli S., Opoka R.O., et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011; 364(26): 2483–2495. DOI: 10.1056/NEJMoa1101549
  132. Antequera Martín A.M., Barea Mendoza J.A., Muriel A., et al. Buffered solutions versus 0.9 % saline for resuscitation in critically ill adults and children. Cochrane Database Syst Rev. 2019; 7: CD012247. DOI: 10.1002/14651858.CD012247.pub2
  133. Lewis S.R., Pritchard M.W., Evans D.J., et al. Colloids versus crystalloids for fluid resuscitation in critically ill people. Cochrane Database Syst Rev. 2018; 8: CD000567. DOI: 10.1002/14651858.CD000567.pub7
  134. Lamontagne F., Day A.G., Meade M.O., et al. Pooled analysis of higher versus lower blood pressure targets for vasopressor therapy septic and vasodilatory shock. Intensive Care Med. 2018; 44(1): 12–21. DOI: 10.1007/s00134-017-5016-5
  135. Gamper G., Havel C., Arrich J., et al. Vasopressors for hypotensive shock. Cochrane Database Syst Rev. 2016; 2: CD003709. DOI: 10.1002/14651858.CD003709.pub4
  136. Møller M.H., Granholm A., Junttila E., et al. Scandinavian SSAI clinical practice guideline on choice of inotropic agent for patients with acute circulatory failure. Acta Anaesthesiol Scand. 2018; 62(4): 420–450. DOI: 10.1111/aas.13089
  137. Schenck E.J., Hoffman K., Goyal P., et al. Respiratory Mechanics and Gas Exchange in COVID-19-associated Respiratory Failure. Ann Am Thorac Soc. 2020; 17(9): 1158–1161. DOI: 10.1513/AnnalsATS.202005-427RL
  138. Rygård S.L., Butler E., Granholm A., et al. Low-dose corticosteroids for adult patients with septic shock: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018; 44(7): 1003–1016. DOI: 10.1007/s00134-018-5197-6
  139. Wang Y., Jiang W., He Q., et al. Early, low-dose and short-term application of corticosteroid treatment in patients with severe COVID-19 pneumonia: single-center experience from Wuhan, China. MedRxiv. 2020. DOI: 10.1101/2020.03.06.20032342
  140. Siemieniuk R.A., Meade M.O., Alonso-Coello P., et al. Corticosteroid Therapy for Patients Hospitalized With Community-Acquired Pneumonia: A Systematic Review and Meta-analysis. Ann Intern Med. 2015; 163: 519–528.
  141. Lansbury L., Rodrigo C., Leonardi-Bee J., et al. Corticosteroids as adjunctive therapy in the treatment of influenza. Cochrane Database Syst Rev. 2016; 3:CD010406. URL: https://www.ncbi.nlm.nih.gov/pubmed/26950335
  142. Lewis S.R., Pritchard M.W., Thomas C.M., Smith A.F. Pharmacological agents for adults with acute respiratory distress syndrome. Cochrane Database Syst Rev. 2019; 7: CD004477.
  143. Villar J., Ferrando C., Martinez D., et al. Dexamethasone treatment for the acute respiratory distress syndrome: a multicentre, randomised controlled trial. Lancet Respir Med. 2020; 8: 267–276.
  144. Ranieri V.M., Pettila V., Karvonen M.K., et al. Effect of Intravenous Interferon beta-1a on Death and Days Free From Mechanical Ventilation Among Patients With Moderate to Severe Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 2020. DOI: 10.1001/jama.2019.22525
  145. Wu C., Chen X., Cai Y., et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. 2020. DOI: 10.1001/jamainternmed.2020.0994
  146. Rochwerg B., Oczkowski S.J., Siemieniuk R.A., et al. Corticosteroids in Sepsis: An Updated Systematic Review and Meta-Analysis. Crit Care Med. 2018; 46: 1411–1420.
  147. Lian X.J., Huang D.Z., Cao Y.S., et al. Reevaluating the Role of Corticosteroids in Septic Shock: An Updated Meta-Analysis of Randomized Controlled Trials. Biomed Res Int. 2019: 3175047.
  148. Arabi Y.M., Mandourah Y., Al-Hameed F., et al. Corticosteroid Therapy for Critically Ill Patients with Middle East Respiratory Syndrome. Am J Respir Crit Care Med. 2018; 197: 757–767. URL: https://www.ncbi.nlm.nih.gov/pubmed/29161116
  149. Hui D.S. Systemic Corticosteroid Therapy May Delay Viral Clearance in Patients with Middle East Respiratory Syndrome Coronavirus Infection. Am J Respir Crit Care Med. 2018; 197: 700–701.
  150. Grieco D.L., Bongiovanni F., Chen L., et al. Respiratory physiology ofCOVID-19-induced respiratory failure compared to ARDS of other etiologies. Crit Care. 2020; 24: 529. https://doi.org/10.1186/s13054-020-03253-2
  151. Lanzoni G., Linetsky E., Correa D., et al. Umbilical cord mesenchymal stem cells for COVID-19 acute respiratory distress syndrome: A double-blind, Phase 1/2a, randomized controlled trial. Stem Cells Transl Med. 2021; Published online ahead of print. DOI: 10.1002/sctm.20-0472
  152. Kaiser U.B., Mirmira R.G., Stewart P.M. Our Response to COVID-19 as Endocrinologists and Diabetologists. J Clin Endocrinol Metab. 2020; 105(5): pii: dgaa148. DOI: 10.1210/clinem/dgaa148
  153. Stockman L.J., Bellamy R., Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006; 3(9):e343. URL: https://www.ncbi.nlm.nih.gov/pubmed/16968120
  154. Li J., Wang X., Chen J., et al. Association of Renin-Angiotensin System Inhibitors With Severity or Risk of Death in Patients With Hypertension Hospitalized for Coronavirus Disease 2019 (COVID-19) Infection in Wuhan, China. JAMA Cardiol. 2020; 5: 825.
  155. Vaduganathan M., Vardeny O., Michel T., et al. Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. N Engl J Med. 2020; 382: 1653.
  156. Kuster G.M., Pfister O., Burkard T., et al. SARS-CoV2: should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? Eur Heart J. 2020;41(19):1801–1803.DOI: 10.1093/eurheartj/ehaa235
  157. Siddiqi H.K., Mehra M.R. COVID-19 Illness in Native and Immunosuppressed States: A Clinical-Therapeutic Staging Proposal. J Heart Lung Transplant . 2020. [In Press]. URL: https://www.jhltonline.org/article/S1053-2498(20)31473-X/fulltext
  158. Fang L., Karakiulakis G., Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med. 2020; 8(4):e21. URL: https://www.ncbi.nlm.nih.gov/pubmed/32171062
  159. Patel A.B., Verma A. COVID-19 and angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: what is the evidence? JAMA. 2020. URL: https://www.ncbi.nlm.nih.gov/pubmed/32208485
  160. American College of Cardiology. HFSA/ACC/AHA statement addresses concerns Re: using RAAS antagonists in COVID-19. 2020. URL: https://www.acc.org/latest-in-cardiology/articles/2020/03/17/08/59/hfsa-acc-aha-statement-addresses-concerns-re-using-raas-antagonists-in-covid-19
  161. Fedson D.S., Opal S.M., Rordam O.M. Hiding in plain sight: an approach to treating patients with severe COVID-19 infection. mBio. 2020; 11(2). URL: https://www.ncbi.nlm.nih.gov/pubmed/32198163
  162. Uyeki T.M., Bernstein H.H., Bradley J.S., et al. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2019; 68: 895–902.
  163. Arabi Y.M., Al-Omari A., Mandourah Y., et al. Critically Ill Patients With the Middle East Respiratory Syndrome: A Multicenter Retrospective Cohort Study. Crit Care Med. 2017; 45: 1683–1695.
  164. Rice T.W., Rubinson L., Uyeki T.M., et al. Critical illness from 2009 pandemic influenza A virus and bacterial coinfection in the United States. Crit Care Med. 2012; 40: 1487–1498.
  165. Shieh W.J., Blau D.M., Denison A.M., et al. 2009 pandemic influenza A(H1N1): pathology and pathogenesis of 100 fatal cases in the United States. Am J Pathol. 2010; 177: 166–175.
  166. McCullers J.A. Do specific virus-bacteria pairings drive clinical outcomes of pneumonia? Clin Microbiol Infect. 2013; 19: 113–118.
  167. Schulman C.I., Namias N., Doherty J., et al. The effect of antipyretic therapy upon outcomes in critically ill patients: a randomized, prospective study. Surg Infect (Larchmt). 2005; 6: 369–375.
  168. Young P., Saxena M., Bellomo R., et al. Acetaminophen for Fever in Critically Ill Patients with Suspected Infection. N Engl J Med. 2015; 373: 2215–2224.
  169. Haupt M.T., Jastremski M.S., Clemmer T.P., et al. Effect of ibuprofen in patients with severe sepsis: a randomized, double-blind, multicenter study. The Ibuprofen Study Group. Crit Care Med. 1991; 19: 1339–1347.
  170. Bernard G.R., Wheeler A.P., Russell J.A., et al. The effects of ibuprofen on the physiology and survival of patients with sepsis. The Ibuprofen in Sepsis Study Group. N Engl J Med. 1997; 336: 912–918.
  171. Gozzoli V., Schottker P., Suter P.M., Ricou B. Is it worth treating fever in intensive care unit patients? Preliminary results from a randomized trial of the effect of external cooling. Arch Intern Med. 2001; 161: 121–123.
  172. Memis D., Karamanlioglu B., Turan A., et al. Effects of lornoxicam on the physiology of severe sepsis. Crit Care. 2004; 8: R474–482.
  173. Honarmand H., Abdollahi M., Ahmadi A., et al. Randomized trial of the effect of intravenous paracetamol on inflammatory biomarkers and outcome in febrile critically ill adults. Daru. 2012; 20: 12.
  174. Schortgen F., Clabault K., Katsahian S., et al. Fever control using external cooling in septic shock: a randomized controlled trial. Am J Respir Crit Care Med. 2012; 185: 1088–1095.
  175. Niven D.J., Stelfox H.T., Leger C., et al. Assessment of the safety and feasibility of administering antipyretic therapy in critically ill adults: a pilot randomized clinical trial. J Crit Care. 2013; 28: 296–302.
  176. Yang Y.L., Liu D.W., Wang X.T., et al. Body temperature control in patients with refractory septic shock: too much may be harmful. Chin Med J (Engl). 2013; 126: 1809–1813.
  177. Janz D.R., Bastarache J.A., Rice T.W., et al. Randomized, placebo-controlled trial of acetaminophen for the reduction of oxidative injury in severe sepsis: the Acetaminophen for the Reduction of Oxidative Injury in Severe Sepsis trial. Crit Care Med. 2015; 43: 534–541.
  178. Schortgen F., Charles-Nelson A., Bouadma L., et al. Respective impact of lowering body temperature and heart rate on mortality in septic shock: mediation analysis of a randomized trial. Intensive Care Med. 2015; 41: 1800–1808.
  179. Bancos S., Bernard M.P., Topham D.J., Phipps R.P. Ibuprofen and other widely used non-steroidal anti-inflammatory drugs inhibit antibody production in human cells. Cell Immunol. 2009; 258(1):18–28. URL: https://www.ncbi.nlm.nih.gov/pubmed/19345936
  180. Liu J., Dong Y.Q., Yin J., et al. Critically ill patients with COVID-19 with ECMO and artificial liver plasma exchange: A retrospective study. Medicine (Baltimore). 2020; 99: 26(e21012). DOI: 10.1097/MD.0000000000021012
  181. Luo S., Yang L., Wang C., et al. Clinical observation of 6 severe COVID-19 patients treated with plasma exchange or tocilizumab. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020; 49: 227–31.
  182. Pey-Jen, Cassiere Yu H., Bocchieri K., et al. Hypermetabolism in critically ill patients with COVID-19 and the effects of hypothermia: A case series. Metabol Open. 2020; 7: 100046. DOI: 10.1016/j.metop.2020.100046
  183. Jeong H.G., Lee Yu., Song K.H., et al. Therapeutic Temperature Modulation for a Critically Ill Patient with COVID-19. J Korean Med Sci. 2020; 35(22): e210. DOI: 10.3346/jkms.2020.35.e210
  184. Beigel J.H., Tomashek K.M., Dodd L.E., et al. Remdesivir for the treatment of COVID-19 — final report. N Engl J Med. 2020; 383(19): 1813–26.
  185. Spinner C.D., Gottlieb R.L., Criner G.J., et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA. 2020; 324(11): 1048–57.
  186. WHO Solidarity Trial Consortium, Pan H., Peto R., et al. Repurposed antiviral drugs for COVID-19 — interim WHO Solidarity Trial results. N Engl J Med. 2021; 384(6): 497–511.
