Аннотация
Портальная гипертензия — основное осложнение цирроза печени, характеризующееся патологическим увеличением сопротивления в портальной системе кровотока печени. По мере развития портальной гипертензии формируются сосудистые коллатерали и прогрессирует артериальная вазодилатация. Гипердинамические проявления становятся более выражены в связи со снижением реакции на вазоконстрикторы и увеличение шунтирования вместе с автономной нейропатией. Комбинация печеночной недостаточности и портальной гипертензии ведет к развитию гипердинамического типа циркуляции частично за счет одновременной вазодилатации спланхнического и периферического артериального русла. Гипердинамический синдром является поздним проявлением портальной гипертензии при циррозе печени. Основными проявлениями гипердинамического синдрома являются высокий сердечный выброс, увеличенная частота сердечных сокращений и общий объем крови вкупе со сниженным общим системным сосудистым сопротивлением. Некоторые кардиоваскулярные изменения являются обратимыми после трансплантации печени и тем самым указывают на патофизиологическую значимость портальной гипертензии. В этом обзоре нами рассмотрена патофизиология и проявления гипердинамического синдрома, как хорошо известные и напрямую связанные с портальной гипертензией (варикозное расширение вен, асцит, печеночная энцефалопатия и гепаторенальный синдром), так и более редко встречающиеся и требующие дальнейшего изучения (портопульмональная гипертензия, цирротическая кардиомиопатия).Библиографические ссылки
- Nagula S., et al. Histological-hemodynamic correlation in cirrhosis-a histological classification of the severity of cirrhosis. J. of Hepatol. 2006, 44(1): 111–117. DOI: 10.1016/j.jhep.2005.07.036
- Zhou W.C., Zhang Q.B., Qiao L. Pathogenesis of liver cirrhosis. World J. of Gastroenterol. 2014, 20(23): 7312–7324. DOI: 10.3748/wjg.v20.i23.7312
- Garbuzenko D.V., Arefyev N.O., Kazachkov E.L. Antiangiogenic therapy for portal hypertension in liver cirrhosis: current progress and perspectives. World J. of Gastroenterol. 2018, 24(33): 3738–3748. DOI: 10.3748/wjg.v24.i33.3738
- Grancea-Iancu M. Involvement of vasoactive substances in hemodynamics disturbances in cirrhosis. J. of Med. and Life. 2014, 7(3): 40–43. PMCID: PMC4391417
- Graupera M., et al. Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology. 2003, 37(1): 172–181. DOI: 10.1053/jhep.2003.50004
- Di Pascoli M., et al. Molecular mechanisms leading to splanchnic vasodilation in liver cirrhosis. J. of Vasc. Res. 2017, 54(2): 92–99. DOI: 10.1159/000462974
- Gracia-Sancho J., et al. Enhanced vasoconstrictor prostanoid production by sinusoidal endothelial cells increases portal perfusion pressure in cirrhotic rat livers. J. of Hepatol. 2007, 47(2): 220–227. DOI: 10.1016/j.jhep.2007.03.014
- Bandali M.F., et al. Portal hypertension: imaging of portosystemic collateral pathways and associated image-guided therapy. World J. of Gastroenterol. 2017, 23(10): 1735–1746. DOI: 10.3748/wjg.v23.i10.1735
- Prin M., Bakker J., Wagener G. Hepatosplanchnic circulation in cirrhosis and sepsis. World J. of Gastroenterol. 2015, 21(9): 2582–2592. DOI: 10.3748/wjg.v21.i9.2582
- Nakagawa A., et al. Usefulness of portal vein pressure for predicting the effects of tolvaptan in cirrhotic patients. World J. of Gastroenterol. 2016; 22(21): 5104–1513. OI: 10.3748/wjg.v22.i21.5104
