Pathogenesis and clinical significance of the hyperdynamic circulatory syndrome in liver cirrhosis. Review
ISSN (print) 1726-9806     ISSN (online) 1818-474X
#2021-1
PDF_2021-1_123-133 (Russian)
HTML_2021-1_123-133 (Russian)

Keywords

Liver Cirrhosis
Hypertension, Portal
Liver Failure
Liver Transplantation
Ascites
Hepatorenal Syndrome
Hepatic Encephalopathy
Vasodilation

How to Cite

1.
Katsin M.L., Hurava M.Y., Prylutski P.S., Dzyadz’ko A.M., Rummo O.O. Pathogenesis and clinical significance of the hyperdynamic circulatory syndrome in liver cirrhosis. Review. Annals of Critical Care. 2021;(1):123-133. doi:10.21320/1818-474X-2021-1-123-133

Statistic

Abstract Views: 323
PDF_2021-1_123-133 (Russian) Downloads: 150
HTML_2021-1_123-133 (Russian) Downloads: 501
Statistic from 01.07.2024

Language

English Русский

Social Networks

Abstract

Portal hypertension is the major consequences of liver cirrhosis and is accompanied by pathologic increase in portal blood flow resistance. As portal hypertension develops that results in formation of vessel’s collaterals and arterial vasodilatation. Hyperdynamic alternations become more significant due to hyporesponsiveness to vasoconstrictors and increased shunts formation with autonomic neuropathy. This combination of liver failure and portal hypertension leads to the hyperdynamic circulatory state partly owing to simultaneous vasodilatation of splanchnic and peripheral arterial vessels. So hyperdynamic circulatory syndrome is a late complication of portal hypertension due to liver cirrhosis. The main features of hyperdynamic circulatory syndrome are high cardiac output, increased heart rate and total blood volume coupled with decreased total systemic vascular resistance. Some of these cardiovascular changes are reversible after liver transplantation what show pathophysiological significance of portal hypertension. In this paper, we aimed to review pathophysiology and features of hyperdynamic syndrome that are well-known and directly related to portal hypertension (varices, ascites, hepatic encephalopathy and hepatorenal syndrome), while others are more rare and therefore further investigations are necessary (portopulmonary hypertension, cirrhotic cardiomyopathy).
PDF_2021-1_123-133 (Russian)
HTML_2021-1_123-133 (Russian)