  187. Geng Z., Yu Y., Hu S., Dong L., Ye C. Tocilizumab and the risk of respiratory adverse events in patients with rheumatoid arthritis: a systematic review and meta-analysis of randomised controlled trials. Clinical and experimental rheumatology. 2019; 37: 318–23.
  188. RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021; 397(10285): 1637–
  189. REMAP-CAP Investigators, Gordon A.C., Mouncey P.R., et al. Interleukin-6 receptor antagonists in critically ill patients with COVID-19. N Engl J Med.
  190. Marconi V.C., Ramanan A.V., de Bono S., et al. Efficacy and safety of baricitinib in patients with COVID-19 infection: results from the randomised, double-blind, placebo-controlled, parallel-group COV-BARRIER Phase 3 trial. medRxiv. 2021;
  191. Kalil A.C., Patterson T.F., Mehta A.K., et al. Baricitinib plus remdesivir for hospitalized adults with COVID-19. N Engl J Med. 2021; 384(9): 795–807.
  192. The REMAP-CAP Investigators, Derde LPG. Effectiveness of tocilizumab, sarilumab, and anakinra for critically ill patients with COVID-19: the REMAP-CAP COVID-19 immune modulation therapy domain randomized clinical trial. medRxiv. 2021; Preprint. 2021; 384(16): 1491–
  193. The RECOVERY Collaborative Group, Horby P.W., Estcourt L., et al. Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. MedRxiv. 2021; Preprint. Available at: https://www.medrxiv.org/content/10.1101/2021.03.09.21252736v1
  194. Simonovich V.A., Pratx L.D.B., Scibona P., et al. A randomized trial of convalescent plasma in Covid-19 severe pneumonia. N Engl J Med. 2021. Availableat: https://www.nejm.org/doi/full/10.1056/NEJMoa2031304
  195. Буланов А.Ю., Костин А.И., Петриков С.С. и др. Клиническое использование реконвалесцентной плазмы в терапии новой коронавирусной инфекции: московский опыт. Анестезиология и реаниматология. 2020; 6–2: 33–39.
  196. Joyner M.J., Carter R.E., Senefeld J.W., et al. Convalescent plasma antibody levels and the risk of death from COVID-19. N Engl J Med. 2021. Available at: https://www.nejm.org/doi/full/10.1056/NEJMoa2031893
  197. Li L., Zhang W., Hu Y., et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: A randomized clinical trial. JAMA. 2020. Available at: https://www.ncbi.nlm.nih.gov/pubmed/32492084
  198. Gharbharan A., Jordans C.C.E., Geurtsvan Kessel C., et al. Convalescent plasma for COVID-19: a randomized clinical trial. medRxiv. 2020; Preprint. Available at: https://www.medrxiv.org/content/10.1101/2020.07.01.20139857v1
  199. Avendano-Sola C., Ramos-Martinez A., Muñez-Rubio E., et al. Convalescent plasma for COVID-19: a multicenter, randomized clinical trial. medRxiv. 2020; Preprint. Available at: https://www.medrxiv.org/content/10.1101/2020.08.26.20182444v3.full.pdf
  200. Al Qahtani M., Abdulkarim A., Almadani A., et al. Randomized controlled trial of convalescent plasma therapy against standard therapy in patients with severe COVID-19 disease. medRxiv. 2020; Available at: https://www.medrxiv.org/content/10.1101/2020.11.02.20224303v1.full
  201. O’Donnell M.R., Grinsztejn B., Cummings M.J., et al. A randomized, double-blind, controlled trial of convalescent plasma in adults with severe COVID-19. medRxiv. 2021. Available at: https://www.medrxiv.org/content/10.1101/2021.03.12.21253373v1?%25253fcollection=
  202. Food and Drug Administration. Recommendations for investigational COVID-19 convalescent plasma. 2021. Available at: https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma. Accessed March 26, 2021.
  203. Jiang S., Hillyer C., Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol. 2020; 41(5): 355–9. DOI: 10.1016/j.it.2020.03.007
  204. O’Brien M.P., Forleo-Neto E., Musser B.J., et al. Subcutaneous REGEN-COV antibody combination to prevent COVID-19. N Engl J Med. 2021;385(13):1184-1195. DOI: 10.1056/NEJMc2113862
  205. Weinreich D.M., Sivapalasingam S., Norton T., et al. REGEN-COV antibody combination and outcomes in outpatients with COVID-19. N Engl J Med. 2021; Published online ahead of print. DOI: 10.1056/NEJMoa2108163
  206. RECOVERY Collaborative Group, Horby P.W., Mafham M., et al. Casirivimab and imdevimab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. medRxiv. 2021; DOI: 10.1101/2021.06.15.21258542
  207. Leng Z., Zhu R., Hou W., et al. Transplantation of ACE2(-) mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020; 11(2): 216–28. DOI: 10.14336/AD.2020.0228
  208. Sheahan T.P., Sims A.C., Graham R.L., et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med. 2017; 9(396). Available at: https://www.ncbi.nlm.nih.gov/pubmed/28659436
  209. Sheahan T.P., Sims A.C., Leist S.R., et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020; 11(1):222. Available at: https://www.ncbi.nlm.nih.gov/pubmed/31924756
  210. de Wit E., Feldmann F., Cronin J., et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA. 2020; 117(12):6771–6776. DOI: 10.1073/pnas.1922083117
  211. Williamson B.N., Feldmann F., Schwarz B., et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. bioRxiv. 2020 [Preprint]. Available at: https://www.biorxiv.org/content/10.1101/2020.04.15.043166v2.full.pdf
  212. Food and Drug Administration. Fact sheet for health care providers emergency use authorization (EUA) of remdesivir (GS-5734™). 2020. Available at: https://www.fda.gov/media/137566/download. Accessed: May 8, 2020
  213. Wang Y., Zhang D., Du G., et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. The Lancet. 2020. Available at: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(20)31022-9/fulltext#seccestitle10
  214. Rhodes A., Evans L.E., Alhazzani W., et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017; 43: 304–377.
  215. Murray M.J., DeBlock H., Erstad B., et al. Clinical Practice Guidelines for Sustained Neuromuscular Blockade in the Adult Critically Ill Patient. Crit Care Med. 2016; 44: 2079–2103.
  216. Guidance Document: ECMO for COVID-19 Patients with Severe Cardiopulmonary Failure. 23 March 2020. http://covid19.elso.org
  217. Griffiths M., Fan E., Baudouin S.V. New UK guidelines for the management of adult patients with ARDS. Thorax. 2019; 74: 931–933.
  218. Ledr S.B., Siner J.M., Bizzaro M.J., et al. Oral alimentation in neonatal and adult populations requiring high-flow oxygen via nasal canula. Dysphagia/ 2016; 31: 154–159.
  219. Cavalli G., De Luca G., Campochiaro C., et al. Interleukin-1 blockadewith high-dose anakinrain patientswith COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020. https://doi.org/10.1016/S2665-9913(20)30127-2
  220. Papazian L., Aubron C., Brochard L., et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019; 9: 69.
  221. The National Heart, Lung, and Blood Institute PETAL Clinical Trials Network. Early Neuromuscular Blockade in the Acute Respiratory Distress Syndrome. N Engl J Med. 2019; 380: 1997–2008.
  222. Martindale R., Patel J.J., Taylor B., et al. Nutrition Therapy in the Patient with COVID-19 Disease Requiring ICU Care. Updated April 1, 2020. Reviewed and Approved by the Society of Critical Care Medicine and the American Society for Parenteral and Enteral Nutrition.
  223. Singer P., Reintam A., Berger M., et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clinical Nutrition. 2019; 38: 48–79.
  224. Руководство попрофилактике и лечению новой коронавирусной инфекции COVID-19. Первая академическая клиника Университетской школы медицины провинции Чжэцзян. Составлено на основе клинической практики. Перевод на русский язык выполнен МИА «Россия сегодня» с согласия авторов руководства. Научными консультантами выступили специалисты Первого Московского государственного медицинского университета имени И.М. Сеченова. 96 с. [Guidelines for the prevention and treatment of new coronavirus infection COVID-19. The first academic clinic of Zhejiang University School of Medicine. Compiled on the basis of clinical practice. The translation into Russian was made by MIA Russia Today with the consent of the authors of the manual. Scientific consultants were specialists of the First Moscow State Medical University named after I.M. Sechenov. 96 p. (In Russ)]
  225. Doi Y., Hibino M., et al. A prospective, randomized, open-label trial of early versus late favipiravir in hospitalized patients with COVID-19. Antimicrob Agents Chemother. 2020 Sep 21; AAC.01897-20. https://doi.org/10.1128/AAC.01897-20
  226. Allingstrup M.J., et al. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin Nutr. 2012; 31: 462–468.
  227. Weijs P.J., Stapel S.N., de Groot S.D., et al. Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. JPEN J Parenter Enteral Nutr. 2012; 36(1): 60–68.
  228. Reeves A., White H., Sosnowski K., et al. Energy and protein intakes of hospitalized patients with acute respiratory failure receiving non-invasive ventilation. Clin Nutr/ 2014; 33: 1068–1073.
  229. Kogo M., Nagata K., Morimoto T., et al. Enteral nutrition is a risk factor for airway complications in subjects undergoing noninvasive ventilation for acute respiratory failure. Respir Care. 2017; 62: 459–467.
  230. Boulton-Jones J.R., Lewis J., Jobling J.C., Teahon K. Experience of post-pyloric feeding in seriously ill patients in clinical practice. Clin Nutr. 2004; 23: 35–41.
  231. Montejo J.C., Grau T., Acosta J., et al. Multicenter, prospective, randomized, single-blind study comparing the efficacy and gastrointestinal complications of early jejunal feeding with early gastric feeding in critically ill patients. Crit Care Med. 2002; 30: 796–800.
  232. Barazzoni R., Bischoff S., Breda J., et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection, Clinical Nutrition. DOI: 10.1016/j.clnu.2020.03.022
  233. Reignier J., Dimet J., Martin-Lefevre L., et al. Before-after study of a standardized ICU protocol for early enteral feeding in patients turned in the prone position. Clin Nutr. 2010; 29(2): 210–216. DOI: 10.1016/j.clnu.2009.08.004
  234. Saez de la Fuente I., Saez de la Fuente J., Quintana Estelles M.D., et al. Enteral Nutrition in Patients Receiving Mechanical Ventilation in a Prone Position. JPEN J Parenter Enteral Nutr. 2016; 40(2): 250–255. DOI: 10.1177/0148607114553232
  235. Thibault et al. Nutrition of the COVID-19 patient in the intensive care unit (ICU): a practical guidance. Critical Care. 2020; 24:447. https://doi.org/10.1186/s13054-020-03159-z
  236. de Watteville A., Laurence G., Barcelos G.K., et al. Easy-to-prescribe nutrition support in the intensive care in the era of COVID-19. Clinical Nutrition ESPEN. 2020; 39: 74–78.
  237. McClave S.A., Taylor B.E., Martindale R.G., et al. Society of Critical Care Medicine; American Society for Parenteral and Enteral Nutrition. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). JPEN J Parenter Enteral Nutr. 2016; 40(2): 159–211.
  238. Gupta A., Govil D.; Bhatnagar S., et al. Efficacy and safety of parenteral omega 3 fatty acids in ventilated patients with acute lung injury. Indian J. Crit. Care Med. 2011, 15, 108.
  239. Ridley E.J., Davies A.R., Robins E.J., et al. Nutrition therapy in adult patients receiving extracorporeal membrane oxygenation: a prospective, multicenter, observational study. Critical Care and Resuscitation. 2015; 17(3): 183–189.
  240. Bear D.E., Smith E., Barrett N.A. Nutrition support in adult patients receiving extracorporeal membrane oxygenation. Nutr Clin Pract. 2018; 33(6): 738–746.
  241. Ohbe H., Jo T., Yamana H., et al. Early enteral nutrition for cardiogenic or obstructive shock requiring venoarterial extracorporeal membrane oxygenation: a nationwide inpatient database study. Intensive Care Medicine. 2018; 44(8): 1258–1265.
  242. Hermanides J., Vriesendorp T.M., Bosman R.J., et al. Glucose variability is associated with intensive care unit mortality. Crit Care Med. 2010; 38: 1430–1434.
  243. Egi M., Krinsley J.S., Maurer P., et al. Premorbid glycemic control modifies the interaction between acute hypoglycaemia and mortality. Intensive Care Med. 2016; 42: 562–571.
  244. Doig G.S., Simpson F., Sweetman E.A., et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013; 309: 2130–2138.
  245. Oshima Т., Heidegger С.Р. Supplemental Parenteral Nutrition Is the Key to Prevent Energy Deficits in Critically Ill Patients Nutrition in Clinical Practice. 2016; 31: 432–437.