- Sastre E., et al. Decompensated liver cirrhosis and neural regulation of mesenteric vascular tone in rats: role of sympathetic, nitrergic and sensory innervations. Sci. Rep. 2016, 6. DOI: 10.1038/srep31076
- Gana J.C., Serrano A., Ling S.C. Angiogenesis and portal-systemic collaterals in portal hypertension. Ann. of Hepatol. 2016, 15(3): 303–313. DOI: 10.5604/16652681.1198799
- Gatta A., Bolognesi M., Merkel C. Vasoactive factors and hemodynamic mechanisms in the pathophysiology of portal hypertension in cirrhosis. Mol. Aspects of Med. 2008, 29(1–2): 119–129. DOI: 10.1016/j.mam.2007.09.006
- McConnell M., Iwakiri Y. Biology of portal hypertension. Hepatol. Int. 2018, 12(1): 11–23. DOI: 10.1007/s12072-017-9826-x
- Bolognesi M., et al. Splanchnic vasodilation and hyperdynamic circulatory syndrome in cirrhosis. World J. of Gastroenterol. 2014, 20(10): 2555–2563. DOI: 10.3748/wjg.v20.i10.2555
- Schwabl P., et al. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J. of Hepatol. 2017, 66(4): 724–733. DOI: 10.1016/j.jhep.2016.12.005
- Dimmeler S., et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999; 399(6736): 601–605. DOI: 10.1038/21224
- Wiest R., et al. Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility. The J. of Clin. Invest. 1999; 104(9): 1223–1233. DOI: 10.1172/JCI7458
- Angeli P., et al. The role of nitric oxide in the pathogenesis of systemic and splanchnic vasodilation in cirrhotic rats before and after the onset of ascites. Liver Int. 2005; 25(2): 429–437. DOI: 10.1111/j.1478-3231.2005.01092.x
- Lee P.C., et al. Concomitant inhibition of oxidative stress and angiogenesis by chronic hydrogen-rich saline and N-acetylcysteine treatments improves systemic, splanchnic and hepatic hemodynamics of cirrhotic rats. Hepatol. Res. 2015, 45(5): 578–588. DOI: 10.1111/hepr.12379
- Sacerdoti D., et al. Arachidonic acid metabolites and endothelial dysfunction of portal hypertension. Prostaglandins & Other Lipid Mediat. 2015; 120: 80–90. DOI: 10.1016/j.prostaglandins.2015.05.008
- Tu C.T., et al. Antifibrotic activity of rofecoxib in vivo is associated with reduced portal hypertension in rats with carbon tetrachloride-induced liver injury. J. of Gastroenterol. and Hepatol. 2007; 22(6): 877–884. DOI: 10.1111/j.1440-1746.2007.04867.x
- Bolognesi M., et al. Carbon monoxide-mediated activation of large-conductance calcium-activated potassium channels contributes to mesenteric vasodilatation in cirrhotic rats. The J. of Pharmacol. and Exp. Ther. 2007; 321(1): 187–194. DOI: 10.1124/jpet.106.116665
- Dai E., et al. Hepatic expression of cannabinoid receptors CB1 and CB2 correlate with fibrogenesis in patients with chronic hepatitis B. Int J Infect Dis. 2017; 59: 124–130. DOI: 10.1016/j.ijid.2017.03.008
- Alvarado E., et al. The relationship of hyperdynamic circulation and cardiodynamic states in cirrhosis. J. of Hepatol. 2018; 69(3): 746–747. DOI: 10.1016/j.jhep.2018.04.026
- Hennenberg M., et al. Mechanisms of extrahepatic vasodilation in portal hypertension. Gut. 2008; 57(9): 1300–1314. DOI: 10.1136/gut.2007.144584
- Wei W., et al. Wall shear stress in portal vein of cirrhotic patients with portal hypertension. World J. of Gastroenterol. 2017; 23(18): 3279–3286. DOI: 10.3748/wjg.v23.i18.3279
- Hollenberg S.M., Waldman B. The circulatory system in liver disease. Crit. Care Clin. 2016; 32(3): 331–342. DOI: 10.1016/j.ccc.2016.02.004
- Mindikoglu A.L., Pappa S.C. New Developments in Hepatorenal Syndrome. Clin. Gastroenterol. and Hepatol. 2018; 16(2): 162–177.e1. DOI: 10.1016/j.cgh.2017.05.041
