Интраоперационная гипотензия

Е.А. Леонова, Г.Б. Мороз, В.А. Шмырев, В.В. Ломиворотов

ФГБУ «НМИЦ им. акад. Е.Н. Мешалкина» МЗ РФ, Новосибирск

Для корреспонденции: Владимир Владимирович Ломиворотов — профессор, член-корреспондент РАН, заместитель директора по научной работе ФГБУ «НМИЦ им. акад. Е.Н. Мешалкина», Новосибирск; e-mail: vvlom@mail.ru

Для цитирования: Леонова Е.А., Мороз Г.Б., Шмырев В.А., Ломиворотов В.В. Интраоперационная гипотензия. Вестник интенсивной терапии имени А.И. Салтанова. 2018;3:87–96.

DOI: 10.21320/1818-474X-2018-3-87-96


Основной задачей анестезиолога является сохранение гомеостаза организма пациента во время хирургического вмешательства. Из всех физиологических параметров, пожалуй, лишь артериальное давление (АД) имеет столь значительную амплитуду колебаний, а связь послеоперационных осложнений с колебаниями АД зачастую неочевидна. АД является модифицируемым параметром и может быть скорректировано инфузионной терапией, а также применением вазопрессорных и инотропных средств.

Интраоперационное снижение АД может быть следствием действия анестетиков, гипотензивных препаратов, нефизиологичного позиционирования пациента на операционном столе, искусственной вентиляции легких (ИВЛ), хирургических манипуляций, искусственного кровообращения, гиповолемии, нарушения кислотно-основного состояния и электролитного баланса, острой сердечной недостаточности, аритмий, анафилаксии и других факторов.

Трудность в анализе влияния гипотензии на организм пациента создает отсутствие унифицированного определения данного состояния. В качестве границ гипотензии используется более 140 различных абсолютных и относительных величин. Однако сведения, накопленные за последние несколько лет, позволяют проследить тенденцию, что интраоперационное падение АД разной выраженности увеличивает риск развития осложнений со стороны нервной, сердечно-сосудистой, выделительной и других систем организма, что в конечном итоге приводит к увеличению морбидности и смертности пациентов после хирургических вмешательств. Частота и степень развития неблагоприятных эффектов напрямую зависит от степени и продолжительности падения артериального давления.

Каждый пациент имеет индивидуальный набор генетических, физиологических и патофизиологических особенностей, которые определяют уровень АД, оптимального для функционирования внутренних органов. Поэтому определенные перспективы имеются в отношении развития стратегии поддержания индивидуализированного АД, за основу которого взято «рабочее» давление пациента до операции.

Ключевые слова: артериальное давление, гипотензия, инсульт, делирий, инфаркт миокарда, острое почечное повреждение

