Impact of multizonal decontamination of upper respiratory tract on incidence of ventilator-associated pneumonia: multicenter randomized pilot study
#2023-3
PDF_2023-3_66-81 (Русский)

Keywords

infection-related ventilator-associated event
ventilator-associated pneumonia
ventilator-associated tracheobronchitis
decontamination
colonization
octenidine
bacteriophage

How to Cite

Lapin К.S., Fot Е.V., Kuzkov V.V., Кirov М.Y. Impact of multizonal decontamination of upper respiratory tract on incidence of ventilator-associated pneumonia: multicenter randomized pilot study. Annals of Critical Care. 2023;(3):66–81. doi:10.21320/1818-474X-2023-3-66-81.

Statistic

Abstract Views: 101
PDF_2023-3_66-81 (Русский) Downloads: 47
Statistic from 21.01.2023

Abstract

INTRODUCTION: Ventilator-associated pneumonia (VAP) is the one of nosocomial infections in intensive care units. VAP can result in prolonged duration of hospitalization and invasive mechanical ventilation (MV) that is associated with attributive mortality. OBJECTIVE: The aim of our pilot multicenter randomized study was to assess effect of the multizonal decontamination of upper airway including subglottic space on the VAP incidence and time of onset, as well as colonization upper airway and clinical outcomes. MATERIALS AND METHODS: Sixty patients requiring the prolonged MV were included in the prospective study. All participants were randomized into three groups: the control, the local antiseptic (LA) and the bacteriophage (BP). All patients were managed using similar VAP protective bundle. Infection-related ventilator-associated complications (IVAC) were registered based on clinical, laboratory, and instrumental examination. Diagnosis of VAP was confirmed if CPIS was ≥ 6 points. RESULTS: A total incidence of IVAC did nоt differ between groups: 15 (75 %), 14 (70 %), and 17 (85 %) cases in the control, LA, and BP groups, respectively. The VAP incidence was lower in the LA and BP groups compared with the controls: 3 (15 %) and 3 (15 %) vs 10 (50 %) cases (χ2 = 8.35; p = 0.015). The overall mortality was 30 % and did not differ between the groups. Multi-selective decontamination resulted in a trend to increased ventilator-associated tracheobronchitis incidence in the BP group and to silent colonization in both LA and BP groups (p = 0.07). No differences in the duration of MV, ICU and hospital stay were observed. CONCLUSIONS: The combined multizonal upper airway decontamination involving subglottic space is associated with a reduction of the VAP incidence but did not change the overall IVAC rate. Multizonal decontamination based on subglottic bacteriophage instillation might have a potential to influence the microbial heterogeneity of upper airways.

https://doi.org/10.21320/1818-474X-2023-3-66-81
PDF_2023-3_66-81 (Русский)

Full-text of the article is available for this locale: Русский.