- Iwasa M., et al. Decrease of regional cerebral blood flow in liver cirrhosis. Eur. J. of Gastroenterol. & Hepatol. 2000; 12(9): 1001–1006. DOI: 10.1097/00042737-200012090-00006
- Tripathi D.M., et al. Metformin reduces hepatic resistance and portal pressure in cirrhotic rats. Am. J. of Physiol. and Gastrointest. Liver Physiol. 2015; 309(5): G301–G309. DOI: 10.1152/ajpgi.00010.2015
- Weiss E., Paugam-Burtz C., Jaber J. Shock etiologies and fluid management in liver failure. Semin. in Respir. and Crit. Care Med. 2018; 39(5): 538–545. DOI: 10.1055/s-0038-1672139
- Lee Y.B., Lee J.H. Cirrhotic cardiomyopathy: an independent prognostic factor for cirrhotic patients. Clin. and Mol. Hepatol. 2018; 24(4): 372–373. DOI: 10.3350/cmh.2018.0098
- Wachter S.B., Gilbert E.M. Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology. 2012; 122(2): 104–112. DOI: 10.1159/000339271
- Chen W., et al. Desensitization of G-protein-coupled receptors induces vascular hypocontractility in response to norepinephrine in the mesenteric arteries of cirrhotic patients and rats. Hepatobiliary & Pancreat. Dis. Int. 2013; 12(3); 295–304. DOI: 10.1016/s1499-3872(13)60047-8
- Ma Z., Lee S.S., Meddings J.B. Effects of altered cardiac membrane fluidity on beta-adrenergic receptor signalling in rats with cirrhotic cardiomyopathy. J. of Hepatol. 1997; 26(4): 904–912. DOI: 10.1016/s0168-8278(97)80259-0
- Scheinpflug K., Krylova O., Strahl H. Measurement of cell membrane fluidity by laurdan gp: fluorescence spectroscopy and microscopy. Methods in Mol. Biol. 2017; 1520: 159–174. DOI: 10.1007/978-1-4939-6634-9_10
- Ward С.A., et al. Potassium currents in atrial and ventricular myocytes from a rat model of cirrhosis. Am J. of Physiol. 1997; 273(2): G537–G544. DOI: 10.1152/ajpgi.1997.273.2.G537
- Liu H., Gaskari S.A., Lee S.S. Cardiac and vascular changes in cirrhosis: pathogenic mechanisms. World J. of Gastroenterol. 2006; 12(6): 837–842. DOI: 10.3748/wjg.v12.i6.837
- Liu H., Ma Z., Lee S.S. Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology. 2000; 118(5): 937–944. DOI: 10.1016/s0016-5085(00)70180-6
- Gaskari S.A., et al. Role of endocannabinoids in the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Br. J. of Pharmacol. 2005; 146(3): 315–323. DOI: 10.1038/sj.bjp.0706331
- Licata A., et al. Clinical implications of the hyperdynamic syndrome in cirrhosis. Eur. J. of Intern. Med. 2014; 25(9): 795–802. DOI: 10.1016/j.ejim.2014.09.004
- Fede G., et al. Cardiovascular dysfunction in patients with liver cirrhosis. Ann. of Gastroenterol. 2015; 28(1): 31–40. PMCID: PMC4290002
- Batra S., et al. The impact of left ventricular hypertrophy on survival in candidates for liver transplantation. Liver Transpl. 2014, 20(6): 705–712. DOI: 10.1002/lt.23875
- Costa M.G., Chiarandini P., Della Rocca G. Hemodynamics during liver transplantation. Transplant. Proc. 2007; 39(6): 1871–1873. DOI: 10.1016/j.transproceed.2008.03.070
- Bernardi M., et al. QT interval prolongation in liver cirrhosis: innocent bystander or serious threat? Expert Rev. of Gastroenterol. & Hepatol. 2012, 6(1): 57–66. DOI: 10.1586/egh.11.86
- Wadei H.M., Mai M.L., Ashan N. Hepatorenal syndrome: pathophysiology and management. Clin J Am Soc Nephrol. 2006; 1: 1066–1079. DOI: 10.2215/CJN.01340406
- Zhang D.Q., et al. Risk factors of hepatorenal syndrome in patients with acute on chronic liver failure. Zhonghua Gan Zang Bing Za Zhi. 2013; 21: 743–746. DOI: 10.3760/cma.j.issn.1007-3418.2013.10.006