  246. Preiser J.C., Devos P., Ruiz-Santana S., et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009; 35: 1738–1748.
  247. Finfer S., Chittock D.R., Su S.Y., et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009; 360: 1283e97.
  248. Krinsley J.S., Preiser J.C. Time in blood glucose range 70 to 140 mg/dl > 80 % is strongly associated with increased survival in non-diabetic critically ill adults. Crit Care. 2015; 19: 179.
  249. Bartlett R.H., Ogino M.T., Brodie D., et al. Initial ELSO Guidance Document: ECMO for COVID-19 Patients with Severe Cardiopulmonary Failure. ASAIO J. 2020 Mar 30. DOI: 10.1097/MAT.0000000000001173
  250. ELSO COVID-19 Interim Guidelines (2020). https://www.elso.org/Portals/0/Files/pdf/guidelines%20elso%20covid%20for%20web_Final.pdf
  251. Brodie D., Slutsky A.S., Combes A. Extracorporeal Life Support for Adults With Respiratory Failure and Related Indications: A Review. JAMA. 2019; 322(6): 557–568.
  252. Extracorporeal Life Support Organisation (ELSO). Guidelince for Adult Respiratory Failure. 2017. https://www.elso.org/Resources/Guidelines.aspx
  253. Combes A., Hajage D., Capellier G., et al. EOLIA Trial Group, REVA, and ECMONet. Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome. N Engl J Med. 2018; 378(21): 1965–1975.
  254. Li M., Gu S.-C., Wu X.-J., et al. Extracorporeal membrane oxygenation support in 2019 novel coronavirus disease: indications, timing, and implementation. Chinese Medical Journal. February 2020. DOI: 10.1097/CM9.0000000000000778
  255. Combes A., Brodie D., Bartlett R., et al. Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am J Respir Crit Care Med. 2014; 190(5): 488–496.
  256. Extracorporeal Life Support Organisation (ELSO). Guidelines for Adult Cardiac Failure. https://www.elso.org/Portals/0/IGD/Archive/FileManager/e76ef78eabcusersshyerdocumentselsoguidelinesforadultcardiacfailure1.3.pdf
  257. Grasselli G., Zangrillo A., Zanella A., et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020. https://doi.org/10.1001/jama.2020. 5394 [Epub ahead of print]
  258. Arentz M., Yim E., Klaff L., et al. Characteristics and Outcomes of 21 Critically Ill Patients With COVID-19 in Washington State. JAMA. Published online March 19, 2020. DOI: 10.1001/jama.2020.4326
  259. Report on 2249 patients critically ill with COVID-19 Accessed on https://www.icnarc.org/About/Latest-News/2020/04/04/Report-On-2249-Patients-Critically Ill-With-Covid-19 (Accessed 07.04.2020.)
  260. Schmidt M., Bailey M., Sheldrake J., et al. Predicting survival after extracorporeal membrane oxygenation for severe acute respiratory failure. The Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score. Am J Respir Crit Care Med. 2014; 189(11): 1374–1382.
  261. Schmidt M., Burrell A., Roberts L., et al. Predicting survival after ECMO for refractory cardiogenic shock: the survival after veno-arterial-ECMO (SAVE)-score. Eur Heart J. 2015; 36(33): 2246–2256.
  262. Schmidt M., Zogheib E., Roze H., et al. The PRESERVE mortality risk score and analysis of long-term outcomes after extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. Intensive Care Med. 2013; 39(10): 1704–1713.
  263. Extracorporeal Life Support Organization (ELSO). Guidelines for ECPR Cases.
  264. Extracorporeal Life Support Organization (ELSO). Ultrasound Guidance for Extra-corporeal Membrane Oxygenation.
  265. Extracorporeal Life Support Organisation (ELSO). Ultrasound Guidance for Extra-corporeal Membrane Oxygenation Veno-Venous ECMO specific guidelines.
  266. Platts D.G., Sedgwick J.F., Burstow D.J., et al. The Role of Echocardiography in the Management of Patients Supported by Extracorporeal Membrane Oxygenation. Journal of the American Society of Echocardiography. 2012; 25(2): 131–141.
  267. Extracorporeal Life Support Organisation (ELSO). Ultrasound Guidance for Extra-corporeal Membrane Oxygenation Veno-Arterial ECMO specific guidelines.
  268. Brower R.G., Matthay M.A., Morris A., et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000; 342(18): 1301–1308.
  269. Abrams D., Schmidt M., Pham T., et al. Mechanical Ventilation for Acute Respiratory Distress Syndrome during Extracorporeal Life Support. Research and Practice. Am J Respir Crit Care Med. 2020; 201(5): 514–525.
  270. Peek G.J., Mugford M., Tiruvoipati R., et al.; CESAR trial collaboration. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009; 374: 1351–1363.
  271. Agerstrand C.L., Burkart K.M., Abrams D.C., et al. Blood conservation in extracorporeal membrane oxygenation for acute respiratory distress syndrome. Ann Thorac Surg. 2015; 99(2): 590–595. DOI: 10.1016/j.athoracsur.2014.08.039
  272. Extracorporeal Life Support Organisation (ELSO). Anticoagulation Guideline. https://www.elso.org/Portals/0/Files/elsoanticoagulationguideline8-2014-table-contents.pdf
  273. Vasques F., Romitti F., Gattinoni L., Camporota L. How I wean patients from veno-venous extra-corporeal membrane oxygenation. Critical Care. 2019; 23(1): 316.
  274. Broman L.M., Malfertheiner M.V., Montisci A., Pappalardo F. Weaning from veno-venous extracorporeal membrane oxygenation: how I do it. J Thorac Dis. 2018; 10(Suppl 5): S692–S697.
  275. Grieco D.L., Menga L.S., Cesarano M., et al. Effect of Helmet Noninvasive Ventilation vs High-Flow Nasal Oxygen on Days Free of Respiratory Support in Patients With COVID-19 and Moderate to Severe Hypoxemic Respiratory Failure: The HENIVOT Randomized Clinical Trial. JAMA. 2021; 325(17): 1731–43. DOI: 10.1001/jama.2021.4682
  276. Mills S.E., Nicolson K.P., Smith B.H. Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br J Anaesth. 2019; 123(2):e273–e83. Epub 2019 May 10. DOI: 10.1016/j.bja.2019.03.023
  277. Franchi S., Moschetti G., Amodeo G., Sacerdote P. Do all opioid drugs share the same immunomodulatory properties? A review from animal and human studies. Front Immunol. 2019; 10:2914. DOI: 10.3389/fimmu.2019.02914
  278. Sacerdote P. Opioids and the immune system. Palliat Med. 2006; 20(Suppl 1):s9–15.
  279. Ren K., Dubner R. Interactions between the immune and nervous systems in pain. Nat Med. 2010; 16(11):1267–76. Epub 2010 Oct 14. DOI: 10.1038/nm.2234
  280. A Joint Statement by American Society of Regional Anesthesia and Pain Medicine (ASRA) and European Society of Regional Anesthesia and Pain Therapy (ESRA). URL: https://www.asra.com/page/2903/recommendations-on-chronic-pain-practice-during-the-covid-19-pandemic
  281. Desforges M., Le Coupanec A., Stodola J.K., et al. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014; 194: 145–158.
  282. Updated: WHO Now Doesnʼt Recommend Avoiding Ibuprofen ForCOVID-19 Symptoms. Available at https://www.sciencealert.com/who-recommends-to-avoid-taking-ibuprofen-for-covid-19-symptoms
  283. European Medicines Agency. EMA gives advice on the use of non-steroidal anti-inflammatories for COVID-19. https://www.ema.europa.eu/en/news/ema-gives-advice-use-non-steroidal-anti-inflammatories-covid-19
  284. Giudicessi J.R., Noseworthy P.A., Friedman P.A., et al. Urgent guidance for navigating and circumventing the QTc prolonging and torsadogenic potential of possible pharmacotherapies for COVID-19. Mayo Clin Proc. 2020.
  285. Wu C.-I., Postema P.G., Arbelo E., et al. SARS-CoV-2, COVID-19, and inherited arrhythmia syndromes. Heart Rhythm. 2020.
  286. FDA Drug Safety Communication: Interactions between certain HIV or hepatitis C drugs and cholesterol-lowering statin drugs can increase the risk of muscle injury. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-interactions-between-certain-hiv-or-hepatitis-c-drugs-and-cholesterol
  287. van der Lee M., Sankatsing R., Schippers E., et al. Pharmacokinetics and pharmacodynamics of combined use of lopinavir/ritonavir and rosuvastatin in HIV-infected patients. Antivir Ther. 2007; 12(7): 1127–1132.
  288. Glesby M.J., Aberg J.A., Kendall M.A., et al. Pharmacokinetic interactions between indinavir plus ritonavir and calcium channel blockers. Clinical Pharmacology & Therapeutics/ 2005; 78: 143–153. DOI: 10.1016/j.clpt.2005.04.005
  289. Zhang X.J., Qin J.J., Cheng X., et al. In-Hospital Use of Statins Is Associated with a Reduced Risk of Mortality among Individuals with COVID-19. Cell Metab. 2020; 32: 176.
  290. Yaroshetskiy A., Avdeev S., Politov M., et al. Potential for the Lung Recruitment and the Risk of Lung Overdistension During 21 Days of Mechanical Ventilation in Patients With COVID-19 After Noninvasive Ventilation Failure: the COVID-VENT Observational Trial, 25 June 2021, PREPRINT (Version 1) available at Research Square. DOI: 10.21203/rs.3.rs-646124/v1
  291. Mao R., Liang J., Shen J., et al. Implications of COVID-19 for patients with pre-existing digestive diseases. Lancet Gastroenterol Hepatol. 2020; 5: 425.
  292. Daniels L.B., Sitapati A.M., Zhang J., et al. Relation of Statin Use Prior to Admission to Severity and Recovery Among COVID-19 Inpatients. Am J Cardiol. 2020; 136: 149.
  293. Rosenthal N., Cao Z., Gundrum J., et al. Risk Factors Associated With In-Hospital Mortality in a US National Sample of Patients With COVID-19. JAMA Netw Open 2020; 3: e2029058.
  294. Levin M., Morais-Almeida M., Ansotegui I.J., et al. Acute asthma management during SARS-CoV2-pandemic 2020 [ahead of print, 2020 May 14]. World Allergy Organ J. 2020; 100125. DOI: 10.1016/j.waojou.2020.100125
  295. Attaway A. Management of patients with COPD during the COVID-19 pandemic. Clev Clin J Med. 2020 May 11;ccc007; DOI: 10.3949/ccjm.87a.ccc007
  296. Global initiative for asthma. Covid-19: GINA Answers to Frequently Asked Questions on Asthma Management [Internet]; 2020. Available from: https://ginasthma.org/covid19-gina-answers-to-frequently-asked-questions-on-asthmamanagement
  297. Simonds A.K., Hanak A., Chatwin M., et al. Evaluation of droplet dispersion during non-invasive ventilation, oxygen therapy, nebuliser treatment and chest physiotherapy in clinical practice: implications for management of pandemic influenza and other airborne infections. Health Technol Assess. 2010; 14(46):131–172.
  298. Bansal M. Cardiovascular disease and COVID-19 [published online ahead of print, 2020 Mar 25]. Diabetes Metab Syndr. 2020; 14(3): 247–250. DOI: 10.1016/j.dsx.2020.03.013
  299. Libby P., Simon D.I. Inflammation and thrombosis: the clot thickens. Circulation. 2001; 103: 1718–1720.
  300. Driggin E., Madhavan M.V., Bikdeli B., et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the Coronavirus Disease 2019 (COVID-19) Pandemic. J Am Coll Cardiol. 2020; 75(18): 2352–2371. DOI: 10.1016/j.jacc.2020.03.031
  301. Pradelli L., Mayr K., Klek S., et al. ω-3 fatty-acid enriched parenteral nutrition in hospitalized patients: systematic review with meta-analysis and trial sequential analysis. J Parenter Enteral Nutr. 2020; 47: 47–59.
  302. Kennedy N.A., Jones G.R., Lamb C.A., et al. British Society of Gastroenterology guidance for management of inflammatory bowel disease during the COVID-19 pandemic. Gut. 2020; 69: 984.
  303. Brenner E.J., Ungaro R.C., Gearry R.B., et al. Corticosteroids, But Not TNF Antagonists, Are Associated With Adverse COVID-19 Outcomes in Patients With Inflammatory Bowel Diseases: Results From an International Registry.Gastroenterology. 2020; 159(2): 481. Epub 2020 May 18.
  304. Ungaro R.C., Brenner E.J, Gearry R.B., et al. Effect of IBD medications on COVID-19 outcomes: results from an international registry. Gut. 2020.
  305. Reddy K.R., Beavers K.L., Hammond S.P., et al. American Gastroenterological Association Institute guideline on the prevention and treatment of hepatitis B virus reactivation during immunosuppressive drug therapy. Gastroenterology. 2015; 148: 215.
