Dynamics of the baroreflex sensitivity during combined anesthesia with sevoflurane or propofol: a randomized trial
#2022-4
PDF_2022-4_44-54 (Русский)
HTML_2022-4_44-54 (Русский)
PDF_2022-4_44-54
HTML_2022-4_44-54

Keywords

baroreflex
sevoflurane
propofol
hemodynamic
anesthesia
prognosis

How to Cite

Trembach N.V., Malyshev Y.P., Golubtsov V.V., Trembach I.A., Zabolotskikh I.B. Dynamics of the baroreflex sensitivity during combined anesthesia with sevoflurane or propofol: a randomized trial. Annals of Critical Care. 2022;(4):44–54. doi:10.21320/1818-474X-2022-4-44-54.

Statistic

Abstract Views: 75
PDF_2022-4_44-54 (Русский) Downloads: 17
HTML_2022-4_44-54 (Русский) Downloads: 6
PDF_2022-4_44-54 Downloads: 10
HTML_2022-4_44-54 Downloads: 14
Statistic from 21.01.2023

Abstract

INTRODUCTION: A significant number of complications is still a serious problem in abdominal surgery. It is known that patients with low baroreflex sensitivity are more prone to hemodynamic instability during general anesthesia, which allows them to be identified as a risk group. OBJECTIVE: To evaluate the dynamics of baroreflex sensitivity (BRS) during major abdominal surgery in patients with different risk of critical incidents under combined anesthesia with propofol or sevoflurane. MATERIALS AND METHODS: A randomized study was conducted in 160 patients (80 high-risk and 80 low-risk patients), who were randomized into subgroups according to the type of anesthesia (propofol or sevoflurane) to assess the effect of the type of anesthesia critical incidents and baroreflex dynamics. RESULTS: After the induction there was a trend towards a decrease in BRS, while in subgroups with initially low values of BRS, it decreased below 3 ms/mmHg. After the end of operation and 6 hours after extubation, there were no significant changes in comparison with intraoperative values. Evaluation of BRS after 24 hours showed that BRS in all subgroups was significantly higher than at previous time points, but did not return to baseline values. At 6 hours postoperatively, in low-risk patients, BRS values were below 3 ms/mmHg in 12.5 % with propofol, and in 10 % with sevoflurane, in high-risk patients — in 45 % and 42.5 % of cases, respectively. At 24 hours, in the low-risk group, only two patients in the propofol anesthesia group and one in the sevoflurane anesthesia subgroup experienced this dysfunction. CONCLUSIONS: Both anesthesia with propofol and anesthesia with sevoflurane lead to a decrease in the sensitivity of the arterial baroreflex, which is not fully restored 24 hours after the end of the operation. High-risk patients with initially reduced baroreflex sensitivity show more frequent postoperative baroreflex dysfunction.

https://doi.org/10.21320/1818-474X-2022-4-44-54
PDF_2022-4_44-54 (Русский)
HTML_2022-4_44-54 (Русский)
PDF_2022-4_44-54
HTML_2022-4_44-54