Поступила: 24.07.2018


Литература

  1. Bellomo R., Hilton A. The ATHOS-3 trial, angiotensin II and The Three Musketeers. Crit. Care Resusc. 2017; 19(1): 3–4.
  2. Lonjaret L., Lairez O., Minville V., Geeraerts T. Optimal perioperative management of arterial blood pressure. Integr. Blood Press. Control. 2014; 7: 49–59.
  3. Bijker J.B., van Klei W.A., Kappen T.H., et al. Incidence of Intraoperative Hypotension as a Function of the Chosen Definition. Anesthesiology. 2007; 107(2): 213–220.
  4. Dahlgren G., Irestedt L. The definition of hypotension affects its incidence. Acta Anaesthesiol. Scand. 2010; 54(8): 907–908.
  5. Kalogeris T., Baines C.P., Krenz M., Korthuis R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell. Mol. Biol. 2012; 298: 229–317.
  6. Drummond J.C. The lower limit of autoregulation: time to revise our thinking? Anesthesiology. 1997; 86(6): 1431–1433.
  7. Strandgaard S. Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circulation. 1976; 53(4): 720–727.
  8. Waldemar G., Paulson O.B. Angiotensin converting enzyme inhibition and cerebral circulation — a review. Br. J. Clin. Pharmacol. 1989; 28(Suppl. 2): 177S–182S.
  9. Larsen F.S., Olsen K.S., Hansen B.A., et al. Transcranial Doppler is valid for determination of the lower limit of cerebral blood flow autoregulation. Stroke. 1994; 25(10): 1985–1988.
  10. Olsen K.S., Svendsen L.B., Larsen F.S., Paulson O.B. Effect of labetalol on cerebral blood flow, oxygen metabolism and autoregulation in healthy humans. Br. J. Anaesth. 1995; 75(1): 51–54.
  11. Olsen K.S., Svendsen L.B., Larsen F.S. Validation of transcranial near-infrared spectroscopy for evaluation of cerebral blood flow autoregulation. J. Neurosurg. Anesthesiol. 1996; 8(4): 280–285.
  12. Joshi B., Ono M., Brown C., et al. Predicting the Limits of Cerebral Autoregulation During Cardiopulmonary Bypass. Anesth. Analg. 2012; 114(3): 503–510.
  13. Ramanathan T., Skinner H. Coronary blood flow. Contin. Educ. Anaesth. Crit. Care Pain. 2005; 5(2): 61–64.
  14. Carlström M., Wilcox C.S., Arendshorst W.J. Renal Autoregulation in Health and Disease. Physiol. Rev. 2015; 95(2): 405–511.
  15. Selim M. Perioperative Stroke. N. Engl. J. Med. 2007; 356(7): 706–713.
  16. Bateman B.T., Schumacher H.C., Wang S., et al. Perioperative Acute Ischemic Stroke in Noncardiac and Nonvascular Surgery. Anesthesiology. 2009; 110(2): 231–238.
  17. Sun L.Y., Chung A.M., Farkouh M.E., et al. Defining an Intraoperative Hypotension Threshold in Association with Stroke in Cardiac Surgery. Anesthesiology. 2018; 129(3): 440–447.
  18. Gottesman R.F., Sherman P.M., Grega M.A., et al. Watershed Strokes After Cardiac Surgery: Diagnosis, Etiology, and Outcome. Stroke. 2006; 37(9): 2306–2311.
  19. Gold J.P., Charlson M.E., Williams-Russo P., et al. Improvement of outcomes after coronary artery bypass: A randomized trial comparing intraoperative high versus low mean arterial pressure. J. Thorac. Cardiovasc. Surg. 1995; 110(5): 1302–1314.
  20. Gardner T.J., Horneffer P.J., Manolio T.A., et al. Stroke following coronary artery bypass grafting: a ten-year study. Ann. Thorac. Surg. 1985; 40(6): 574–581.
  21. Singh A.K., Bert A.A., Feng W.C., Rotenberg F.A. Stroke during coronary artery bypass grafting using hypothermic versus normothermic perfusion. Ann. Thorac. Surg. 1995; 59(1): 84–89.
  22. Bijker J.B., Persoon S., Peelen L.M., et al. Intraoperative Hypotension and Perioperative Ischemic Stroke after General Surgery. Anesthesiology. 2012; 116(3): 658–664.
  23. POISE Study Group, Devereaux P.J., Yang H., et al. Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled trial. Lancet. 2008; 371(9627): 1839–1847.
  24. Vedel A.G., Holmgaard F., Rasmussen L.S., et al. High-Target vs Low-Target Blood Pressure Management During Cardiopulmonary Bypass to Prevent Cerebral Injury in Cardiac Surgery Patients: A Randomized Controlled Trial. Circulation. 2018; 137(17): 1770–1780.