  306. Chen L.F., Mo Y.Q., Jing J., et al. Short-course tocilizumab increases risk of hepatitis B virus reactivation in patients with rheumatoid arthritis: a prospective clinical observation. Int J Rheum Dis. 2017; 20: 859.
  307. Ekpanyapong S., Reddy K.R. Hepatitis B Virus Reactivation: What Is the Issue, and How Should It Be Managed? Clin Liver Dis. 2020; 24: 317.
  308. Remuzzi A., Remuzzi G. COVID-19 and Italy: what next? Lancet. 2020; 395: 1225–1228.
  309. Bornstein S., Rubino F., Khunt K., et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020. Published Online April 23 2020. DOI: 10.1016/ S2213-8587(20)30152-2
  310. Luzi L., Radaelli M.G. Influenza and obesity: its odd relationship and the lessons for COVID-19 pandemic. Acta Diabetol 2020. Published online April 5. DOI:10.1007/s00592-020-01522-8
  311. Hartmann-Boyce J., Morris E., Goyder C., et al. Managing diabetes during the COVID- 19 epidemic. 2020. https://www.cebm.net/ covid-19/managing-diabetes-during-the-covid-19-pandemic/ (Accessed April 15, 2020.)
  312. Wu Q., Zhou L., Sun X., et al. Altered lipid metabolism in recovered SARS patients twelve years after infection. Sci Rep 2017; 7: 9110.
  313. Dellinger R.P., Levy M.M., Rhodes A., et al. Surviving Sepsis Campaign Guidelines Committee. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013; 41: 580–637.
  314. Hsia D.S., Grove O., Cefalu W.T. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes. 2017; 24(1):73–79. DOI: 10.1097/MED.0000000000000311
  315. Cristelo C., Azevedo C., Moreira Marques J., et al. SARS-CoV-2 and Diabetes: New Challenges for the Disease [online ahead of print, 2020 May 21]. Diabetes Res Clin Pract. 2020; 108228. DOI: 10.1016/j.diabres.2020.108228
  316. Filippatos T.D., Panagiotopoulou T.V., Elisaf M.S. Adverse Effects of Glp-1 Receptor Agonists. The Review of Diabetic Studies. 2014; 11(3–4):202–230. DOI: 10.1900/RDS.2014.11.202
  317. Mehta V., Goel S., Kabarriti R., et al. Case Fatality Rate of Cancer Patients with COVID-19 in a New York Hospital System. Cancer Discov. 2020; 10(7): 935–41. DOI: 10.1158/2159-8290.CD-20-0516
  318. Lambertini M., Toss A., Passaro A., et al. Cancer care during the spread of coronavirus disease 2019 (COVID-19) in Italy: young oncologists’ perspective. ESMO Open 2020; 5: e000759. DOI: 10.1136/esmoopen-2020-000759
  319. Kutikov A., Weinberg D.S., Edelman M.J., et al. A War on Two Fronts: Cancer Care in the Time of COVID-19. Ann Intern Med. 2020.
  320. Ueda M., Martins R., Hendrie P.C., et al. Managing Cancer Care During the COVID-19 Pandemic: Agility and Collaboration Toward a Common Goal. J Natl Compr Canc Netw. 2020: 1.
  321. Couper K., Taylor-Phillips S., Grove A., et al. COVID-19 infection risk to rescuers from patients in cardiac arrest. Consensus on Science with Treatment Recommendations [Internet] Brussels, Belgium: International Liaison Committee on Resuscitation (ILCOR). 2020 March 30. Available from: http://ilcor.org
  322. Al‐Shamsi H.O., Alhazzani W., Alhuraiji A., et al. A Practical Approach to the Management of Cancer Patients During the Novel Coronavirus Disease 2019 (COVID-19) Pandemic: An International Collaborative Group. The Oncol. 2020. DOI: 10.1634/theoncologist.2020-0213
  323. Liang W., Guan W., Chen R., et al. Cancer patients in SARS-CoV-2 infection: A nationwide analysis in China. Lancet Oncol. 2020; 21:335–337.
  324. . Luo J., Rizvi H., Preeshagul I.R., et al. COVID-19 in patients with lung cancer. Ann Oncol. 2020; 31(10): 1386–1396. DOI: 10.1016/j.annonc.2020.06.007. Epub 2020 Jun 17. PMID: 32561401; PMCID: PMC7297689.
  325. Calabrò L., Peters S., Soria J.C., et al. Challenges in lung cancer therapy during the COVID-19 pandemic. Lancet Respir Med. 2020; 8(6): 542–544. DOI: 10.1016/S2213-2600(20)30170-3. Epub 2020 Apr 9. PMID: 32278368; PMCID: PMC7146673.
  326. Poortmans P.M., Guarneri V., Cardoso M.J. Cancer and COVID-19: what do we really know? Lancet. 2020; 395(10241): 1884–85. DOI: 10.1016/S0140-6736(20)31240-X. Epub 2020 May 29. PMID: 32479827; PMCID: PMC7259910.
  327. Практические рекомендации Российского общества клинической онкологии по оказанию онкологической помощи в условиях пандемии COVID-19. Доступно по: https://rosoncoweb.ru/standarts/COVID19/ [Practical recommendations of the Russian Society of Clinical Oncology for the provision of cancer care in the context of the COVID-19 pandemic. Availableat: https://rosoncoweb.ru/standarts/COVID19/ (InRuss)]
  328. Особенности ведения онкогематологических больных в условиях пандемии COVID-19 / Под ред. И.В. Поддубной. М.: Экон-Информ, 2020. [Features of the management of hematological cancer patients in the context of the COVID-19 pandemic / Ed. I.V. Poddubnaya. M.: Econ-Inform, 2020. (In Russ)]
  329. Alkan A., Uncu A., Taşkıran I., Tanrıverdi Ö. Double-edged sword: Granulocyte colony stimulating factors in cancer patients during the COVID-19 era. Clinics (SaoPaulo). 2020; 75: e2033. DOI: 10.6061/clinics/2020/e2033
  330. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). Версия 11 (07.05.2021). [Temporary guidelines. Prevention, diagnosis and treatment of new coronavirus infection (COVID-19). Version11 (07/05/2021). (In Russ)]
  331. Roden D.M., Harrington R.A., Poppas A., Russo A.M. Considerations for Drug Interactions on QTc in Exploratory COVID-19 Treatment. Circulation. 2020; 141: e906.
  332. Uzzo R.G., Kutikov A., Geynisman D.M. Coronavirus disease 2019 (COVID-19): Screening, diagnosis, and treatment of cancer in uninfected patients during the pandemic. UpToDate Inc. https://www.uptodate.com (Accessed on September 01, 2020.)
  333. Nopp S., Moik F., Jilma B., et al. Risk of venous thromboembolism in patients with COVID‐19: A systematic review and meta‐analysis Research and Practice in Thrombosis and Haemostasis. 2020; 4(7): 1178–1191.
  334. Uzzo R.G., Kutikov A., Geynisman D.M. Coronavirus disease 2019 (COVID-19): Risks for infection, clinical presentation, testing, and management in patients with cancer. https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-risks-for-infection-clinical-presentation-testing-and-management-in-patients-with-cancer?sectionName=Management%20of%20cancer%20therapy&topicRef=127556&anchor=H2182160475&source=see_link#H2182160475
  335. COVIDSurg Collaborative. Delaying surgery for patients with a previous SARS‐CoV‐2 infection. 2020; 107: e601–e602. https://doi.org/10.1002/bjs.12050
  336. Canet J., Gallart L., Gomar C., et al. Prediction of postoperative pulmonary complications in a population-based surgical cohort. Anesthesiology. 2010; 113: 1338. https://doi.org/10.1097/ALN.0b013e3181fc6e0a
  337. Guan W.J., Liang W.H., Zhao Y., et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: a nationwide analysis. Eur Respir J. 2020. DOI: 10.1183/13993003.00547-2020
  338. Petrilli C.M., Jones S.A., Yang J., et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. BMJ. 2020; 369: m1966. DOI: https://doi.org/10.1136/bmj.m1966
  339. Hsieh M.-J., Lee W.-C., Cho H.-Y., et al. Recovery of pulmonary functions, exercise capacity, and quality of life after pulmonary rehabilitation in survivors of ARDS due to severe influenza A (H1N1) pneumonitis. Influenza and other respiratory viruses. Apr 2018. https://doi.org/10.1111/irv.12566
  340. Tenforde M.W., Kim S.S., Lindsell C.J., et al. Symptom Duration and Risk Factors for Delayed Return to Usual Health Among Outpatients with COVID-19 in a Multistate Health Care Systems Network — United States. March-June 2020. MMWR. 2020; 69(30): 993–998. https://dx.doi.org/10.15585%2Fmmwr.mm6930e1
  341. Carfi A., Bernabei R., Landi F., et al. Persistent Symptoms in Patients After Acute COVID-19. JAMA. July 9, 2020. DOI: 10.1001/jama.2020.12603
  342. Puntmann V.O., Carerj M.L., Wieters I., et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020; 5(11): 1265–1273. DOI: 10.1001/jamacardio.2020.3557
  343. Chalumeau M., Bidet P., Lina G., et al. Transmission of Panton-Valentine leukocidin-producing Staphylococcus aureus to a physician during resuscitation of a child. Clinical Infectious Diseases. 2005; 41: e29–30.
  344. Nam H.S., Yeon M.Y., Park J.W., et al. Healthcare worker infected with Middle East Respiratory Syndrome during cardiopulmonary resuscitation in Korea, 2015. Epidemiol Health. 2017; 39: e2017052.
  345. Loeb M., McGeer A., Henry B., et al. SARS among critical care nurses, Toronto. Emerging infectious diseases. 2004; 10: 251–255.
  346. Christian M.D., Loutfy M., McDonald L.C., et al. Possible SARS coronavirus transmission during cardiopulmonary resuscitation. Emerg Infect Dis. 2004; 10: 287–293.
  347. Kim W.Y., Choi W., Park S.W., et al. Nosocomial transmission of severe fever with thrombocytopenia syndrome in Korea. Clinical Infectious Diseases. 2015; 60: 1681–1683.
  348. Knapp J., Weigand M.A., Popp E. Transmission of tuberculosis during cardiopulmonary resuscitation. Focus on breathing system filters. [German]. Notfall und Rettungsmedizin. 2016; 19:48–51.
  349. Shin H., Oh J., Lim T.H., et al. Comparing the protective performances of 3 types of N95 filtering facepiece respirators during chest compressions: A randomized simulation study. Medicine. 2017; 96: e8308.
  350. Spyropoulos A.C., Levy J.H., Ageno W., et al. Scientific and Standardization Committee Communication: Clinical Guidance on the Diagnosis, Prevention, and Treatment of Venous Thromboembolism in Hospitalized Patients with COVID-19. J Thromb Haemost. 2020; 18(8): 1859–1865.DOI: 10.1111/jth.14929
  351. Bikdeli B., Madhavan M.V., Jimenez D., et al. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up. J Am Coll Cardiol. 2020. DOI: 10.1016/j.jacc.2020.04.031
  352. Wichmann D., et al. Autopsy findings and venous thromboembolism in patients with COVID-19. Ann Intern Med. DOI: 10.7326/M20-2003
  353. Hippensteel J.A., Burnham E.L., Jolley S.E. Prevalence of Venous Thromboembolism in Critically Ill Patients with COVID-19. Br J Haematol. 2020; 10.1111/bjh.16908. DOI: 10.1111/bjh.16908
  354. Castro P., Palomo M., Moreno-Castaño A.B., et al. Is the Endothelium the Missing Link in the Pathophysiology and Treatment of COVID-19 Complications? Cardiovasc Drugs Ther. 2021; 7: 1–14. DOI: 10.1007/s10557-021-07207-w. Epub ahead of print. PMID: 34097193; PMCID: PMC8181544.
  355. Shaw R.J., Bradbury C., Abrams S.T., et al. COVID-19 and immunothrombosis: emerging understanding and clinical management. Br J Haematol. 2021; 194(3): 518–29. DOI: 10.1111/bjh.17664. Epub 2021 Jul 7. PMID: 34114204.
  356. El Hasbani G., Taher A.T., Jawad A.S.M., Uthman I. Henoch-Schönlein purpura: Another COVID-19 complication. Pediatr Dermatol. 2021 Jul 16. DOI: 10.1111/pde.14699. Epub ahead of print. PMID: 34272762.