References

  1. Nagula S., et al. Histological-hemodynamic correlation in cirrhosis-a histological classification of the severity of cirrhosis. J. of Hepatol. 2006, 44(1): 111–117. DOI: 10.1016/j.jhep.2005.07.036
  2. Zhou W.C., Zhang Q.B., Qiao L. Pathogenesis of liver cirrhosis. World J. of Gastroenterol. 2014, 20(23): 7312–7324. DOI: 10.3748/wjg.v20.i23.7312
  3. Garbuzenko D.V., Arefyev N.O., Kazachkov E.L. Antiangiogenic therapy for portal hypertension in liver cirrhosis: current progress and perspectives. World J. of Gastroenterol. 2018, 24(33): 3738–3748. DOI: 10.3748/wjg.v24.i33.3738
  4. Grancea-Iancu M. Involvement of vasoactive substances in hemodynamics disturbances in cirrhosis. J. of Med. and Life. 2014, 7(3): 40–43. PMCID: PMC4391417
  5. Graupera M., et al. Cyclooxygenase-derived products modulate the increased intrahepatic resistance of cirrhotic rat livers. Hepatology. 2003, 37(1): 172–181. DOI: 10.1053/jhep.2003.50004
  6. Di Pascoli M., et al. Molecular mechanisms leading to splanchnic vasodilation in liver cirrhosis. J. of Vasc. Res. 2017, 54(2): 92–99. DOI: 10.1159/000462974
  7. Gracia-Sancho J., et al. Enhanced vasoconstrictor prostanoid production by sinusoidal endothelial cells increases portal perfusion pressure in cirrhotic rat livers. J. of Hepatol. 2007, 47(2): 220–227. DOI: 10.1016/j.jhep.2007.03.014
  8. Bandali M.F., et al. Portal hypertension: imaging of portosystemic collateral pathways and associated image-guided therapy. World J. of Gastroenterol. 2017, 23(10): 1735–1746. DOI: 10.3748/wjg.v23.i10.1735
  9. Prin M., Bakker J., Wagener G. Hepatosplanchnic circulation in cirrhosis and sepsis. World J. of Gastroenterol. 2015, 21(9): 2582–2592. DOI: 10.3748/wjg.v21.i9.2582
  10. Nakagawa A., et al. Usefulness of portal vein pressure for predicting the effects of tolvaptan in cirrhotic patients. World J. of Gastroenterol. 2016; 22(21): 5104–1513. OI: 10.3748/wjg.v22.i21.5104
  11. Sastre E., et al. Decompensated liver cirrhosis and neural regulation of mesenteric vascular tone in rats: role of sympathetic, nitrergic and sensory innervations. Sci. Rep. 2016, 6. DOI: 10.1038/srep31076
  12. Gana J.C., Serrano A., Ling S.C. Angiogenesis and portal-systemic collaterals in portal hypertension. Ann. of Hepatol. 2016, 15(3): 303–313. DOI: 10.5604/16652681.1198799
  13. Gatta A., Bolognesi M., Merkel C. Vasoactive factors and hemodynamic mechanisms in the pathophysiology of portal hypertension in cirrhosis. Mol. Aspects of Med. 2008, 29(1–2): 119–129. DOI: 10.1016/j.mam.2007.09.006
  14. McConnell M., Iwakiri Y. Biology of portal hypertension. Hepatol. Int. 2018, 12(1): 11–23. DOI: 10.1007/s12072-017-9826-x
  15. Bolognesi M., et al. Splanchnic vasodilation and hyperdynamic circulatory syndrome in cirrhosis. World J. of Gastroenterol. 2014, 20(10): 2555–2563. DOI: 10.3748/wjg.v20.i10.2555
  16. Schwabl P., et al. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J. of Hepatol. 2017, 66(4): 724–733. DOI: 10.1016/j.jhep.2016.12.005
  17. Dimmeler S., et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999; 399(6736): 601–605. DOI: 10.1038/21224
  18. Wiest R., et al. Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility. The J. of Clin. Invest. 1999; 104(9): 1223–1233. DOI: 10.1172/JCI7458
  19. Angeli P., et al. The role of nitric oxide in the pathogenesis of systemic and splanchnic vasodilation in cirrhotic rats before and after the onset of ascites. Liver Int. 2005; 25(2): 429–437. DOI: 10.1111/j.1478-3231.2005.01092.x
  20. Lee P.C., et al. Concomitant inhibition of oxidative stress and angiogenesis by chronic hydrogen-rich saline and N-acetylcysteine treatments improves systemic, splanchnic and hepatic hemodynamics of cirrhotic rats. Hepatol. Res. 2015, 45(5): 578–588. DOI: 10.1111/hepr.12379
  21. Sacerdoti D., et al. Arachidonic acid metabolites and endothelial dysfunction of portal hypertension. Prostaglandins & Other Lipid Mediat. 2015; 120: 80–90. DOI: 10.1016/j.prostaglandins.2015.05.008
  22. Tu C.T., et al. Antifibrotic activity of rofecoxib in vivo is associated with reduced portal hypertension in rats with carbon tetrachloride-induced liver injury. J. of Gastroenterol. and Hepatol. 2007; 22(6): 877–884. DOI: 10.1111/j.1440-1746.2007.04867.x
