Septic shock in adults: guidelines of the All-Russian public organization “Federation of Anesthesiologists and Reanimatologists”
ISSN (print) 1726-9806     ISSN (online) 1818-474X
PDF_2023-4_7-42 (Russian)
HTML_2023-4_7-42_S1 (Russian)

Keywords

septic shock
intensive care
clinical guidelines

How to Cite

1.
Kirov M.Y., Kuzkov V.V., Protsenko D.N., Shchegolev A.V., Babaev M.A., Belotserkovskiy B.Z., Bykov A.O., Gritsan A.I., Kulabukhov V.V., Kulikov A.V., Kupreichik V.L., Lakhin R.E., Lebedinskii K.M., Rey S.I., Rudnov V.A., Smetkin A.A., Surkov M.V., Shifman E.M., Shlyapnikov S.A., Yarustovsky M.B., Zabolotskikh I.B. Septic shock in adults: guidelines of the All-Russian public organization “Federation of Anesthesiologists and Reanimatologists.” Annals of Critical Care. 2023;(4):7-42. doi:10.21320/1818-474X-2023-4-7-42

Statistic

Abstract Views: 6438
PDF_2023-4_7-42 (Russian) Downloads: 1371
HTML_2023-4_7-42_S1 (Russian) Downloads: 319
Statistic from 01.07.2024

Language

English Русский

Social Networks

Abstract

The paper represents the clinical guidelines for septic shock in adults, approved by the All-Russian public organization “Federation of anesthesiologists and reanimatologists” in 2023. Septic shock is a widespread condition with a high mortality rate. The recommendations cover the issues of etiology, pathogenesis, clinical signs and symptoms, methods of laboratory and instrumental diagnosis of septic shock. The clinical guidelines present initial therapy for septic shock, including approaches to vasopressor and inotropic therapy, recommendations for choosing antibacterial drugs, fluid and adjuvant therapy. The issues of surgical treatment of the infection are discussed. The article contains the criteria for the quality of medical care for the adult patients with septic shock and algorithms for the decision making in the diagnosis and intensive care of patients with septic shock.

PDF_2023-4_7-42 (Russian)
HTML_2023-4_7-42_S1 (Russian)

Full-text of the article is available for this locale: Russian.