  25. Hsieh J.K., Dalton J.E., Yang D., et al. The Association Between Mild Intraoperative Hypotension and Stroke in General Surgery Patients. Anesth. Analg. 2016; 123(4): 933–939.
  26. Bekker A.Y., Weeks E.J. Cognitive function after anaesthesia in the elderly. Best Pract. Res. Clin. Anaesthesiol. 2003; 17(2): 259–272.
  27. Bitsch M., Foss N., Kristensen B., Kehlet H. Pathogenesis of and management strategies for postoperative delirium after hip fracture: A review. Acta Orthop. Scand. 2004; 75(4): 378–389.
  28. Siepe M., Pfeiffer T., Gieringer A., et al. Increased systemic perfusion pressure during cardiopulmonary bypass is associated with less early postoperative cognitive dysfunction and delirium. Eur. J. Cardio-Thoracic Surg. 2011; 40(1): 200–207.
  29. Marcantonio E.R., Goldman L., Orav E.J., et al. The association of intraoperative factors with the development of postoperative delirium. Am. J. Med. 1998; 105(5): 380–384.
  30. Hori D., Brown C., Ono M., et al. Arterial pressure above the upper cerebral autoregulation limit during cardiopulmonary bypass is associated with postoperative delirium. Br. J. Anaesth. 2014; 113(6): 1009–1017.
  31. Wesselink E.M., Kappen T.H., van Klei W.A., et al. Intraoperative hypotension and delirium after on-pump cardiac surgery. Br. J. Anaesth. 2015; 115(3): 427–433.
  32. Mangano D.T. Perioperative cardiac morbidity. Anesthesiology. 1990; 72(1): 153–184.
  33. Landesberg G., Beattie W.S., Mosseri M., et al. Perioperative Myocardial Infarction. Circulation. 2009; 119(22): 2936–2944.
  34. Anderson J.L., Morrow D.A. Acute Myocardial Infarction. Campion E.W, ed. N. Engl. J. Med. 2017; 376(21): 2053–2064.
  35. Botto F., Alonso-Coello P., Chan M.T.V., et al. Myocardial Injury after Noncardiac Surgery. Anesthesiology. 2014; 120(3): 564–578.
  36. Sessler D.I., Meyhoff C.S., Zimmerman N.M., et al. Period-dependent Associations between Hypotension during and for Four Days after Noncardiac Surgery and a Composite of Myocardial Infarction and Death. Anesthesiology. 2018; 128(2): 317–327.
  37. Kheterpal S., O’Reilly M., Englesbe M.J., et al. Preoperative and Intraoperative Predictors of Cardiac Adverse Events after General, Vascular, and Urological Surgery. Anesthesiology. 2009; 110(1): 58–66.
  38. Hallqvist L., Mårtensson J., Granath F., et al. Intraoperative hypotension is associated with myocardial damage in noncardiac surgery. Eur. J. Anaesthesiol. 2016; 33(6): 450–456.
  39. Abbott T.E.F., Pearse R.M., Archbold R.A., et al. A Prospective International Multicentre Cohort Study of Intraoperative Heart Rate and Systolic Blood Pressure and Myocardial Injury After Noncardiac Surgery. Anesth. Analg. 2018; 126(6): 1936–1945.
  40. Salmasi V., Maheshwari K., Yang D., et al. Relationship between Intraoperative Hypotension, Defined by Either Reduction from Baseline or Absolute Thresholds, and Acute Kidney and Myocardial Injury after Noncardiac Surgery. Anesthesiology. 2017; 126(1): 47–65.
  41. Kotvitskaya Z.T., Kolotova G.B., Rudnov V.A., Вagin V.A. Intraoperative Risk Factors of Myocardial Infarction in Non-Cardiac Surgeries. Messenger Anesthesiol. Resusc. 2018; 15(2): 32–37.
  42. van Waes J.A.R., van Klei W.A., Wijeysundera D.N., et al. Association between Intraoperative Hypotension and Myocardial Injury after Vascular Surgery. Anesthesiology. 2016; 124(1): 35–44.
  43. Abelha F., Botelho M., Fernandes V., Barros H. Determinants of postoperative acute kidney injury. Crit. Care. 2009; 13(3): R79.
  44. Machado M.N., Nakazone M.A., Maia L.N. Prognostic Value of Acute Kidney Injury after Cardiac Surgery according to Kidney Disease: Improving Global Outcomes Definition and Staging (KDIGO) Criteria. Landoni G., ed. PLoS One. 2014; 9(5): e98028.