- Bosch J., et al. The clinical use of HVPG measurements in chronic liver disease. Nat Rev Gastroenterol Hepatol. 2009; 6(10): 573–582. DOI: 10.1038/nrgastro.2009.149
- Angeli P., et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. J Hepatology. 2015; 62: 968–974. DOI: 10.1016/j.jhep.2014.12.029
- Angeli P., et al. European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, in hepatorenal syndrome in cirrhosis. J Hepatol. 2010; 53(3): 397–417. DOI: 10.1016/j.jhep.2010.05.004
- Salerno F., et al. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut. 2007; 56: 1310–1318. DOI: 10.1136/gut.2006.107789
- Ginès P., et al. Hepatorenal syndrome. Lancet. 2003; 362: 1819–1827. DOI: 10.1038/s41572-018-0022-7
- Licata A., et al. Clinical course and prognostic factors of hepatorenal syndrome: A retrospective single-center cohort study. World J Hepatol. 2013; 5(12): 685–691. DOI: 10.4254/wjh.v5.i12.685
- Martin-Llahi M., et al. Terlipressin and albumin vs albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. Gastroenterology. 2008; 134: 1352–1359. DOI: 10.1053/j.gastro.2008.02.024
- Ripoll C., et al. Hepatic venous gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology. 2007; 133: 481–488. DOI: 10.1053/j.gastro.2007.05.024
- Testino G., et al. Type-2 hepatorenal syndrome and refractory ascites: role of transjugular intrahepatic portosystemic stent-shunt in eighteen patients with advanced cirrhosis awaiting orthotopic liver transplantation. Hepatogastroenterology. 2003; 50(54): 1753–1755. PMID: 14696397
- Rodriguez-Roisin R., et al. Hepatopulmonary syndrome — a liver-induced lung vascular disorder. N Engl J Med. 2008; 358: 2378–2387. DOI: 10.1056/NEJMra0707185
- Cremona G., et al. Elevated exhaled nitric oxide in patients with hepatopulmonary syndrome. Eur Respir J. 1995; 8: 1883–1885. DOI: 10.1183/09031936.95.08111883
- Berthelot P., et al. Arterial changes in the lungs in cirrhosis of the liver–lung spider nevi. N Engl J Med. 1966; 274: 291–298. DOI: 10.1056/NEJM196602102740601
- Fallon M.B. Methylene blue and cirrhosis: pathophysiologic insights, therapeutic dilemmas. Ann Intern Med. 2000; 133: 738–740. DOI: 10.7326/0003-4819-133-9-200011070-00016
- Roberts K.E., et al. Genetic risk factors for hepatopulmonary syndrome in patients with advanced liver disease. Gastroenterology. 2010; 139(130): 9.e24. DOI: 10.1053/j.gastro.2010.03.044
- Sood G. et al. Utility of dyspnea-fatigue index for screening liver transplant candidates for hepatopulmonary syndrome. Hepatology. 1998; 28: 2319.
- Rodriguez-Roisin R., et al. Pulmonary-hepatic vascular disorders [PHD]. Eur Respir J. 2004; 24: 861–880. DOI: 10.1183/09031936.04.00010904
- Abrams G.A., et al. Diagnostic utility of contrast echocardiography and lung perfusion scan in patients with hepatopulmonary syndrome. Gastroenterology. 1995; 109: 1283–1288. DOI: 10.1016/0016-5085(95)90589-8
- Goldberg D.S., et al. Impact of the hepatopulmonary syndrome MELD exception policy on outcomes of patients after liver transplantation: an analysis of the UNOS database. Gastroenterology. 2014; 146(5): 1256–1265. DOI: 10.1053/j.gastro.2014.01.005
- Fallon M.B., et al. Model for end-stage liver disease [MELD] exception for hepatopulmonary syndrome. Liver Transpl. 2006; 12: 105–107. DOI: 10.1002/lt.20971

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-ShareAlike» («Атрибуция — Некоммерческое использование — На тех же условиях») 4.0 Всемирная.
Copyright (c) 2021 ВЕСТНИК ИНТЕНСИВНОЙ ТЕРАПИИ имени А.И. САЛТАНОВА