  357. Tal S., Spectre G., Kornowski R., Perl L. Venous Thromboembolism Complicated with COVID-19: What Do We Know So Far? Acta Haematol. 2020:1-8. DOI: 10.1159/000508233
  358. Al-Ani F., Chehade S., Lazo-Langner A. Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb Res. 2020; 192:152–160. DOI: 10.1016/j.thromres.2020.05.039
  359. Zhang L., Feng X., Zhang D., et al. Deep Vein Thrombosis in Hospitalized Patients with Coronavirus Disease 2019 (COVID-19) in Wuhan, China: Prevalence, Risk Factors, and Outcome. Circulation. 2020. DOI: 10.1161/CIRCULATIONAHA.120.046702
  360. Zhai Z., Li C., Chen Y., et al. Prevention and Treatment of Venous Thromboembolism Associated with Coronavirus Disease 2019 Infection: A Consensus Statement before Guidelines. Thromb Haemost. 2020; 120(6):937–948. DOI: 10.1055/s-0040-1710019
  361. Casini A., Alberio L., Angelillo-Scherrer A., et al. Thromboprophylaxis and laboratory monitoring for in-hospital patients with COVID-19 — a Swiss consensus statement by the Working Party Hemostasis. Swiss Med Wkly. 2020; 150:w20247. DOI: 10.4414/smw.2020.20247
  362. Thachil J., Tang N., Gando S., et al. Laboratory haemostasis monitoring in COVID-19. J Thromb Haemost. 2020. DOI: 10.1111/jth.14866
  363. Favaloro E.J., Lippi G. Recommendations for Minimal Laboratory Testing Panels in Patients with COVID-19: Potential for Prognostic Monitoring. Semin Thromb Hemost. 2020; 46(3):379–382. DOI: 10.1055/s-0040-1709498
  364. Barnes G.D., Burnett A., Allen A., et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. J Thromb Thrombolysis. 2020:1–10. DOI: 10.1007/s11239-020-02138-z
  365. Moores L.K., Tritschler T., Brosnahan S., et al. Prevention, diagnosis and treatment of venous thromboembolism in patients with COVID-19: CHEST Guideline and Expert Panel Report. Chest. 2020;S0012-3692(20)31625-1. DOI: 10.1016/j.chest.2020.05.559
  366. Linnemann B., Bauersachs R., Grebe M., et al. Venous thromboembolism in patients with COVID-19 (SARS-CoV-2 infection) — a position paper of the German Society of Angiology (DGA). Vasa. 2020:1–5. DOI: 10.1024/0301-1526/a000885
  367. Skeik N., Mirza A., Manunga J. Management of venous thromboembolism during the COVID-19 pandemic. J Vasc Surg Venous Lymphat Disord. 2020;S2213-333X(20)30307-3. DOI: 10.1016/j.jvsv.2020.05.005
  368. Porfidia A., Pola R. Venous thromboembolism in COVID-19 patients. J Thromb Haemost. 2020; 18(6):1516–1517. DOI: 10.1111/jth.14842
  369. Criel M., Falter M., Jaeken J., et al. Venous thromboembolism in SARS-CoV-2 patients: only a problem in ventilated ICU patients, or is there more to it? Eur Respir J. 2020; 2001201. DOI: 10.1183/13993003.01201-2020
  370. Буланов А. Ю., Ройтман Е. В. Новая коронавирусная инфекция, система гемостаза и проблемы дозирования гепаринов: это важно сказать сейчас. Тромбоз, гемостаз и реология. 2020;(2):11–18. [Bulanov A. Yu., Roitman E. V. New coronavirus infection, hemostasis and heparin dosing problems: it is important to say now. Tromboz, gemostaz i reologiya. 2020;(2):11–18. (In Russ.)] https://doi.org/10.25555/THR.2020.2.0913
  371. Hasan S.S., Radford S., Kow C.S., Zaidi S.T.R. Venous thromboembolism in critically ill COVID-19 patients receiving prophylactic or therapeutic anticoagulation: a systematic review and meta-analysis. J Thromb Thrombolysis. 2020; 50(4): 814–882.
  372. Thachil J., Tang N., Gando S., et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020; 18(5): 1023–1026. DOI: 10.1111/jth.14810
  373. Cui S., Chen S., Li X., et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(6): 1421–1424.
  374. McBane 2ndD., Roldan V.D.T., Niven A.S., et al. Anticoagulation in COVID-19: A Systematic Review, Meta-analysis, and Rapid Guidance From Mayo Clinic. Consensus recommendation. 2020; 95(11): 2467–2486. https://doi.org/10.1016/j.mayocp.2020.08.030
  375. Ройтман Е.В., Буланов А.Ю., Печенников В.М. Дозирование низкомолекулярных гепаринов и анти-фактор Xa-активность у пациентов с новой коронавирусной инфекцией COVID-19. Тромбоз, гемостаз и реология. 2020; 4: 57–67. [Roitman E.V., Bulanov A.Yu., Pechennikov V.M. Low molecular weight heparins dosing and anti-factor xa activity in patients with novel coronavirus infection covid-19. Tromboz, gemostaz i reologia. 2020; 4: 57–67. (In Russ)] https://doi.org/10.25555/THR.2020.4.0946
  376. Connors J.M., Levy J.H. Thromboinflammation and the hypercoagulability of COVID-19. First published: 17 April 2020. DOI: 10.1111/jth.14849
  377. Spyropoulos A.C., Lipardi C., Xu J., et al. Modified IMPROVE VTE risk score and elevated d‐dimer identify a high venous thromboembolism risk in acutely ill medical population for extended thromboprophylaxis. TH Open Companion J Thromb Haemost. 2020; 4: e59–e65.
  378. Воробьева Н.А., Ройтман Е.В., Мельничук Е.Ю Ингаляции гепарина у пациентов с новой короновирусной инфекцией (обзор литературы). Тромбоз, гемостаз и реология. 2020;(2):19–26. [Vorobyеva N. A., Roitman E. V., Melnichuk E. Yu. Heparin inhalation in patients with new coronovirus infection (review). Tromboz, gemostaz i reologiya. 2020;(2):19–26 (in Russ.)] https://doi.org/10.25555/THR.2020.2.0914
  379. Grillet F., et al. Acute Pulmonary Embolism Associated with COVID-19 Pneumonia Detected by Pulmonary CT Angiography Radiology Published online: 2020 Apr 23. DOI: 10.1148/radiol.2020201544
  380. Watson R.A., Johnson D.M., Dharia R.N., et al. Anti-Coagulant and Anti-Platelet Therapy in the COVID-19 Patient: A Best Practices Quality Initiative Across a Large Health System. Hosp Pract (1995). 2020. DOI: 10.1080/21548331.2020.1772639
  381. Flam B., Vindzell V., Lundvigsson J.F., et al. Direct oral anticoagulant use and risk of severel COVID-19. J. Intern. Med. 2020; Dec. DOI: 10.1111/joim.13205
  382. Kahn S.R., Lim W., Dunn A.S., et al. Prevention of VTE in nonsurgical patients: antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence‐based clinical practice guidelines. Chest. 2012; 141: e195S– e226S.
  383. Ho K.M., Tan J.A. Stratified meta‐analysis of intermittent pneumatic compression of the lower limbs to prevent venous thromboembolism in hospitalized patients. Circulation. 2013; 128: 1003– 1020.
  384. Kakkos S.K., Caprini J.A., Geroulakos G., et al. Combined intermittent pneumatic leg compression and pharmacological prophylaxis for prevention of venous thromboembolism. Cochrane Database Syst Rev. 2016; 9(9): CD005258. DOI: 10.1002/14651858.CD005258.pub3
  385. Wang Y., Huang D., Wang M., Liang Z. Can Intermittent Pneumatic Compression Reduce the Incidence of Venous Thrombosis in Critically Ill Patients: A Systematic Review and Meta-Analysis. Clin Appl Thromb Hemost. 2020; 26: 1076029620913942. DOI: 10.1177/1076029620913942
  386. Arabi Y.M., Khedr M., Dara S.I., et al. Use of intermittent pneumatic compression and not graduated compression stockings is associated with lower incident VTE in critically ill patients: a multiple propensity scores adjusted analysis. Chest. 2013; 144(1): 152–9. DOI: 10.1378/chest.12-2028
  387. Sachdeva A., Dalton M., Lees T. Graduated compression stockings for prevention of deep vein thrombosis. Cochrane Database Syst Rev. 2018 Nov 3;11(11): DOI: 10.1002/14651858.CD001484.pub4
  388. Centers for Disease Control and Prevention. Interim Additional Guidance for Infection Prevention and Control Recommendations for Patients with Suspected or Confirmed COVID-19 in Outpatient Hemodialysis Facilities. https://www.cdc.gov/coronavirus/2019-ncov/hcp/dialysis.html (Accessed on April 08, 2020).
  389. Kirkup C., Pawlowski C., Puranik A., et al. Healthcare disparities among anticoagulation therapies for severe COVID-19 patients in the multi-site VIRUS registry. J Med Virol. 2021; 1–16.
  390. Jimenez D., Garcia-Sanchez A., Rall P., et al. Incidence of VTE and bleeding among hospitalized patients with coronavirus disease 2019. Chest. 2020. DOI: 10.1016/j.chest.2020.11.005
  391. Буланов А.Ю., Симарова И.Б., Буланова Е.Л. и др. Новая коронавирусная инфекция COVID-19: клиническая и прогностическая значимость оценки фибриногена плазмы. Вестник интенсивной терапии им. А.И. Салтанова. 2020; 4: 42–47. DOI:10.21320/1818-474X-2020-4-39-44. [Yu. Bulanov, I.B. Simarova, E.L. Bulanova, et al. New coronavirus infection COVID-19: clinical and prognostic significance of plasma fibrinogen level. Annals of Critical Care. 2020;4:42–47. DOI: 10.21320/1818-474X-2020-4-42-47 (In Russ)]
  392. Pancaldi E., Pascariello G., Cimino G., et al. Thrombotic risk in patients with COVID-19. Rev Cardiovasc Med. 2021; 22(2): 277–86. DOI: 10.31083/j.rcm2202035. PMID: 34258896
  393. Thaler J., Ay C., Gleixner K.V., et al. Successful treatment of vaccine-induced prothrombotic immune thrombocytopenia (VIPIT). J Thromb Haemost. 2021; 19(7): 1819–22. DOI: 10.1111/jth.15346. Epub 2021 Jun 11. PMID: 33877735; PMCID: PMC8362082.
  394. Handtke S., Wolff M., Zaninetti C., et al. A flow cytometric assay to detect platelet-activating antibodies in VITT after ChAdOx1 nCov-19 vaccination. Blood. 2021; 137(26): 3656– DOI: 10.1182/blood.2021012064. PMID: 33945605; PMCID: PMC8105122.
  395. David P., Dotan A., Mahroum N., Shoenfeld Immune Thrombocytopenic Purpura (ITP) Triggered by COVID-19 Infection and Vaccination. Isr Med Assoc J. 2021; 23(6): 378–80. PMID: 34155853.
  396. Kupietzky A., Parnasa E., Fischer M., et al. Immune Thrombocytopenia Secondary to COVID-19 Infection. Isr Med Assoc J. 2021; 23(6): 342–43. PMID: 34155845.
  397. Sugino H., Sawada Y., Nakamura M. IgA Vasculitis: Etiology, Treatment, Biomarkers and Epigenetic Changes. Int J Mol Sci. 2021; 22(14): 7538. DOI: 10.3390/ijms22147538. PMID: 34299162; PMCID: PMC8307949.
  398. Zacharias H., Dubey S., Koduri G., D’Cruz D. Rheumatological complications of Covid 19. Autoimmun Rev. 2021; 20(9): 102883. DOI: 10.1016/j.autrev.2021.102883. Epub 2021 Jul 5. PMID: 34237419; PMCID: PMC8256657.
  399. Favaloro E.J., Henry B.M., Lippi G. Is Lupus Anticoagulant a Significant Feature of COVID-19? A Critical Appraisal of the Literature. Semin Thromb Hemost. 2021 Jun 15. DOI: 10.1055/s-0041-1729856. Epub ahead of print. PMID: 34130341.
  400. Poggiali E., Bastoni D., Ioannilli E., et al. Deep Vein Thrombosis and Pulmonary Embolism: Two Complications of COVID-19 Pneumonia? Eur J Case Rep Intern Med. 2020; 7(5):001646. DOI: 10.12890/2020_001646
  401. Porres-Aguilar M., Ayala A., Mukherjee D., Tapson V.F. Pulmonary embolism response teams in the challenging era of venous thromboembolism associated with COVID-19. J Vasc Surg Venous Lymphat Disord. 2020; S2213-333X(20)30320-6. DOI: 10.1016/j.jvsv.2020.04.032
  402. Qanadli S.D., Gudmundsson L., Rotzinger D.C. Catheter-directed thrombolysis in COVID-19 pneumonia with acute PE: Thinking beyond the guidelines. Thromb Res. 2020; 192:9–11. DOI: 10.1016/j.thromres.2020.05.007
  403. Taylor F.B.Jr, Toh C.H., Hoots W.K., et al. Scientific Subcommittee on Disseminated Intravascular Coagulation (DIC) of the International Society on Thrombosis and Haemostasis (ISTH). Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001; 86(5): 1327– PMID: 11816725.
