Features of energy and protein supply in patients with sepsis: a retrospective observational study
PDF_2022-4_101-110 (Русский)
HTML_2022-4_101-110 (Русский)


nutritional support
requirements of protein
requirements of energy
nitrogen loss
enteral nutrition
parenteral nutrition

How to Cite

Luft VM, Shlyapnikov SA, Demko AY, Lapitsky AV, Batyrshin IM, Pichugina GA, Dubikaytis PA, Zolotukhin AI Features of energy and protein supply in patients with sepsis: a retrospective observational study. Annals of Critical Care. 2022;(4):101–110. doi:10.21320/1818-474X-2022-4-101-110.


Abstract Views: 26
PDF_2022-4_101-110 (Русский) Downloads: 9
HTML_2022-4_101-110 (Русский) Downloads: 5
PDF_2022-4_101-110 Downloads: 3
HTML_2022-4_101-110 Downloads: 2
Plum Analytics


English Русский

Social Networks




INTRODUCTION: Sepsis remains an actual problem of modern medicine. Among other treatment options, timely prescribed optimal nutritional-metabolic support is one of the priority methods of intensive treatment for this category of patients. OBJECTIVE: To study the severity of metabolic dysfunction in sepsis and determine the parameters of optimal substrate supply for this category of patients. MATERIALS AND METHODS: The study included 166 patients with sepsis. We studied the severity of systemic metabolic dysfunction and the impact of various options for energy and protein supply on the course of the disease and its outcome. Energy expenditure and the severity of the catabolic reaction of the body were studied by dynamic evaluation of indicators of indirect calorimetry, actual losses of nitrogen and nitrogen balance. RESULTS: Actual energy expenditure in sepsis reaches its maximum values by the 5–6th day of the disease (33.5 ± 1.8 kcal/kg/day or 2366 ± 126 kcal/day). The average energy consumption in sepsis is 2226 ± 96 kcal/day or 30.9 ± 1.4 kcal/kg/day. Energy supply in sepsis less than 25 kcal/kg/day leads to a significant increase in mortality. Protein losses in sepsis reach their maximum values by the 5–6th day of the disease (1.93 ± 0.12 g/kg/day). The average loss of protein in sepsis is 1.68 ± 0.06 g/kg/day. Protein provision of this category of patients with more than 1.5 g/kg/day contributes to a significant decrease in mortality, relative to patients receiving less protein per day. CONCLUSIONS: Energy supply in the range of 25–35 kcal/kg/day, as well as protein supply of more than 1.5 g/kg/day, significantly contribute to better survival of patients with sepsis.

PDF_2022-4_101-110 (Русский)
HTML_2022-4_101-110 (Русский)