References

  1. Alecrim R.X., Taminato M., Belasco A., et al. Strategies for preventing ventilator-associated pneumonia: an integrative review. Rev Bras Enferm. 2019; 72(2): 521–30. DOI: 10.1590/0034-7167-2018-0473
  2. Bonell A., Azarrafiy R., Thi V., et al. A Systematic review and meta-analysis of ventilator-associated pneumonia in adults in Asia: an analysis of national income level on incidence and etiology. Clin Infect Dis. 2019; 68(3): 511–8. DOI: 10.1093/cid/ciy543
  3. Нозокомиальная пневмония у взрослых: Российские национальные рекомендации / Под ред. Б.Р. Гельфанда. 2-е изд., перераб. и доп. М.: ООО «МИА», 2016. [Nosocomial pneumonia in adults: Russian national guidelines. [Nozokomial'naya pnevmoniya u vzroslykh: Rossiyskie natsional'nye rekomendatsii]. Ed. B.R. Gel'fand. 2nd ed. Moscow: OOO «MIA», 2016. (In Russ)]
  4. Klompas M. Prevention of intensive care unit-acquired pneumonia. Semin Respir Crit Care Med. 2019; 40(4): 548–57. DOI: 10.1055/s-0039-1695783
  5. Fumagalli J., Panigada M., Klompas M. Ventilator-associated pneumonia among SARS-CoV-2 acute respiratory distress syndrome patients. Curr Opin Crit Care. 2022; 28(1): 74–82. DOI: 10.1097/MCC.0000000000000908
  6. Pickens C.O., Gao C.A., Cuttica M.J., et al. Bacterial superinfection pneumonia in patients mechanically ventilated for COVID-19 pneumonia. Am J Respir Crit Care Med. 2021; 204 (8): 921–32. DOI: 10.1164/rccm.202106-1354OC
  7. Kollef M.H., Hamilton C.W., Ernst F.R. Economic impact of ventilator-associated pneumonia in a large, matched cohort. Infect Control Hosp Epidemiol. 2012; 33: 250–6. DOI: 10.1086/664049
  8. Melsen W.G., Rovers M.M., Groenwold R.H., et al. Attributable mortality of ventilator-associated pneumonia: a meta-analysis of individual patient data from randomised prevention studies. Lancet Infect Dis. 2013; 13 (8): 665–71. DOI: 10.1016/S1473-3099(13)70081-1
  9. Pozuelo-Carrascosa D.P., Isabel A., Cuenca C., et al. Body position for preventing ventilator associated pneumonia for critically ill patients: a systematic review and network meta-analysis. J Intensive Care. 2022; 10(9): 1–14. DOI: 10.1186/s40560-022-00600-z
  10. Klompas M., Branson R., Cawcutt K., et al. Strategies to prevent ventilator-associated pneumonia, ventilator-associated events, and nonventilator hospital-acquired pneumonia in acute-care hospitals: 2022 Update. Infect Control Hosp Epidemiol. 2022; 43 (6): 687–713. DOI: 10.1017/ice.2022.88
  11. Damas P., Legrain C., Lambermont B., et al. Prevention of ventilator associated pneumonia by noble metal coating of endotracheal tubes: a multicenter, randomized, double blind study. Ann Intensive Care 2022; 12(1): 1–10. DOI: 10.1186/s13613-021-00961-y
  12. Dexter A.M., Scott J.B. Airway management and ventilator associated events. Respir Care. 2019; 64(8): 986–93. DOI: 10.4187/respcare.07107
  13. Zhao T., Wu X., Zhang Q., et al. Oral hygiene care for critically ill patients to prevent ventilator-associated pneumonia (Review). Cochrane Database Syst Rev. 2020; 12(12): CD008367. DOI: 10.1002/14651858.CD008367.pub4
  14. Shi Y., Huang Y., Zhang T.T., et al. Chinese guidelines for the diagnosis and treatment of hospital-acquired pneumonia and ventilator-associated pneumonia in adults (2018 edition). J Thorac Dis. 2019; 11(6): 2581–616. DOI: 10.21037/jtd.2019.06.09
  15. Metersky M.L., Klompas M., et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016; 63(5): 61–111. DOI: 10.1093/cid/ciw353
  16. Torres A., Niederman M.S., Chastre J., et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator-associated pneumonia. Eur Respir J. 2017; 50(3): 1700582. DOI: 10.1183/13993003.00582-2017