  404. Mori H., Ohkawara H., Togawa R., et al. Diagnosis and treatment of disseminated intravascular coagulation in COVID-19 patients: a scoping review. Int J Hematol. 2021; 113(3): 320–9. DOI: 10.1007/s12185-021-03084-z. Epub 2021 Feb 7.
  405. Uaprasert N., Moonla C., Sosothikul D., et al. Systemic Coagulopathy in Hospitalized Patients With Coronavirus Disease 2019: A Systematic Review and Meta-Analysis. Clin Appl Thromb Hemost. 2021; 27: 1076029620987629. DOI: 10.1177/1076029620987629
  406. Mitra S., Ling R.R., Yang I.X., et al. Severe COVID-19 and coagulopathy: A systematic review and meta-analysis. Ann Acad Med Singap. 2021; 50(4): 325–35. DOI: 10.47102/annals-acadmedsg.2020420
  407. Lio K.U., Rali P. Coagulopathy in COVID-19. Lung India. 2021; 38(Supplement): S53–S57. DOI: 10.4103/lungindia.lungindia_226_20. PMID: 33686980; PMCID: PMC8104350.
  408. Franchini M., Liumbruno G.M., Pezzo M. COVID-19 vaccine-associated immune thrombosis and thrombocytopenia (VITT): Diagnostic and therapeutic recommendations for a new syndrome. Eur J Haematol. 2021; 107(2): 173–180. DOI: 10.1111/ejh.13665. Epub 2021 Jun 9.
  409. Wang R.L., Chiang W.F., Shyu H.Y., et al. COVID-19 vaccine-associated acute cerebral venous thrombosis and pulmonary artery embolism. QJM. 2021: hcab185. DOI: 10.1093/qjmed/hcab185. Epub ahead of print. PMID: 34247246.
  410. Schulz J.B., Berlit P., Diener H.C., et al. COVID-19 vaccine-associated cerebral venous thrombosis in Germany. Ann Neurol. 2021 Jul 19. DOI: 10.1002/ana.26172
  411. Mehta P.R., Apap Mangion S., Benger M., et al. Cerebral venous sinus thrombosis and thrombocytopenia after COVID-19 vaccination — A report of two UK cases. Brain Behav Immun. 2021; 95: 514– DOI: 10.1016/j.bbi.2021.04.006. Epub 2021 Apr 20.
  412. Greinacher A., Thiele T., Warkentin T.E., et al. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N Engl J Med. 2021; 384(22): 2092–101. DOI: 10.1056/NEJMoa2104840. Epub 2021 Apr 9.
  413. Chen P.W., Tsai Z.Y., Chao T.H., et al. Addressing Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT) Following COVID-19 Vaccination: A Mini-Review of Practical Strategies. Acta Cardiol Sin. 2021; 37(4): 355–64. DOI: 10.6515/ACS.202107_37(4).20210628A
  414. Aleem A., Nadeem AJ. Coronavirus (COVID-19) Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT). 2021 Apr 25. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan.
  415. Lavin M., Elder P.T., O’Keeffe D., et al. Vaccine-induced immune thrombotic thrombocytopenia (VITT) – a novel clinico-pathological entity with heterogeneous clinical presentations. Br J Haematol. 2021 Jun 22. DOI: 10.1111/bjh.17613. Epub ahead of print. PMID: 34159588.
  416. Henry B.M., Lippi G. Chronic kidney disease is associated with severe coronavirus disease 2019 (COVID-19) infection. Int Urol Nephrol. 2020; 52(6): 1193–1194. DOI: 10.1007/s11255-020-02451-9. Epub 2020 Mar 28. PMID: 32222883; PMCID: PMC7103107.
  417. Ajaimy M., Melamed M.L. COVID-19 in Patients with Kidney Disease. Clin J Am Soc Nephrol. 2020; 15(8): 1087–1089. DOI: 10.2215/CJN.09730620. Epub 2020 Jul 7. PMID: 32636199; PMCID: PMC7409763.
  418. Palevsky P.M., Radhakrishnan J., Townsend R.R. Coronavirus disease 2019 (COVID-19): Issues related to kidney disease and hypertension. https://www.uptodate.com/contents/coronavirus-disease-2019-covid-19-issues-related-to-kidney-disease-and-hypertension?sectionName=Renin%20angiotensin%20system%20inhibitors&topicRef=127429&anchor=H4251900404&source=see_link#H4082535810
  419. Kliger A.S., Silberzweig J. Mitigating Risk of COVID-19 in Dialysis Facilities. Clin J Am Soc Nephrol. 2020; 15(5): 707–709. DOI: 10.2215/CJN.03340320. Epub 2020 Mar 20. PMID: 32198130; PMCID: PMC7269225.
  420. Dashti-Khavidaki S., Khalili H., Nourian A. Pharmacotherapy Considerations in CKD Patients With COVID-19, A Narrative Review. Iran J Kidney Dis. 2020; 14(4): 247–255. PMID: 32655019.
  421. Kliger A.S., Cozzolino M., Jha V., et al. Managing the COVID-19 pandemic: international comparisons in dialysis patients. Kidney Int. 2020; 98: 12.
  422. Vischini G., D’Alonzo S., Grandaliano G., D’Ascenzo F.M. SARS-CoV-2 in the peritoneal waste in a patient treated with peritoneal dialysis. Kidney Int. 2020; 98: 237.
  423. Fishbane S., Hirsch J.S. Erythropoiesis-Stimulating Agent Treatment in Patients With COVID-19. Am J Kidney Dis. 2020; 76: 303.
  424. Leventhal J., Angeletti A., Cravedi P. EPO in Patients With COVID-19: More Than an Erythropoietic Hormone. Am J Kidney Dis. 2020; 76: 441.
  425. Shankaranarayanan D., Muthukumar T., Barbar T., et al. Anticoagulation Strategies and Filter Life in COVID-19 Patients Receiving Continuous Renal Replacement Therapy: A Single-Center Experience. Clin J Am Soc Nephrol. 2020; 16: 124.
  426. Wen Y., LeDoux J.R., Mohamed M., et al. Dialysis Filter Life, Anticoagulation, and Inflammation in COVID-19 and Acute Kidney Injury. Kidney360 1. DOI: 10.34067/KID.0004322020
  427. Almeida C.P., Ponce D., de Marchi A.C., Balbi A.L. Effect of peritoneal dialysis on respiratory mechanics in acute kidney injury patients. Perit Dial Int. 2014; 34: 544.
  428. Montravers P., Lucet J.C. Propositions pour la prise en charge anesthésique d’un patient suspect ou infecté à Coronavirus COVID-19. https://sfar.org/propositions-pour-la-prise-en-charge-anesthesique-dun-patient-suspect-ou-infecte-a-coronavirus-covid-19/
  429. Chen X., Liu Y., Gong Y., et al. Chinese Society of Anesthesiology, Chinese Association of Anesthesiologists. Perioperative Management of Patients Infected with the Novel Coronavirus: Recommendation from the Joint Task Force of the Chinese Society of Anesthesiology and the Chinese Association of Anesthesiologists. Anesthesiology. 2020 Mar 26. DOI: 10.1097/ALN.0000000000003301
  430. Wen X., Li Y. Anesthesia Procedure of Emergency Operation for Patients with Suspected or Confirmed COVID-19. Surg Infect (Larchmt). 2020; 21(3):299. DOI: 10.1089/sur.2020.040
  431. Coimbra R, Edwards S, Kurihara H, et al. European Society of Trauma and Emergency Surgery (ESTES) recommendations for trauma and emergency surgery preparation during times of COVID-19 infection. Eur J Trauma Emerg Surg. 2020 Jun;46(3):505-510. doi: 10.1007/s00068-020-01364-7.
  432. Greenland J.R., Michelow M.D., Wang L., London M.J. COVID-19 Infection: Implications for Perioperative and Critical Care Physicians. Anesthesiology. 2020 Mar 27. DOI: 10.1097/ALN.0000000000003303
  433. Zhang H.F., Bo L., Lin Y., et al. Response of Chinese Anesthesiologists to the COVID-19 Outbreak. Anesthesiology. 2020 Mar 30. DOI: 10.1097/ALN.0000000000003300
  434. Böhrer H., Fleischer F., Werning P. Tussive effect of a fentanyl bolus administered through a central venous catheter. Anaesthesia. 1990; 45:18–21.
  435. Chestnutʼs Obstetric Anesthesia: Principles and Practice 6th Edition. D.H. Chestnut et al. Elsevier; 2019.
  436. Liu H., Wang L.L., Zhao S.J., et al. Why are pregnant women susceptible to COVID-19? An immunological viewpoint. J Reprod Immunol. 2020 Mar 19; 139: 103122. DOI: 10.1016/j.jri.2020.103122
  437. Coronavirus (COVID-19) Infection in Pregnancy Information for healthcare professionals. Version 7: Published Thursday 9 April 2020. https://www.rcog.org.uk/globalassets/documents/guidelines/2020-04-09-coronavirus-covid-19-infection-in-pregnancy.pdf
  438. Kalafat E., Yaprak E., Cinar G., Varli B., et al. Lung ultrasound and computed tomographic findings in pregnant woman with COVID-19. Ultrasound Obstet Gynecol. 2020 Apr 6. DOI: 10.1002/uog.22034
  439. Liu H., Liu F., Li J., Zhang T., et al. Clinical and CT imaging features of the COVID-19 pneumonia: Focus on pregnant women and children. J Infect. 2020 Mar 20. pii: S0163-4453(20)30118-3. DOI: 10.1016/j.jinf.2020.03.007
  440. Mathur S., Pillenahalli Maheshwarappa R., Fouladirad S., et al. Emergency Imaging in Pregnancy and Lactation. Can Assoc Radiol J. 2020; 71(3):396–402. DOI: 10.1177/0846537120906482
  441. Wang P.S., Rodgers S.K., Horrow M.M. Ultrasound of the First Trimester. Radiol Clin North Am. 2019; 57(3): 617–633. DOI: 10.1016/j.rcl.2019.01.006
  442. Tirada N., Dreizin D., Khati N.J., et al. Imaging Pregnant and Lactating Patients. Radiographics. 2015; 35(6): 1751–1765. DOI: 10.1148/rg.2015150031
  443. ГОСТ РМЭК 60601-2-33-2013: Изделия медицинские электрические. Часть 2–33. Частные требования безопасности с учетом основных функциональных характеристик к медицинскому диагностическому оборудованию, работающему на основе магнитного резонанса.
  444. [GOST R IEC 60601-2-33-2013: Medical electrical equipment. Part 2–33. Particular safety requirements, taking into account the basic functional characteristics of medical diagnostic equipment operating on the basis of magnetic resonance. (In Russ)]
  445. СанПиН6.1.1192-03. Гигиенические требования к устройству и эксплуатации рентгеновских кабинетов, аппаратов и проведению рентгенологических исследований.