  1. Клинические рекомендации по диагностике и лечению тяжелого сепсиса и септического шока в лечебно-профилактических организациях Санкт-Петербурга 2016 года. Санкт-Петербургское общество специалистов по сепсису [Электронный ресурс]. URL: http://www.spbsepsis.ru/wp-content/uploads/Protocols 24.11.2016.pdf (дата обращения: 12.05.2022) [Clinical guidelines for the diagnosis and treatment of severe sepsis and septic shock in medical institutions in St. Petersburg, 2016. St. Petersburg Society of Sepsis Specialists [Elektronnyj resurs]. URL: http://www.spbsepsis.ru/wp-content/uploads/Protocols 11/24/2016.pdf (accessed 12.05.2022) (In Russ)]
  2. Основы клинического питания. Материалы лекций для курсов Европейской ассоциации парентерального питания. Под ред. Л. Соботки: пер. с англ. М., 2015. [Fundamentals of clinical nutrition. Lecture materials for the courses of the European Association for Parenteral Nutrition. Ed. L. Sobotki. M., 2015. (In Russ)]
  3. Сепсис вначале ХXI века. Классификация, клинико-диагностическая концепция и лечение: Практич. рук-во. Под ред. В.С. Савельева, Б Р. Гельфанда. М.: Литтерра, 2006. [Sepsis at the beginning of the XXI century. Classification, clinical diagnostic concept and treatment: Practical guide. Eds. V.S. Saveliev, B.R. Gelfand. M.: Litterra, 2006. (In Russ)]
  4. Хирургические инфекции: Практич. рук-во. Под ред. И.А. Ерюхина, Б.Р. Гельфанда, С.А. Шляпникова. Изд. 2-е, перераб. и доп. М.: Литтерра, 2006. [Surgical infections: Practical guide. Eds. I.A. Eryukhin, B.R. Gelfand, S.A. Shlyapnikov. 2nd ed., revised and enlarged. M.: Litterra, 2006. (In Russ)]
  5. Интенсивная терапия: Национальное рук-во. Краткое издание. Под ред. Б.Р. Гельфанда, И.Б. Заболотских. 2-е изд., перераб. и доп. М., ГЭОТАР-Медиа, 2019. [Intensive care: National leadership. Brief edition. Eds. B.R. Gelfand, I.B. Zabolotskikh. 2nd ed., revised and additional. M.: GEOTAR-Media, 2019. (In Russ)]
  6. Парентеральное и энтеральное питание: Национальное рук-во. Под ред. М.Ш. Хубутия, Т.С. Поповой, А.И. Салтанова. М., ГЭОТАР-Медиа, 2014. [Parenteral and enteral nutrition: National guidelines. Eds. M.Sh. Khubutia, T.S. Popova, A.I. Saltanov. M.: GEOTAR-Media, 2014. (In Russ)]
  7. Руководство по клиническому питанию. Под ред. В.М. Луфта. СПб.: Арт-Экспресс, 2016. [Clinical Nutrition Guide. Ed. by V.M. Luft. St. Petersburg: Art-Express, 2016. (In Russ)]
  8. Basics in Clinical Nutrition. Fifth edition. Editor in chief L. Sobotka. Publishing House Galén. 2019.
  9. Fontaine E., Muller M.J. Adaptive alterations in metabolism: practical consequences on energy requirements in the severely ill patient. Curr Opin Clin Nutr Metab Care. 2011; 14: 171–5. DOI: 10.1097/MCO.0b013e328342bad4
  10. Zauner C., Schuster B.I., Schneeweiss B. Similar metabolic responses to standardized total parenteral nutrition of septic and nonseptic critically ill patients. Am J Clin Nutr. 2001; 74: 265–70. DOI: 10.1093/ajcn/74.2.265
  11. Hoffer L.J., Bistrian B.R. Why critically ill patients are protein deprived. JPEN J Parenter Enteral Nutr. 2013; 37: 300–9. DOI: 10.1177/0148607113478192
  12. Lightfoot A., McArdle A., Griffiths R.D. Muscle in defense. Crit Care Med. 2009; 37: S384–S390. DOI: 10.1097/CCM.0b013e3181b6f8a5
  13. Soeters P.B., Grimble R.F. Dangers, and benefits of the cytokine mediated response to injury and infection. Clin Nutr. 2009; 28: 583–96. DOI: 10.1016/j.clnu.2009.05.014
  14. Correia M.I., Waitzberg D.L. The impact of malnutrition on morbidity, mortality, length of hospital stay and costs evaluated through a multivariate model analysis. Clin Nutr. 2003; 22: 235–9. DOI: 10.1016 / s0261-5614 (02) 00215-7
  15. Jensen G.L., Mirtallo J., Compher C., et al. Adult starvation and disease-related malnutrition: a proposal for etiology-based diagnosis in the clinical practice setting from the International Consensus Guideline Committee. JPEN J Parenter Enteral Nutr. 2010; 34: 156–9. DOI: 10.1177/0148607110361910
  16. Heyland D.K., Dhaliwal R., Drover J.W., et al. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003; 27: 355–73. DOI: 10.1177/0148607103027005355