  17. Zilberberg M.D., Shorr A.F. Ventilator-associated pneumonia: the Clinical Pulmonary Infection Score as a surrogate for diagnostics and outcome. Clin Infect Dis. 2010; 51(S1): 131–5. DOI: 10.1086/653062
  18. Salluh J.I.F., de Souza-Dantas V.C., Martin-Loeches I., et al. Ventilator-associated tracheobronchitis: an update. Rev Bras Ter Intensiva. 2019; 31(4): 541–7. DOI: 10.5935/0103-507X.20190079
  19. Gaudet A., Martin-Loeches I., Povoa P., et al. Accuracy of the clinical pulmonary infection score to differentiate ventilator-associated tracheobronchitis from ventilator-associated pneumonia. Ann Intensive Care. 2020; 10(1): 101. DOI: 10.1186/s13613-020-00721-4
  20. Klompas M. Ventilator-associated events: What they are and what they are not. Respir Care. 2019; 64(8): 953–61. DOI: 10.4187/respcare.07059
  21. He Q., Wang W., Zhu S., et al. The epidemiology and clinical outcomes of ventilator-associated events among 20,769 mechanically ventilated patients at intensive care units: an observational study. Crit Care. 2021; 25(1): 44. DOI: 10.1186/s13054-021-03484-x
  22. Игнатенко О.В., Быков А.О., Тюрин И.Н., Гельфанд Е.Б., Проценко Д.Н. Оценка эффективности протокола профилактики развития нозокомиальной пневмонии, связанной с искусственной вентиляцией легких. Вестник интенсивной терапии имени А.И. Салтанова. 2018; 3: 39–45. DOI: 10.21320/1818-474X-2018-3-39-45 [Ignatenko O.V., Bykov A.O., Tyurin I.N., Gelfand E.B., Protsenko D.N. The efficacy of VAP prophylaxis bundle. Annals of Critical Care. 2018; 3: 39–45. DOI: 10.21320/1818-474X-2018-3-39-45 (In Russ)]
  23. Nobahar M., Razavi M.R., Malek F., Ghorbani R. Effects of hydrogen peroxide mouthwash on preventing ventilator-associated pneumonia in patients admitted to the intensive care unit. Braz J Infect Dis. 2016; 20(5): 444–50. DOI: 10.1016/j.bjid.2016.06.005
  24. Seguin P., Laviolle B., Dahyot-Fizelier C., et al. Study of povidone iodine to reduce pulmonary infection in head trauma and cerebral hemorrhage patients (SPIRIT) ICU Study Group; AtlanRéa Group. Effect of oropharyngeal povidone-iodine preventive oral care on ventilator-associated pneumonia in severely brain-injured or cerebral hemorrhage patients: a multicenter, randomized controlled trial. Crit Care Med. 2014; 42(1): 1–8. DOI: 10.1097/CCM.0b013e3182a2770f
  25. Karakaya Z. Oral mucosal mouthwash with chlorhexidine does not reduce the incidence of ventilator-associated pneumonia in critically ill children: A randomised controlled trial. Aust Crit Care. 2021; 35(4): 336–44. DOI: 10.1016/j.aucc.2021.06.011
  26. La Combe B., Bleibtreu A., Messika J., et al. Decreased susceptibility to chlorhexidine affects a quarter of Escherichia coli isolates responsible for pneumonia in ICU patients. Intensive Care Med. 2018; 44(4): 531–3. DOI: 10.1007/s00134-018-5061-8
  27. Klompas M. Oropharyngeal decontamination with antiseptics to prevent ventilator-associated pneumonia: rethinking the benefits of chlorhexidine. Semin Respir Crit Care Med. 2017; 38(03): 381–90. DOI: 10.1055/s-0037-1602584
  28. Bouadma L., Klompas M. Oral care with chlorhexidine: beware! Intensive Care Med. 2018; 44(7): 1153–5. DOI: 10.1007/s00134-018-5221-x
  29. Lee S., Lighvan N.L., McCredie V., et al. Chlorhexidine-related mortality rate in critically ill subjects in intensive care units: a systematic review and meta-analysis. Respir Care. 2019; 64(3): 337–49. DOI: 10.4187/respcare.06434