  23. Bolognesi M., et al. Carbon monoxide-mediated activation of large-conductance calcium-activated potassium channels contributes to mesenteric vasodilatation in cirrhotic rats. The J. of Pharmacol. and Exp. Ther. 2007; 321(1): 187–194. DOI: 10.1124/jpet.106.116665
  24. Dai E., et al. Hepatic expression of cannabinoid receptors CB1 and CB2 correlate with fibrogenesis in patients with chronic hepatitis B. Int J Infect Dis. 2017; 59: 124–130. DOI: 10.1016/j.ijid.2017.03.008
  25. Alvarado E., et al. The relationship of hyperdynamic circulation and cardiodynamic states in cirrhosis. J. of Hepatol. 2018; 69(3): 746–747. DOI: 10.1016/j.jhep.2018.04.026
  26. Hennenberg M., et al. Mechanisms of extrahepatic vasodilation in portal hypertension. Gut. 2008; 57(9): 1300–1314. DOI: 10.1136/gut.2007.144584
  27. Wei W., et al. Wall shear stress in portal vein of cirrhotic patients with portal hypertension. World J. of Gastroenterol. 2017; 23(18): 3279–3286. DOI: 10.3748/wjg.v23.i18.3279
  28. Hollenberg S.M., Waldman B. The circulatory system in liver disease. Crit. Care Clin. 2016; 32(3): 331–342. DOI: 10.1016/j.ccc.2016.02.004
  29. Mindikoglu A.L., Pappa S.C. New Developments in Hepatorenal Syndrome. Clin. Gastroenterol. and Hepatol. 2018; 16(2): 162–177.e1. DOI: 10.1016/j.cgh.2017.05.041
  30. Iwasa M., et al. Decrease of regional cerebral blood flow in liver cirrhosis. Eur. J. of Gastroenterol. & Hepatol. 2000; 12(9): 1001–1006. DOI: 10.1097/00042737-200012090-00006
  31. Tripathi D.M., et al. Metformin reduces hepatic resistance and portal pressure in cirrhotic rats. Am. J. of Physiol. and Gastrointest. Liver Physiol. 2015; 309(5): G301–G309. DOI: 10.1152/ajpgi.00010.2015
  32. Weiss E., Paugam-Burtz C., Jaber J. Shock etiologies and fluid management in liver failure. Semin. in Respir. and Crit. Care Med. 2018; 39(5): 538–545. DOI: 10.1055/s-0038-1672139
  33. Lee Y.B., Lee J.H. Cirrhotic cardiomyopathy: an independent prognostic factor for cirrhotic patients. Clin. and Mol. Hepatol. 2018; 24(4): 372–373. DOI: 10.3350/cmh.2018.0098
  34. Wachter S.B., Gilbert E.M. Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology. 2012; 122(2): 104–112. DOI: 10.1159/000339271
  35. Chen W., et al. Desensitization of G-protein-coupled receptors induces vascular hypocontractility in response to norepinephrine in the mesenteric arteries of cirrhotic patients and rats. Hepatobiliary & Pancreat. Dis. Int. 2013; 12(3); 295–304. DOI: 10.1016/s1499-3872(13)60047-8
  36. Ma Z., Lee S.S., Meddings J.B. Effects of altered cardiac membrane fluidity on beta-adrenergic receptor signalling in rats with cirrhotic cardiomyopathy. J. of Hepatol. 1997; 26(4): 904–912. DOI: 10.1016/s0168-8278(97)80259-0
  37. Scheinpflug K., Krylova O., Strahl H. Measurement of cell membrane fluidity by laurdan gp: fluorescence spectroscopy and microscopy. Methods in Mol. Biol. 2017; 1520: 159–174. DOI: 10.1007/978-1-4939-6634-9_10
  38. Ward С.A., et al. Potassium currents in atrial and ventricular myocytes from a rat model of cirrhosis. Am J. of Physiol. 1997; 273(2): G537–G544. DOI: 10.1152/ajpgi.1997.273.2.G537
  39. Liu H., Gaskari S.A., Lee S.S. Cardiac and vascular changes in cirrhosis: pathogenic mechanisms. World J. of Gastroenterol. 2006; 12(6): 837–842. DOI: 10.3748/wjg.v12.i6.837
  40. Liu H., Ma Z., Lee S.S. Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Gastroenterology. 2000; 118(5): 937–944. DOI: 10.1016/s0016-5085(00)70180-6
  41. Gaskari S.A., et al. Role of endocannabinoids in the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Br. J. of Pharmacol. 2005; 146(3): 315–323. DOI: 10.1038/sj.bjp.0706331
  42. Licata A., et al. Clinical implications of the hyperdynamic syndrome in cirrhosis. Eur. J. of Intern. Med. 2014; 25(9): 795–802. DOI: 10.1016/j.ejim.2014.09.004
  43. Fede G., et al. Cardiovascular dysfunction in patients with liver cirrhosis. Ann. of Gastroenterol. 2015; 28(1): 31–40. PMCID: PMC4290002
  44. Batra S., et al. The impact of left ventricular hypertrophy on survival in candidates for liver transplantation. Liver Transpl. 2014, 20(6): 705–712. DOI: 10.1002/lt.23875