  446. [SanPiN 2.6.1.1192–03. Hygienic requirements for the design and operation of X-ray rooms, apparatuses and X-ray studies. (In Russ)]
  447. Juusela A., Nazir M., Gimovsky M. Two Cases of COVID-19 Related Cardiomyopathy in Pregnancy. American Journal of Obstetrics & Gynecology. 3 April 2020. In Press. Journal Pre-proof. DOI: 10.1016/j.ajogmf.2020.100113
  448. Bauer M., Bernstein K., Dinges E., et al. Obstetric Anesthesia During the COVID-19 Pandemic. Anesth Analg. 2020 Apr 6. DOI: 10.1213/ANE.0000000000004856
  449. Mei H., Hu Y. Characteristics, causes, diagnosis and treatment of coagulation dysfunction in patients with COVID-19. Zhonghua Xue Ye Xue Za Zhi. 2020; 41(0): E002. DOI: 10.3760/cma.j.issn.0253-2727.2020.0002
  450. Tang N., Li D., Wang X., Sun Z. Abnormal Coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. 2020; 18(4): 844–847. DOI: 10.1111/jth.14768
  451. Xia W., Shao J., Guo Y., et al. Clinical and CT features in pediatric patients with COVID-19 infection: Different points from adults. Pediatr Pulmonol. 2020; 55(5): 1169–1174. DOI: 10.1002/ppul.24718. [Epub 2020 Mar 5]
  452. Liu W., Zhang Q., Chen J., et al. Detection of Covid-19 in Children in Early January 2020 in Wuhan, China. N Engl J Med. 2020; 382(14): 1370–1371. DOI: 10.1056/NEJMc2003717
  453. Wei M., Yuan J., Liu Y., et al. Novel Coronavirus Infection in Hospitalized Infants Under 1 Year of Age in China. JAMA. 2020 Feb 14. DOI: 10.1001/jama.2020.2131
  454. Coronavirus (COVID-19): evidence relevant to critical care. [Cochrane special collection]. URL: https://www.cochrane.org/news/special-collection-coronavirus-covid-19-evidence-relevant-critical-care
  455. Dong Y., Mo X., Hu Y., et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics. 2020. DOI: 10.1542/peds.2020-0702. [Epub ahead of print]: https://pediatrics.aappublications.org/content/early/2020/03/16/peds.2020-0702.long
  456. Sun D., Li H., Lu X.X., et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: a single centerʼs observational study. World J Pediatr. 2020 Mar 19. DOI: 10.1007/s12519-020-00354-4
  457. Zeng L., Xia S., Yuan W., et al. Neonatal Early-Onset Infection With SARS-CoV-2 in 33 Neonates Born to Mothers With COVID-19 in Wuhan, China. JAMA Pediatr. Published online March 26, 2020. DOI: 10.1001/jamapediatrics.2020.0878
  458. Wang J., Qi H., Bao L., Li F., Shi Y. A contingency plan for the management of the 2019 novel coronavirus outbreak in neonatal intensive care units. Lancet Child Adolesc Health. 2020. DOI: 10.1016/S2352-4642(20)30040-7
  459. Pouletty M., Borocco C., Ouldali N., et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): a multicentre cohort. Ann Rheum Dis. 2020; 0:1–8. DOI: 10.1136/annrheumdis-2020-217960
  460. Verdoni L., Mazza A., Gervasoni A. An Outbreak of Severe Kawasaki-like Disease at the Italian Epicentre of the SARS-CoV-2 Epidemic: An Observational Cohort Study. Lancet. 2020; 395(10239):1771–1778. DOI: 10.1016/S0140-6736(20)31103-X
  461. Toubiana J., Poirault C., Corsia A., et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: prospective observational study. BMJ. 2020; 369. DOI: 10.1136/bmj.m2094
  462. Suggested citation: European Centre for Disease Prevention and Control. Paediatric inflammatory multisystem syndrome and SARS-CoV-2 infection in children. 2020 May 15. ECDC: Stockholm; 2020.
  463. Belot A., Antona D., Renolleau S., et al. SARS-CoV-2-related paediatric inflammatory multisystem syndrome, an epidemiological study. France, 1 March to 17 May 2020. Euro Surveill. 2020; 25(22):pii=2001010. DOI: 10.2807/1560-7917.ES.2020.25.22.2001010
  464. Whittaker E., Bamford A., Kenny J., et al. Clinical Characteristics of 58 Children With a Pediatric Inflammatory Multisystem Syndrome Temporally Associated With SARS-CoV-2. JAMA. 2020 June 8. DOI: 10.1001/jama.2020.10369
  465. Cheung E.W., Zachariah P., Gorelik M., et al. Multisystem Inflammatory Syndrome Related to COVID-19 in Previously Healthy Children and Adolescents in New York City. JAMA. 2020 June 8. DOI: 10.1001/jama.2020.10374
  466. Son M.B. Pediatric inflammatory syndrome temporally related to covid-19. BMJ. 2020; 369:m2123. DOI: 10.1136/bmj.m2123
  467. Ronco C., Reis T., De Rosa S. Coronavirus Epidemic and Extracorporeal Therapies in Intensive Care: si vis pacem para bellum. Blood Purif. 2020 Mar 13: 1–4. DOI: 10.1159/000507039.
  468. Interim Guidance for Emergency Medical Services (EMS) Systems and 911 Public Safety Answering Points (PSAPs) for COVID-19 in the United States. https://www.cdc.gov/ coronavirus/2019-ncov/hcp/guidance-for-ems.html
  469. Thomas P., Baldwin C., Bissett B., et al. Physiotherapy management for COVID-19 in the acute hospital setting. J Physiother. 2020; 66(2):73–82. DOI: 10.1016/j.jphys.2020.03.011. 2020
  470. https://www.mhlw.go.jp/content/000609467.pdf
  471. Recommendations to guide clinical practice. Version 1.0, published 23 March 2020.
  472. Green M., Marzano V., Leditschke I.A., et al. Mobilization of intensive care patients: a multidisciplinary practical guide for clinicians. Multidiscip Healthc. 2016; 9: 247–256.
  473. Aoyagi J., Kanai T., Maru T., et al. Efficacy of plasma exchange with a high dose of acyclovir for disseminated varicella infection. CEN Case Rep. 2020; 9(1): 15–18. DOI: 10.1007/s13730-019-00415-2
  474. Zhang X.Y., Ye X.W., Feng D.X., et al. Hemophagocytic Lymphohistiocytosis Induced by Severe Pandemic Influenza A(H1N1) 2009 Virus Infection: A Case Report. Case Rep Med. 2011; 2011: 951910. DOI: 10.1155/2011/951910
  475. Demirkol D., Yildizdas D., Bayrakci B., et al.; Turkish Secondary HLH/MAS Critical Care Study Group. Hyperferritinemia in the critically ill child with secondary hemophagocytic lymphohistiocytosis/sepsis/multiple organ dysfunction syndrome/macrophage activation syndrome: what is the treatment? Crit Care. 2012; 16(2): R52. DOI: 10.1186/cc11256
  476. Pandey P.K., Kaul E., Agarwal N., Goel S. Effectiveness of therapeutic plasma exchange in a critically ill child with secondary hemophagocytic lymphohistiocytosis. Asian J Transfus Sci. 2019; 13(2): 145–147. DOI: 10.4103/ajts.AJTS_45_18
  477. EVMS critical care COVID-19 management protocol. 2020. Available at https://www.evms.edu/media/evms_public/departments/internal_medicine/EVMS_Critical_Care_COVID-19_Protocol.pdf
  478. Keith P., Day M., Perkins L., et al. A novel treatment approach to the novel coronavirus: an argument for the use of therapeutic plasma exchange for fulminant COVID-19. Crit Care. 2020; 24(1): 128. DOI: 10.1186/s13054-020-2836-4
  479. Xu K., Cai H., Shen Y., et al. [Management of corona virus disease-19 (COVID-19): the Zhejiang experience.] Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020 Feb 21; 49(1): 0.
  480. Zhang C., Huang S., Zheng F., Dai Y. Controversial treatments: An updated understanding of the coronavirus disease 2019. J Med Virol. Mar 26, 2020. DOI: 10.1002/jmv.25788
  481. Adeli S.H., Asghari A., Tabarraii R., et al. Therapeutic plasma exchange as a rescue therapy in patients with coronavirus disease 2019: a case series. Pol Arch Intern Med. 2020; 130(5): 455–8. DOI: 10.20452/pamw.15340. Epub 2020 May 7. PMID: 32380821.
  482. Balagholi S., Dabbaghi R., Eshghi P., et al. Potential of therapeutic plasmapheresis in treatment of COVID-19 patients: Immunopathogenesis and coagulopathy Transfusion and Apheresis Science 59 (2020) 102993. DOI: 10.1016/j.transci.2020.102993
  483. Dogan L., Kaya D., Sarikaya T., et al. Plasmapheresis treatment in COVID-19-related autoimmune meningoencephalitis: Case series. Brain Behav Immun. 2020; 87: 155–8.
  484. Faqihi F., Alharthy A., Alodat M., et al. Therapeutic plasma exchange in adult critically ill patients with life-threatening SARS-CoV-2 disease: A pilot study. J Crit Care. 2020; 60: 328–33.
  485. Faqihi F., Alharthy A., Alshaya R., et al. Reverse takotsubo cardiomyopathy in fulminant COVID-19 associated with cytokine release syndrome and resolution following therapeutic plasma exchange: a case-report. BMC Cardiovascular Disorders. 2020; 20: 389. DOI: 10.1186/s12872-020-01665-0
  486. Fernandez J., Gratacos-Ginès J., Olivas P., et al. Plasma Exchange: An Effective Rescue Therapy in Critically Ill Patients With Coronavirus Disease 2019 Infection. Critical Care Medicine. 2020; 48(12): e1350–e1355. DOI: 10.1097/CCM.0000000000004613
  487. Gluck W.L., Callahan S.P., Brevetta R.A., et al. Efficacy of therapeutic plasma exchange in the treatment of penn class 3 and 4 cytokine release syndrome complicating COVID-19. Respiratory Medicine. 2020; 175: 106188. DOI: 10.1016/j.rmed.2020.106188
  488. Hashemiana S.M. R., Shafigh N., Afzal G. et.al. Plasmapheresis reduces cytokine and immune cell levels in COVID-19 patients with acute respiratory distress syndrome (ARDS). Pulmonology, PULMOE-1569; No. of Pages 7. DOI: 10.1016/j.pulmoe.2020.10.017
  489. Kamran S.M., Mirza Z-e-H., Naseem A., et al. Therapeutic plasma exchange for coronavirus disease-2019 triggered cytokine release syndrome; a retrospective propensity matched control study. PLoS ONE 16(1): e0244853. https://doi.org/10.1371/journal.pone.0244853
  490. Keith P., Day M., Choe C., et al. The successful use of therapeutic plasma exchange for severe COVID-19 acute respiratory distress syndrome with multiple organ failure. SAGE Open Med Case Rep. 2020; 8:
  491. Khamisa F., Al-Zakwanib I., Al-Hashmic S., et al. Therapeutic plasma exchange in adults with severe COVID-19 infection. International Journal of Infectious Diseases. 2020; 99: 214–18. DOI: 10.1016/j.ijid.2020.06.064
  492. Lin J.H., Chen Y.C., Lu C.L., et al. Application of plasma exchange in association with higher dose CVVH in Cytokine Storm Complicating COVID-19. J Formos Med Assoc. 2020; 119: 1116–8.
  493. Morath C., Weigand M.A., Zeier M., et al. Plasma exchange in critically ill COVID-19 patients. Critical Care. 2020; 24: 481. DOI: 10.1186/s13054-020-03171-3
  494. Patidar G.P., Land K.J., Vrielink H., et al. Understanding the role of therapeutic plasma exchange in COVID-19: preliminary guidance and practices Vox Sanguinis. 2021; 116(7): 798–807. DOI: 10.1111/vox.13067
  495. Ronco C., Bagshaw S.M., Rinaldo Bellomo R., et al. Extracorporeal Blood Purification and Organ Support in the Critically Ill Patient during COVID-19 Pandemic: Expert Review and Recommendation Blood Purif. May 26, 2020. DOI: 10.1159/000508125
  496. Shi H., Zhou C., He P., et al. Successful treatment with plasma exchange followed by intravenous immunoglobulin in a critically ill patient with COVID-19. Int J Antimicrob Agents. 2020; 56(2): 105974.
  497. Zhang L., Zhai H., Ma S., et al. Efficacy of therapeutic plasma exchange in severe COVID-19 patients. Br J Haematol. 2020; 190: e181–e183.
  498. Cheng Y., Wong R., Soo Y.O., et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005; 24(1):44–46. Available at: https://www.ncbi.nlm.nih.gov/pubmed/15616839
  499. Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J Infect Dis. 2015; 211(1):80–90. Available at: https://www.ncbi.nlm.nih.gov/pubmed/25030060
  500. Casadevall A., Pirofski L.A. The convalescent sera option for containing COVID-19. The Journal of clinical investigation. 2020. DOI: 10.1172/JCI138003
  501. Hung I.F., To K.K., Lee C.K., et al. Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest. 2013; 144: 464–473.
  502. Hung I.F., To K.K., Lee C.K., et al. Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A(H1N1) 2009 virus infection. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2011; 52: 447–456.
  503. Brown J.F., Rowe K., Zacharias P., et al. Apheresis for collection of Ebola convalescent plasma in Liberia. J Clin Apher. 2017; 32(3): 175–181. DOI: 10.1002/jca.21482
  504. Shen C., Wang Z., Zhao F., et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020 Mar 27. DOI: 10.1001/jama.2020.4783
  505. Soo Y.O., Cheng Y., Wong R., et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect. 2004; 10(7): 676–678.
  506. Lim V.W., Tudor Car L., Leo Y.S., et al. Passive immune therapy and other immunomodulatory agents for the treatment of severe influenza: Systematic review and meta-analysis. Influenza Other Respir Viruses. 2020; 14(2): 226–236. DOI: 10.1111/irv.12699
  507. БелкинА.А., Давыдова Н.С., Лейдерман И.Н. и др. Реабилитация в интенсивной терапии Клинические рекомендации. В кн.: Анестезиология и реаниматология. Под ред. И.Б. Заболотских, Е.М. Шифмана. М.; ГЭОТАР-медиа, 2016. С. 833–858.
  508. [Belkin A.A.,Davydova N.S.,Lejderman I.N., etal.Reabilitaciya v intensivnoj terapii Klinicheskie rekomendacii. : Anesteziologiya i reanimatologiya. Eds. I.B. Zabolotskih, E.M. SHifman. M.; GEOTAR-media, 2016. S. 833–858. (In Russ)]
  509. Приказ Министерства здравоохранения России от 19.03.2020 №198н «О временном порядке организации работы медицинских организаций в целях реализации мер по профилактике и снижению рисков распространения новой коронавирусной инфекции COVID-19» (в ред. от 27.03.2020 и от 04.2020).