  30. Кузовлев А.Н., Мороз В.В. Нозокомиальная пневмония — принципы ранней диагностики и профилактики. Вестник интенсивной терапии имени А.И. Салтанова. 2019; 2: 40–7. DOI: 10.21320/1818-474X-2019-2-40-47 [Kuzovlev A.N., Moroz V.V. Nosocomial pneumonia — principles of early diagnosis and prevention. Annals of Critical Care. 2019; 2: 40–47. DOI: 10.21320/1818-474X-2019-2-40-47 (In Russ)]
  31. Hurley J.C. Is selective decontamination (SDD/SOD) safe in the ICU context? J Antimicrob Chemother. 2019; 74(5): 1167–72. DOI: 10.1093/jac/dky573
  32. Cavalcanti A.B., Lisboa T., Gales A.C. Is selective digestive decontamination useful for critically ill patients? Shock. 2017; 47(5): 52–7. DOI: 10.1097/SHK.0000000000000711
  33. Wang B., Briegel J., Krueger W.A., et al. Ecological effects of selective oral decontamination on multidrug-resistance bacteria acquired in the intensive care unit: a case–control study over 5 years. Intensive Care Med. 2022; 48(9): 1165–75. DOI: 10.1007/s00134-022-06826-7
  34. Pozuelo-Carrascosa D.P., Herráiz-Adillo Á., Alvarez-Bueno C., et al. Subglottic secretion drainage for preventing ventilator-associated pneumonia: an overview of systematic reviews and an updated meta-analysis. Eur Respir Rev. 2020; 29 (155): 190107. DOI: 10.1183/16000617.0107-2019
  35. Lescat M., Magnan M., Kenmoe S., et al. Co-lateral effect of Octenidine, Chlorhexidine and Colistin selective pressures on four enterobacterial species: A comparative genomic analysis. Antibiotics (Basel). 2022; 11(1): 50. DOI: 10.3390/antibiotics11010050
  36. Müller G., Kramer A. Interaction of octenidine and chlorhexidine with mammalian cells and the resulting microbicidal effect (remanence) of the combinations. GMS Krankenhaushygiene Interdisziplinär. 2007; 2(2): 46. [Müller G., Kramer A. Wechselwirkung von Octenidin und ChlorhexidinmitSäugerzellen und die resultierendeMikrobiozidie (Remanenzverhalten) der Reaktionsprodukte Interaction of octenidine and chlorhexidine with mammalian cells and the resulting microbicidal effect (remanence) of the combinations. GMS KrankenhaushygieneInterdisziplinär. 2007; 2 (2); 46. ISSN 1863-5245]
  37. Rzycki M., Drabik D., Szostak-Paluch K., et al. Unraveling the mechanism of octenidine and chlorhexidine on membranes: Does electrostatics matter? Biophys J. 2021; 120(16): 3392–408. DOI: 10.1016/j.bpj.2021.06.027
  38. Pavlík V., Sojka M., Mazúrová M., Velebný V. Dual role of iodine, silver, chlorhexidine and octenidine as antimicrobial and antiprotease agents. PLoS ONE. 2019; 14 (1): e0211055. DOI: 10.1371/journal.pone.0211055
  39. Malik D.J., Sokolov I.J., Vinner G.K., et. al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci. 2017; 249: 100–33. DOI: 10.1016/j.cis.2017.05.014
  40. Асланов Б.И., Любимова А.В., Зуева Л.П. Бактериофаги как эффективные противоэпидемические средства для купирования вспышек внутрибольничных инфекций. Журнал инфектологии. 2019; 11(1): 65–70. DOI: 10.22625/2072-6732-2019-11-1-65-70 [Aslanov B.I., Lubimova A.V., Zueva L.P. Bacteriophages as effective antiseptic agents for control of hospital-acquired infection outbreaks. Journal Infectology. 2019; 11(1): 65–70. DOI: 10.22625/2072-6732-2019-11-1-65-70 (In Russ)]
  41. Асланов Б.И., Зуева Л.П., Долгий А.А. и др. Эффективность применения бактериофагов против штаммов Pseudomonas aeruginosa, формирующих микробные биопленки. Профилактическая и клиническая медицина. 2020; 4(77): 40–5. DOI: 10.47843/2074-9120_2020_4_40 [Aslanov B.I., Zueva L.P., Dolgiy A.A., et al. Efficacy of bacteriophages against Pseudomonas aeruginosa biofilms. Preventive and clinical medicine. 2020; 4(77): 40–5. DOI: 10.47843/2074-9120_2020_4_40 (In Russ)]