  45. Costa M.G., Chiarandini P., Della Rocca G. Hemodynamics during liver transplantation. Transplant. Proc. 2007; 39(6): 1871–1873. DOI: 10.1016/j.transproceed.2008.03.070
  46. Bernardi M., et al. QT interval prolongation in liver cirrhosis: innocent bystander or serious threat? Expert Rev. of Gastroenterol. & Hepatol. 2012, 6(1): 57–66. DOI: 10.1586/egh.11.86
  47. Wadei H.M., Mai M.L., Ashan N. Hepatorenal syndrome: pathophysiology and management. Clin J Am Soc Nephrol. 2006; 1: 1066–1079. DOI: 10.2215/CJN.01340406
  48. Zhang D.Q., et al. Risk factors of hepatorenal syndrome in patients with acute on chronic liver failure. Zhonghua Gan Zang Bing Za Zhi. 2013; 21: 743–746. DOI: 10.3760/cma.j.issn.1007-3418.2013.10.006
  49. Bosch J., et al. The clinical use of HVPG measurements in chronic liver disease. Nat Rev Gastroenterol Hepatol. 2009; 6(10): 573–582. DOI: 10.1038/nrgastro.2009.149
  50. Angeli P., et al. Diagnosis and management of acute kidney injury in patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. J Hepatology. 2015; 62: 968–974. DOI: 10.1016/j.jhep.2014.12.029
  51. Angeli P., et al. European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, in hepatorenal syndrome in cirrhosis. J Hepatol. 2010; 53(3): 397–417. DOI: 10.1016/j.jhep.2010.05.004
  52. Salerno F., et al. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut. 2007; 56: 1310–1318. DOI: 10.1136/gut.2006.107789
  53. Ginès P., et al. Hepatorenal syndrome. Lancet. 2003; 362: 1819–1827. DOI: 10.1038/s41572-018-0022-7
  54. Licata A., et al. Clinical course and prognostic factors of hepatorenal syndrome: A retrospective single-center cohort study. World J Hepatol. 2013; 5(12): 685–691. DOI: 10.4254/wjh.v5.i12.685
  55. Martin-Llahi M., et al. Terlipressin and albumin vs albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. Gastroenterology. 2008; 134: 1352–1359. DOI: 10.1053/j.gastro.2008.02.024
  56. Ripoll C., et al. Hepatic venous gradient predicts clinical decompensation in patients with compensated cirrhosis. Gastroenterology. 2007; 133: 481–488. DOI: 10.1053/j.gastro.2007.05.024
  57. Testino G., et al. Type-2 hepatorenal syndrome and refractory ascites: role of transjugular intrahepatic portosystemic stent-shunt in eighteen patients with advanced cirrhosis awaiting orthotopic liver transplantation. Hepatogastroenterology. 2003; 50(54): 1753–1755. PMID: 14696397
  58. Rodriguez-Roisin R., et al. Hepatopulmonary syndrome — a liver-induced lung vascular disorder. N Engl J Med. 2008; 358: 2378–2387. DOI: 10.1056/NEJMra0707185
  59. Cremona G., et al. Elevated exhaled nitric oxide in patients with hepatopulmonary syndrome. Eur Respir J. 1995; 8: 1883–1885. DOI: 10.1183/09031936.95.08111883
  60. Berthelot P., et al. Arterial changes in the lungs in cirrhosis of the liver–lung spider nevi. N Engl J Med. 1966; 274: 291–298. DOI: 10.1056/NEJM196602102740601
  61. Fallon M.B. Methylene blue and cirrhosis: pathophysiologic insights, therapeutic dilemmas. Ann Intern Med. 2000; 133: 738–740. DOI: 10.7326/0003-4819-133-9-200011070-00016
  62. Roberts K.E., et al. Genetic risk factors for hepatopulmonary syndrome in patients with advanced liver disease. Gastroenterology. 2010; 139(130): 9.e24. DOI: 10.1053/j.gastro.2010.03.044
  63. Sood G. et al. Utility of dyspnea-fatigue index for screening liver transplant candidates for hepatopulmonary syndrome. Hepatology. 1998; 28: 2319.
  64. Rodriguez-Roisin R., et al. Pulmonary-hepatic vascular disorders [PHD]. Eur Respir J. 2004; 24: 861–880. DOI: 10.1183/09031936.04.00010904
  65. Abrams G.A., et al. Diagnostic utility of contrast echocardiography and lung perfusion scan in patients with hepatopulmonary syndrome. Gastroenterology. 1995; 109: 1283–1288. DOI: 10.1016/0016-5085(95)90589-8
  66. Goldberg D.S., et al. Impact of the hepatopulmonary syndrome MELD exception policy on outcomes of patients after liver transplantation: an analysis of the UNOS database. Gastroenterology. 2014; 146(5): 1256–1265. DOI: 10.1053/j.gastro.2014.01.005
  67. Fallon M.B., et al. Model for end-stage liver disease [MELD] exception for hepatopulmonary syndrome. Liver Transpl. 2006; 12: 105–107. DOI: 10.1002/lt.20971
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2021 ANNALS OF CRITICAL CARE