References

  1. International Surgical Outcomes Study (ISOS) group Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries Br J Anaesth. 2017; 119(3): 553. DOI: 10.1093/bja/aew472
  2. Suzuki A., Sato S. Masui. 2009; 58(5): 572–7.
  3. Fellahi J.L., Godier A., Benchetrit D., et al. Perioperative management of patients with coronary artery disease undergoing non-cardiac surgery: Summary from the French Society of Anaesthesia and Intensive Care Medicine 2017 convention. Anaesth Crit Care Pain Med. 2018; 37(4): 367–74. DOI: 10.1016/j.accpm.2018.02.021
  4. Samain E., Marty J. Comment gérer les traitements cardiovasculaires lors d’une anesthésie générale? [How to handle cardiovascular treatments during general anesthesia?] Ann Cardiol Angeiol (Paris) [Article in French]. 1999; 48(9–10): 624–9.
  5. Ilyukhina V.A., Zabolotskikh I.B. Physiological basis of differences in the body tolerance to submaximal physical load to capacity in healthy young individuals. Fiziol Cheloveka 2000; 26(3): 92–9.
  6. Schultz H.D., Marcus N.J., Del Rio R. Mechanisms of carotid body chemoreflex dysfunction during heart failure. Exp Physiol. 2015; 100(2): 124–9. DOI: 10.1113/expphysiol.2014.079517
  7. Prabhakar N.R. Carotid body chemoreflex: a driver of autonomic abnormalities in sleep apnoea. Exp Physiol. 2016; 101(8): 975–85. DOI: 10.1113/EP085624
  8. Ponikowski P., Chua T.P., Piepoli M., et al. Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure. Circulation. 1997; 96(8): 2586–94. DOI: 10.1161/01.cir.96.8.2586
  9. Заболотских И.Б., Трембач Н.В. Прогностическая роль чувствительности барорефлекса в оценке периоперационного риска. Вестник интенсивной терапии им. А.И. Салтанова. 2020; 2: 49–62. DOI: 10.21320/1818-474X-2020-2-49-62 [Zabolotskikh I.B., Trembach N.V. Predictive role of baroreflex sensitivity in the assessment of perioperative risk. Article. Annals of Critical Care. 2020; 2: 49–62. DOI: 10.21320/1818-474X-2020-2-49-62 (In Russ)]
  10. Трембач Н.В., Заболотских И.Б. Модель прогнозирования критических инцидентов при обширных абдоминальных операциях. Анестезиология и реаниматология. 2021; (2): 98–104. DOI: 10.17116/anaesthesiology202102198 [Trembach N.V., Zabolotskikh I.B. Critical incident prediction model in advanced abdominal surgery. Russian Journal of Anaesthesiology and Reanimatology. 2021; (2): 98–104. DOI: 10.17116/anaesthesiology202102198 (In Russ)]
  11. Kara T., Narkiewicz K., Somers V.K. Chemoreflexes—physiology and clinical implications. Acta Physiol Scand. 2003; 177(3): 377–84. DOI: 10.1046/j.1365-201X.2003.01083.x
  12. Mansukhani M.P., Wang S., Somers V.K. Chemoreflex physiology and implications for sleep apnoea: insights from studies in humans. Exp Physiol. 2015; 100(2): 130–5. DOI: 10.1113/expphysiol.2014.082826
  13. La Rovere M.T., Pinna G.D., Maestri R., et al. Prognostic implications of baroreflex sensitivity in heart failure patients in the beta-blocking era. J Am Coll Cardiol. 2009; 53(2): 193–9. DOI: 10.1016/j.jacc.2008.09.034
  14. Chen Z., Purdon P.L., Harrell G., et al. Dynamic assessment of baroreflex control of heart rate during induction of propofol anesthesia using a point process method. Ann Biomed Eng. 2011; 39(1): 260–76. DOI: 10.1007/s10439-010-0179-z
  15. Ebert T.J. Sympathetic and hemodynamic effects of moderate and deep sedation with propofol in humans. Anesthesiology. 2005; 103(1): 20–4. DOI: 10.1097/00000542-200507000-00007
  16. Sellgren J., Ejnell H., Elam M., et al. Sympathetic muscle nerve activity, peripheral blood flows, and baroreceptor reflexes in humans during propofol anesthesia and surgery. Anesthesiology. 1994; 80(3): 534–44. DOI: 10.1097/00000542-199403000-00009