  17. McClave S.A., Martindale R.G., Vanek V.W., et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2009; 33: 277–316. DOI: 10.1177/0148607115621863
  18. Singer P., Berger M.M., Van den Berghe G., et al. ESPEN Guidelines on Parenteral Nutrition: intensive care. Clin Nutr. 2009; 28(4): 387–400. DOI:10.1016/j.clnu.2009.04.024
  19. McClave S.A., Heyland D.K. The physiologic response and associated clinical benefits from provision of early enteral nutrition. Nutr Clin Pract. 2009; 24: 305–15. DOI: 10.1177/0884533609335176
  20. Koekkoek K.W.A.C., van Zanten A.R.H. Nutrition in the critically ill patient. Curr Opin Anesthesiol. 2017; 30: 178–185. DOI: 10.1097/ACO.0000000000000441
  21. Dellinger R.P., Levy M.M., Rhodes A., et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013; 41: 580–637. DOI: 10.1097/ CCM.0b013e31827e83af
  22. Arabi Y.M., Tamim H.M., Dhar G.S., et al. Permissive underfeeding and intensive insulin therapy in critically ill patients: a randomized controlled trial. Am J Clin Nutr. 2011; 93: 569–77. DOI: 10.3945/ajcn.110.005074
  23. Rice T.W., Mogan S., Hays M.A., et al. Randomized trial of initial trophic versus full-energy enteral nutrition in mechanically ventilated patients with acute respiratory failure. Crit Care Med. 2011; 39: 967–74. DOI: 10.1097/ CCM.0b013e31820a905a
  24. Rice T.W., Wheeler A.P., Thompson B.T., et al. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA. 2012; 307: 795–803. DOI: 10.1001/jama.2012.137
  25. Sondheimer J.M. A critical perspective on trophic feeding. J Pediatr Gastroenterol Nutr. 2004; 38: 237–8. DOI: 10.1097/00005176-200403000-00001
  26. Dhaliwal R, Cahill N, Lemieux M, Heyland DK. The canadian critical care nutrition guidelines in 2013: an update on current recommendations and implementation strategies. Nutr Clin Pract. 2014; 29: 29–43. DOI: 10.1177/0884533613510948
  27. Elke G., Wang M., Weiler N., et al. Close to recommended caloric and protein intake by enteral nutrition is associated with better clinical outcome of critically ill septic patients: secondary analysis of a large international nutrition database. Crit Care. 2014; 18: R29. DOI: 10.1186 / cc13720
  28. Elke G., Heyland D.K. Enteral nutrition in critically ill septic patients—less or more? JPEN J Parenter Enteral Nutr. 2015; 39: 140–2. DOI: 10.1177/0148607114532692
  29. Alberda C., Gramlich L., Jones N., et al. The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. Intensive Care Med. 2009; 35: 1728–37. DOI: 10.1177/0148607114532692
  30. Weijs P.J., Stapel S.N., de Groot S.D. Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. JPEN J Parenter Enteral Nutr. 2012; 36: 60–8. DOI: 10.1177/0148607111415109
  31. Nicolo M., Heyland D.K., Chittams J., et al. Clinical outcomes related to protein & delivery in a critically ill population: a multicenter, multinational observation study. JPEN J Parenter Enteral Nutr. 2016; 40: 45–51. DOI: 10.1177/0148607115583675
  32. Mehta N.M., Bechard L.J., Zurakowski D., et al. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J ClinNutr. 2015; 102: 199–206. DOI: 10.3945 /ajcn.114.104893
  33. Ferrie S., Allman-Farinelli M., Daley M., Smith K. Protein requirements in the critically ill: a randomized controlled trial using parenteral nutrition. JPEN J Parenter Enteral Nutr. 2016; 40: 795–805. DOI: 10.1177/0148607115618449
  34. Puthucheary Z.A., Rawal J., McPhail M., et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013; 310: 1591–600. DOI: 10.1001/jama.2013.278481
  35. Casaer M.P., Wilmer A., Hermans G., et al. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial: a post hoc analysis. Am J Respir Crit Care Med. 2013; 187: 247–55. DOI: 10.1164 /rccm.201206-0999OC
  36. Allingstrup M.J., Esmailzadeh N., Wilkens Knudsen A., et al. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin Nutr. 2012; 31(4): 462–8. DOI:10.1016/j.clnu.2011.12.006
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2022 ANNALS OF CRITICAL CARE


Download data is not yet available.