  45. Lagny M-G., Jouret F., Koch J-N., et al. Incidence and outcomes of acute kidney injury after cardiac surgery using either criteria of the RIFLE classification. BMC Nephrol. 2015; 16(1): 76.
  46. Evans R.G., Ince C., Joles J.A., et al. Haemodynamic influences on kidney oxygenation: Clinical implications of integrative physiology. Clin. Exp. Pharmacol. Physiol. 2013; 40(2): 106–122.
  47. Gomez H., Ince C., De Backer D., et al. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014; 41(1): 3–11.
  48. Sun L.Y., Wijeysundera D.N., Tait G.A., Beattie W.S. Association of Intraoperative Hypotension with Acute Kidney Injury after Elective Noncardiac Surgery. Anesthesiology. 2015; 123(3): 515–523.
  49. Wu X., Jiang Z., Ying J., et al. Optimal blood pressure decreases acute kidney injury after gastrointestinal surgery in elderly hypertensive patients: A randomized study. J. Clin. Anesth. 2017; 43: 77–83.
  50. Hallqvist L., Granath F., Huldt E., Bell M. Intraoperative hypotension is associated with acute kidney injury in noncardiac surgery. Eur. J. Anaesthesiol. 2017; 35(4): 1.
  51. Walsh M., Devereaux P.J., Garg A.X., et al. Relationship between Intraoperative Mean Arterial Pressure and Clinical Outcomes after Noncardiac Surgery. Anesthesiology. 2013; 119(3): 507–515.
  52. Ono M., Arnaoutakis G.J., Fine D.M., et al. Blood Pressure Excursions Below the Cerebral Autoregulation Threshold During Cardiac Surgery are Associated With Acute Kidney Injury. Crit. Care Med. 2013; 41(2): 464–471.
  53. Haase M., Bellomo R., Story D., et al. Effect of mean arterial pressure, haemoglobin and blood transfusion during cardiopulmonary bypass on post-operative acute kidney injury. Nephrol. Dial. Transplant. 2012; 27(1): 153–160.
  54. Azau A., Markowicz P., Corbeau J., et al. Increasing mean arterial pressure during cardiac surgery does not reduce the rate of postoperative acute kidney injury. Perfusion. 2014; 29(6): 496–504.
  55. Sessler D.I., Sigl J.C., Kelley S.D., et al. Hospital Stay and Mortality Are Increased in Patients Having a “Triple Low” of Low Blood Pressure, Low Bispectral Index, and Low Minimum Alveolar Concentration of Volatile Anesthesia. Anesthesiology. 2012; 116(6): 1195–1203.
  56. Willingham M.D., Karren E., Shanks A.M., et al. Concurrence of Intraoperative Hypotension, Low Minimum Alveolar Concentration, and Low Bispectral Index Is Associated with Postoperative Death. Anesthesiology. 2015; 123(4): 775–785.
  57. Kertai M.D., White W.D., Gan T.J. Cumulative Duration of “Triple Low” State of Low Blood Pressure, Low Bispectral Index, and Low Minimum Alveolar Concentration of Volatile Anesthesia Is Not Associated with Increased Mortality. Anesthesiology. 2014; 121(1): 18–28.
  58. Monk T.G., Bronsert M.R., Henderson W.G., et al. Association between Intraoperative Hypotension and Hypertension and 30-day Postoperative Mortality in Noncardiac Surgery. Anesthesiology. 2015; 123(2): 307–319.
  59. Bijker J.B., van Klei W.A., Vergouwe Y., et al. Intraoperative Hypotension and 1-Year Mortality after Noncardiac Surgery. Anesthesiology. 2009; 111(6): 1217–1226.
  60. Tassoudis V., Vretzakis G., Petsiti A., et al. Impact of intraoperative hypotension on hospital stay in major abdominal surgery. J. Anesth. 2011; 25(4): 492–499.
  61. Futier E., Lefrant J.Y., Guinot P.G., et al. Effect of Individualized vs Standard Blood Pressure Management Strategies on Postoperative Organ Dysfunction Among High-Risk Patients Undergoing Major Surgery. JAMA. 2017; 318(14): 1346.
  62. Gu W.J., Hou B.L., Kwong J.S.W., et al. Association between intraoperative hypotension and 30-day mortality, major adverse cardiac events, and acute kidney injury after non-cardiac surgery: A meta-analysis of cohort studies. Int. J. Cardiol. 2018; 258: 68–73.