  17. Sato M., Tanaka M., Umehara S., Nishikawa T. Baroreflex control of heart rate during and after propofol infusion in humans. Br J Anaesth. 2005; 94(5): 577–81. DOI: 10.1093/bja/aei092
  18. Howell S.J., Sear J.W., Foëx P. Hypertension, hypertensive heart disease and perioperative cardiac risk. Br J Anaesth. 2004; 92(4): 570–83. DOI: 10.1093/bja/aeh091
  19. Bonnet F., Szekely B., Abhay K., et al. Baroreceptor control after cervical epidural anesthesia in patients undergoing carotid artery surgery. J Cardiothorac Anesth. 1989; 3: 418–24.
  20. Takeshima R.,Dohi S. Circulatory responses to baroreflexes, Valsalva maneuver, coughing, swallowing, and nasal stimulation during acute cardiac sympathectomy by epidural blockade in awake humans. Anesthesiology. 1985; 63: 500–8.
  21. Dohi S.,Tsuchida H., Mayumi T. Baroreflex control of heart rate during cardiac sympathectomy by epidural anesthesia in lightly anesthetized humans. Anesth Analg. 1983; 62: 815–20.
  22. Goertz A., Heinrich H., Seeling W. Baroreflex control of heart rate during high thoracic epidural anaesthesia: A randomised clinical trial on anaesthetised humans. Anaesthesia. 1992; 47: 984–7.
  23. Licker M., Spiliopoulos A., Tschopp J.M. Influence of thoracic epidural analgesia on cardiovascular autonomic control after thoracic surgery. Br J Anaesth. 2003; 91: 525–31.
  24. Tanaka M., Goyagi T., Kimura T., Nishikawa T. The effects of cervical and lumbar epidural anesthesia on heart rate variability and spontaneous sequence baroreflex sensitivity. Anesth Analg. 2004; 99: 924–9.
  25. Barbieri R., Triedman J.K., Saul J.P. Heart rate control and mechanical cardiopulmonary coupling to assess central volume: A systems analysis. Am J Physiol Regul Integr Comp Physiol. 2002; 283: R1210–20.
  26. Sancetta S.M., Lynn R.B., Simeone F.A., et al. Studies of hemodynamic changes in humans following induction of low and high spinal anesthesia. Circulation. 1952; 6: 559–71.
  27. Crystal G.J., Salem M.R. The Bainbridge and the “reverse” Bainbridge reflexes: History, physiology, and clinical relevance. Anesth Analg. 2012; 114: 520–32.
  28. Baron J.F., Decaux-Jacolot A., Edouard A., et al. Influence of venous return on baroreflex control of heart rate during lumbar epidural anesthesia in humans. Anesthesiology. 1986; 64: 188–93.
  29. Toner A., Jenkins N., Ackland G.L.; POM-O Study Investigators. Baroreflex impairment and morbidity after major surgery. BrJ Anaesth. 2016; 117(3): 324–31. DOI: 10.1093/bja/aew257
  30. Heusser K., Tank J., Luft F.C., Jordan J. Baroreflex failure. Hypertension. 2005; 45(5): 834–9. DOI: 10.1161/01.HYP.0000160355.93303.72
  31. Matteoli G., Gomez-Pinilla P.J., Nemethova A., et al. A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut. 2014; 63(6): 938–48. DOI: 10.1136/gutjnl-2013-304676
  32. Mirakaj V., Dalli J., Granja T., et al. Vagus nerve controls resolution and pro-resolving mediators of inflammation. J Exp Med. 2014; 211(6): 1037–48. DOI: 10.1084/jem.20132103
  33. Pal G.K., Adithan C., Ananthanarayanan P.H., et al. Association of sympathovagal imbalance with cardiovascular risks in young prehypertensives. Am J Cardiol. 2013; 112(11): 1757–62. DOI: 10.1016/j.amjcard.2013.07.040
  34. Bassi G.S., Brognara F., Castania J.A., et al. Baroreflex activation in conscious rats modulates the joint inflammatory response via sympathetic function. Brain Behav Immun. 2015; 49: 140–7. DOI: 10.1016/j.bbi.2015.05.002
  35. Deutschman C.S., Tracey K.J. Sepsis: current dogma and new perspectives. Immunity. 2014; 40(4): 463–75. DOI: 10.1016/j.immuni.2014.04.001
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2022 ANNALS OF CRITICAL CARE