  42. Асланов Б.И., Зуева Л.П., Пунченко О.Е. и др. Рациональное применение бактериофагов в лечебной и противоэпидемической практике. Методические рекомендации. М.: НП «НАСКИ», 2022.
  43. Jiang W., Marraffini L.A. CRISPR-Cas: New tools for genetic manipulations from bacterial immunity systems. Annu Rev Microbiol. 2015; 69: 209–28. DOI: 10.1146/annurev-micro-091014-104441
  44. Власов В.В., Тикунова Н.В., Морозова В.В. Бактериофаги как терапевтические препараты. Биохимия. 2020; 85(11): 1587–600. DOI: 10.31857/S0320972520110068 [Vlassov V.V., Tikunova N.V., Morozova V.V. Bacteriophages as therapeutic preparations: what restricts their application in medicine. Biochemistry. 2020; 85(11): 1587–600. DOI: 10.31857/S0320972520110068 (In Russ)]
  45. Bikard D., Marraffini L.A. Innate and adaptive immunity in bacteria: mechanisms of programmed genetic variation to fight bacteriophages. Curr Opin Immunol. 2012; 24 (1): 15–20. DOI: 10.1016/j.coi.2011.10.005
  46. van der Oost J., Brouns S.J. CRISPR sabotage. Genome Biol. 2015; 16: 248. DOI: 10.1186/s13059-015-0820-0
  47. Красильников И.В., Лыско К.А., Отрашевская Е.В., Лобастова А.К. Препараты бактериофагов: краткий обзор современного состояния и перспектив развития. Сибирский медицинский журнал (г. Томск). 2011; 26 (2-2): 33–7. [Krasilnikov I.V., Lysko K.A., Otrashevskaya E.V., Lobastova A.K. Bacteriophage based preparations: a brief survey of current state and future development. The Siberian Medical Journal. 2011; 26 (2-2): 33–7].
  48. Koulenti D., Arvaniti K., Judd M., et al. Ventilator-associated tracheobronchitis: To treat or not to treat? Antibiotics. 2020; 9(2): 1–11. DOI: 10.3390/antibiotics9020051
  49. Rose D.D., Pezzotti P., Fortunato E., et al. Clinical predictors and microbiology of ventilator-associated pneumonia in the intensive care unit: a retrospective analysis in six Italian hospitals. Eur J Clin Microbiol Infect Dis. 2016; 35(9): 1531–9. DOI: 10.1007/s10096-016-2694-9
  50. Messika J., La Combe B., Ricard J.D. Oropharyngeal colonization: epidemiology, treatment and ventilator-associated pneumonia prevention. Ann Transl Med. 2018; 6(21): 426. DOI: 10.21037/atm.2018.10.17
  51. Fernández-Barat L., López-Aladid R., Torres A. Reconsidering ventilator-associated pneumonia from a new dimension of the lung microbiome. EBioMedicine. 2020; 60: 102995. DOI: 10.1016/j.ebiom.2020.102995
  52. Razazi K., Arrestier R., Haudebourg A.F., et al. Risks of ventilator-associated pneumonia and invasive pulmonary aspergillosis in patients with viral acute respiratory distress syndrome related or not to Coronavirus 19 disease. Crit Care. 2020; 24 (1): 1–11. DOI: 10.1186/s13054-020-03417-0
  53. Six S., Jaffal K., Ledoux G., et al. Hyperoxemia as a risk factor for ventilator-associated pneumonia. Crit Care. 2016; 20 (1): 1–8. DOI: 10.1186/s13054-016-1368-4
  54. Liu C., Wu K., Sun T., et al. Effect of invasive mechanical ventilation on the diversity of the pulmonary microbiota. Crit Care. 2022; 26 (1): 252. DOI: 10.1186/s13054-022-04126-6
  55. Wu Z., Liu Y., Xu J., et al. Ventilator-associated pneumonia prediction model in patients with acute respiratory distress syndrome. Clin Infect Dis. 2020; 23(71): 400–8. DOI: 10.1093/cid/ciaa1518
  56. Bonten M.J., Kollef M.H., Hall J.B. Risk factors for ventilator-associated pneumonia: from epidemiology to patient management. Clin Infect Dis. 2004; 38(8): 1141–9. DOI: 10.1086/383039
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2023 Annals of Critical Care