  510. [PrikazMinisterstvazdravoohraneniyaRossiiot 19.03.2020 № 198n “OvremennomporyadkeorganizaciirabotymedicinskihorganizacijvcelyahrealizaciimerpoprofilaktikeisnizheniyuriskovrasprostraneniyanovojkoronavirusnojinfekciiCOVID-19” (vred. ot 27.03.2020 iot 02.04.2020). (In Russ)]
  511. Responding to COVID-19 and beyond : A framework for assessing early rehabilitation needs following treatment in intensive care. Collaborative, N.P.-I.C.R. Intensive Care Society. 2020: 1–36.
  512. Stam H.J., Stucki G., Bickenbach J. Covid-19 and Post Intensive Care Syndrome: A Call for Action.J. Rehabil Med. 2020; 52(4): jrm00044. DOI: 10.2340/16501977-2677
  513. Hosey M.M., Needham D.M. Survivorship after COVID-19 ICU stay. Nature Reviews Disease Primers. 2020; 6(1). https://doi.org/10.1038/s41572-020-0201-1
  514. Korupolu R., Francisco G., Levin H., Needham D. Rehabilitation of critically Ill COVID-19 survivors. The Journal of the International Society of Physical and Rehabilitation Medicine. 2020; 3(45): 42–52. https://doi.org/10.4103/jisprm.jisprm_8_20
  515. NHS England. (2020). Clinical guide for the management of critical care for adults with COVID-19 during the coronavirus pandemic. Icmanaesthesiacovid-19. Org. version 4 (28-10-2020), 1–19.
  516. Белкин А.А., Лейдерман И.Н., Давыдова Н.С. Реабилитация в интенсивной терапии. Национальное руководство по интенсивной терапии. Под ред. И.Б. Заболотских, Д.Н. Проценко. 2-е изд., т. 1. М.: ГЭОТАР-Медиа, 2020. С. 818–844. [Belkin A.A., Lejderman I.N., Davydova N.S. Reabilitaciya v intensivnoj terapii. Nacional’noe rukovodstvo po intensivnoj terapii. I.B. Zabolotskikh, D.N. Procenko. 2 ed., v. 1. M.: GEOTAR-Media, 2020. Р. 818–844. (In Russ)]
  517. Белкин А.А. Синдром последствий интенсивной терапии (ПИТ-синдром). Вестник интенсивной терапии имени А.И. Салтанова. 2018; 2: 12–23. [Belkin A.A. Syndrome Effects of Intensive Therapy — Post Intensive Care Syndrome (PICS). Alexander Saltanov Intensive Care Herald. 2018; 2: 12–23. (In Russ)]
  518. Белкин А.А. Сомнологические аспекты пребывания пациента в отделении реанимации и интенсивной терапии. Сonsilium Medicus. Неврология. 2017; 19: 34–37. [Belkin A.A. The Somnological Aspects Of The Patient’s Stay In The Resuscitation And Intensive Care Unit. Сonsilium Medicus. Nevrologiya I revmatologiya. 2017; 19: 34–37. (In Russ)]
  519. Анестезиолого-реанимационное обеспечение пациентов с новой коронавирусной инфекцией COVID-19, пересмотр 30.04.2020. [Anesteziologo-reanimacionnoe obespechenie pacientov s novoj koronavirusnoj infekciej COVID-19, peresmotr 30.04.2020. (In Russ)]
  520. Kress J.P., Hall J.B. ICU-acquired weakness and recovery from critical illness. N Engl J Med. 2014; 370(17): 1626–1635.
  521. Herridge M.S., Tansey C.M., Matté A. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011: 364(14): 1293–1304.
  522. РФ, Министерство здравоохранения. (2020). Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). (Vol. 10-10-2020). https://doi.org/10.1155/2010/706872. [RF, Ministerstvo zdravoohraneniya. (2020). Profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19). (Vol. 10-10-2020). https://doi.org/10.1155/2010/706872 (In Russ)]
  523. Временные методические рекомендации. Медицинская реабилитация при новой короновирусной инфекции COVID-19 (Vol. 1 СРР. (2020).). [Temporary guidelines. Medicinskaya reabilitaciya pri novoj koronovirusnoj infekcii COVID-19 (Vol. 1 SRR. (2020).). (In Russ)]
  524. Simpson R., Robinson L. Rehabilitation Following Critical Illness in People With COVID-19 Infection. Am J Phys Med Rehabil. 2020; Apr 10. DOI: 10.1097/PHM.0000000000001443.Online ahead of print
  525. The first affiliated Hospital, Zhejiang University School of Medicine. Compiled According to Clinical Experience. Rehabilitation therapy for COVID-19 patients. In: Handbook of COVID-19, prevention and treatment. 2020: 47–48. http://www.zju.edu.cn/english/2020/0323/c19573a1987520/page.htm. (Last Access 27 March 2020).
  526. Vitacca M., Lazzeri M., Guffanti E., et al. An Italian consensus on pulmonary rehabilitation in COVID-19 patients recovering from acute respiratory failure: Results of a Delphi process. Monaldi Archives for Chest Disease. 2020; 90(2): 385–393. https://doi.org/10.4081/monaldi.2020.1444
  527. Mezidi M., Guérin C. Effects of patient positioning on respiratory mechanics in mechanically ventilated ICU patients. Annals of Translational Medicine. 2018; 6(19): 384–384. https://doi.org/10.21037/atm.2018.05.50
  528. Белкин А.А., Вознюк И.А., Иванова Г.Е. и др. Клинические рекомендации: Вертикализация пациентов в процессе реабилитации. М., 2014. [Belkin A.A., Voznyuk I.A., Ivanova G.E., et al. Klinicheskie rekomendacii: Vertikalizaciya pacientov v processe reabilitacii. M., 2014. (In Russ)]
  529. Taito S., Shime N., Ota K., Yasuda H. Early mobilization of mechanically ventilated patients in the intensive care unit. J Intensive Care. 2016; 4(1): 50. DOI: 10.1186/s40560-016-0179-7
  530. Eggmann S., Verra M.L., Luder G., et al. Physiological effects and safety of an early, combined endurance and resistance training in mechanically ventilated, critically ill patients. Physiotherapy. 2015; 101: e344–e345. DOI: 10.1016/j.physio.2015.03.553
  531. Gosselink R., Clini E. Rehabilitation in Intensive Care. In: Clini E., Holland A., Pitta F., Troosters T. (eds.). Textbook of Pulmonary Rehabilitation. Springer Nature, Cham (CH), 2018: 349–366.
  532. Fossat G., Baudin F., Courtes L., et al. Effect of in-bed leg cycling and electrical stimulation of the quadriceps on global muscle strength in critically ill adults: A Randomized Clinical Trial. JAMA. 2018; 320(4): 368–378.
  533. Fuke R., Hifumi T., Kondo Y., et al. Early rehabilitation to prevent postintensive care syndrome in patients with critical illness: A systematic review and meta-analysis. BMJ Open. 2018; 8(5): e019998.
  534. Zuercher P. Dysphagia in the Intensive Care Unit Epidemiology,Mechanisms, and Clinical Management. Critical Care. 2019; 103(23): 329–340. Retrieved from http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L27172693
  535. Kimura Y., Ueha R., Furukawa T., Oshima F. Society of swallowing and dysphagia of Japan: Position statement on dysphagia management during the COVID-19 outbreak. 2020; January.
  536. Национальная ассоциация по борьбе с инсультом, Всероссийское общество неврологов Ассоциация нейрохирургов России, Объединение нейроанестезиологов и нейрореаниматологов, Союз реабилитологов России, Белкин А.А., Балашова И.Н., Иванова Г.Е. и др. Диагностика и лечение дисфагии при заболеваниях центральной нервной системы: клинические рекомендации. https://rehabrus.ru/Docs/2020/Disfagia_last.pdf [Nacional’naya associaciya po bor’be s insul’tom, Vserossiĭskoe obshchestvo nevrologov Associaciya neĭrohirurgov Rossii, Ob”edinenie neĭroanesteziologov i neĭroreanimatologov, Soyuz reabilitologov Rossii, Belkin A.A., Balashova I.N., Ivanova G.E., et al. Diagnostika i lechenie disfagii pri zabolevaniyah central’noĭ nervnoĭ sistemy: klinicheskie rekomendacii. https://rehabrus.ru/Docs/2020/Disfagia_last.pdf (In Russ)]
  537. Shneider A., Kudriavtsev A., Vakhrusheva A. Can melatonin reduce the severity of COVID-19 pandemic? International Reviews of Immunology. 2020; 39(4): 153–162. DOI: 10.1080/08830185.2020.1756284
  538. Donner C.F., Raskin J., ZuWallack R., et al. Incorporating telemedicine into the integrated care of the COPD patient a summary of an interdisciplinary workshop held in Stresa, Italy, 7–8 September 2017. Respir Med. 2018; 143: 91–102.
  539. Левина О.А., Евсеев А.К., Шабанов А.К. и др. Безопасность применения гипербарической оксигенации при лечении COVID-19. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2020; 9(3): 314–320. https://doi.org/10.23934/2223-9022-2020-9-3-314-320 [Levina O.A., Еvseev A.K., Shabanov A.K., et al. The Safety of Hyperbaric Oxygen Therapy in the Treatment of Covid-19. Russian Sklifosovsky Journal “Emergency Medical Care”. 2020; 9(3): 314–320. (In Russ)]
  540. ПетриковС.С., Евсеев А.К., Левина О.А. и др. Гипербарическая оксигенация в терапии пациентов с COVID-19. Общая реаниматология. 2020; 16(6): 4–8. https://doi.org/10.15360/1813-9779-2020-6-4-18 [Petrikov S.S., Evseev A.K., Levina O.A., et al.Hyperbaric Oxygen Therapy in Patients with COVID-19. General Reanimatology. 2020; 16(6): 4–18. (In Russ)]
  541. Самойлов А.С., Удалов Ю.Д., Шеянов М.В. и др. Опыт применения гипербарической оксигенотерапии с использованием портативных барокамер для лечения пациентов с новой коронавирусной инфекцией COVID-19. Биомедицина. 2020; 2: 39–46. https://doi.org/10.33647/2074-5982-16-2-39-46 [Samoilov A.S., Udalov Yu.D., Sheyanov M.V., et al.Experience in Applying Hyperbaric Oxygen Therapy Using Portable Pressure Chambers for the Treatment of Patients with the Novel Coronavirus Infection COVID-19. Journal Biomed. 2020; 2: 39–46. (In Russ)]
  542. Guo D., Pan S., Wang M., Guo Y. Hyperbaric oxygen therapy may be effective to improve hypoxemia in patients with severe COVID-2019 pneumonia: two case reports. Undersea Hyperb Med. 2020; 47(2): 181–187. PMID: 32574433.
  543. Gorenstein S.A., Castellano M.L., Slone E.S., et al. Hyperbaric oxygen therapy for COVID-19 patients with respiratory distress: treated cases versus propensity-matched controls. Undersea Hyperb Med. 2020; 47(3): 405–413. PMID: 32931666.
  544. https://clinicaltrials.gov/ct2/show/NCT04358926
  545. https://clinicaltrials.gov/ct2/show/NCT04409886
  546. Шогенова Л.В., Петриков С.С., Журавель С.В. и др. Термическая гелий-кислородная смесь в лечебном алгоритме больных с COVID-19. Вестник Российской академии медицинских наук 2020; 75(5S): 353–362. https://doi.org/10.15690/vramn1412 [ShogenovaV., Petrikov S.S., Zhuravel S.V., et al. Thermal Helium-Oxygen Mixture as Part of a Treatment Protocol for Patients with COVID-19. Annals of the Russian academy of medical sciences. 2020; 75(5S): 353–362. DOI: 10.15690/vramn1412 (In Russ)]
  547. Pal R., Banerjee M., Yadav U., Bhattacharjee S. Statin use and clinical outcomes in patients with COVID-19: An updated systematic review and meta-analysis. Postgrad Med J. 2021.
  548. Yuan S. Statins May Decrease the Fatality Rate of Middle East Respiratory Syndrome Infection. mBio. 2015; 6: e01120.
  549. Zhonghua Jie He He Hu Xi Za Zhi. [Recommendations for Respiratory Rehabilitation of Coronavirus Disease 2019 in Adult]. [Article in Chinese]. 2020; 43(4): 308–314. DOI: 10.3760/cma.j.cn112147-20200228-00206
Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.

Copyright (c) 2022 ВЕСТНИК ИНТЕНСИВНОЙ ТЕРАПИИ имени А.И. САЛТАНОВА