References

  1. Singer M., Deutschman C.S., Seymour C.W., et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA; 315(8): 801–10. DOI: 10.1001/jama.2016.0287
  2. Varpula M., Tallgren M., Saukkonen K., et al. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005; 31(8): 1066–71. DOI: 10.1007/s00134-005-2688-z
  3. Shankar-Hari M., Phillips G.S., Levy M.L., et al. Developing a new definition and assessing new clinical criteria for Septic shock: For the third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016; 315(8): 775–87. DOI: 10.1001/jama.2016.0289
  4. Vincent J.L., Sakr Y., Singer M., et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA. 2020; 323(15): 1478–87. DOI: 10.1001/jama.2020.2717
  5. Яковлев С.В., Суворова М.П., Белобородов В.Б. и др. Распространенность и клиническое значение нозокомиальных инфекций в лечебных учреждениях России: исследование ЭРГИНИ. Антибиотики и химиотерапия. 2016; 61(5–6): 32–42. [Yakovlev S.V., Suvorova M.P., Beloborodov V.B. et al. Multicentre Study of the Prevalence and Clinical Value of Hospital-Acquired Infections in Emergency Hospitals of Russia: ERGINI Study. Antibiotics and Chemotherapy. 2016; 61(5–6): 32–42. (In Russ)]
  6. Bertsimas D., Lukin G., Mingardi L., et al. COVID-19 mortality risk assessment: An international multi-center study. PLoS One. 2020; 15(12): e0243262. DOI: 10.1371/journal.pone.0243262
  7. Dessie Z.G., Zewotir T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect Dis. 2021; 21(1): 855. DOI: 10.1186/s12879-021-06536-3
  8. Pawestri H.A., Eggink D., Isfandari S., et al. Viral Factors Associated With the High Mortality Related to Human Infections With Clade 2.1 Influenza A/H5N1 Virus in Indonesia. Clin Infect Dis. 2020; 70(6): 1139–46. DOI: 10.1093/cid/ciz328
  9. Neumann G., Chen H., Gao G.F., et al. H5N1 influenza viruses: outbreaks and biological properties. Cell Res. 2010; 20(1): 51–61. DOI: 10.1038/cr.2009.124
  10. Lobo S.M., Watanabe A.S.A., Salomão M.L.M., et al. Excess mortality is associated with influenza A (H1N1) in patients with severe acute respiratory illness. J Clin Virol. 2019; 116: 62–8. DOI: 10.1016/j.jcv.2019.05.003
  11. Li S.H., Hsieh M.J., Lin S.W., et al. Outcomes of severe H1N1 pneumoniae: A retrospective study at intensive care units. J Formos Med Assoc. 2020; 119(1): 26–33. DOI: 10.1016/j.jfma.2019.02.006
  12. Seymour C.W., Kennedy J.N., Wang S., et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA. 2019; 321(20): 2003–17. DOI: 10.1001/jama.2019.5791
  13. Chen G.Y., Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010; 10(12): 826–37. DOI: 10.1038/nri2873
  14. Taylor J., Toh C.H., Hoots W.K., et al. Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost. 2001; 86(5): 1327–30.
  15. Chiscano-Camón L. et al. Pathophysiology of septic shock. Med. Intensiva. Ediciones Doyma, S.L., 2022; 46: 1–13.
  16. Bauzá-Martinez J., Aletti F., Pinto B.B., et al. Proteolysis in septic shock patients: plasma peptidomic patterns are associated with mortality. Br J Anaesth. 2018; 121(5): 1065–74. DOI: 10.1016/j.bja.2018.05.072
  17. Bermejo-Martin J.F., Martín-Fernandez M., López-Mestanza C., et al. Shared Features of Endothelial Dysfunction between Sepsis and Its Preceding Risk Factors (Aging and Chronic Disease). J Clin Med. 2018; 7(11): 400. DOI: 10.3390/jcm7110400
  18. López-Aguirre Y., Páramo J.A. Endothelial cell and hemostatic activation in relation to cytokines in patients with sepsis. Thromb Res. 1999; 94(2): 95–101. DOI: 10.1016/s0049-3848(98)00200-x
  19. Mesquida J., Gruartmoner G., Ferrer R. Passive leg raising for assessment of volume responsiveness: A review. Curr Opin Crit Care. 2017; 23(3): 237–43. DOI: 10.1097/MCC.0000000000000404
  20. García-De-Acilu M., Mesquida J., Gruartmoner G., Ferrer R. Hemodynamic support in septic shock. Curr Opin Anaesthesiol. 2021; 34(2): 99–106. DOI: 10.1097/ACO.0000000000000959
  21. Bateman R.M., Tokunaga C., Kareco T., et al. Myocardial hypoxia-inducible HIF-1α, VEGF, and GLUT1 gene expression is associated with microvascular and ICAM-1 heterogeneity during endotoxemia. Am J Physiol Heart Circ Physiol. 2007; 293(1): H448–56. DOI: 10.1152/ajpheart.00035.2007
  22. Sakr Y., Dubois M.J., De Backer D., et al. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004; 32(9): 1825–31. DOI: 10.1097/01.ccm.0000138558.16257.3f
  23. Trzeciak S., McCoy J.V., Dellinger R.P., et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008; 34(12): 2210–7. DOI: 10.1007/s00134-008-1193-6
  24. De Backer D., Creteur J., Preiser J.C., et al. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002; 166(1): 98–104. DOI: 10.1164/rccm.200109-016oc
  25. Hungerford J.E., Sessa W.C., Segal S.S. Vasomotor control in arterioles of the mouse cremaster muscle. FASEB J. 2000; 14(1): 197–207. DOI: 10.1096/fasebj.14.1.197
  26. Dietrich H.H., Ellsworth M.L., Sprague R.S., Dacey Jr. R.G. Red blood cell regulation of microvascular tone through adenosine triphosphate. Am J Physiol Heart Circ Physiol. 2000; 278(4): H1294–8. DOI: 10.1152/ajpheart.2000.278.4.H1294
  27. Tyml K., Wang X., Lidington D., Ouellette Y. Lipopolysaccharide reduces intercellular coupling in vitro and arteriolar conducted response in vivo. Am J Physiol Heart Circ Physiol. 2001; 281(3): H1397–406. DOI: 10.1152/ajpheart.2001.281.3.H1397
  28. Cabrales P., Vázquez B.Y.S., Tsai A.G., Intaglietta M. Microvascular and capillary perfusion following glycocalyx degradation. J Appl Physiol (1985). 2007; 102(6): 2251–9. DOI: 10.1152/japplphysiol.01155.2006
  29. Marechal X., Favory R., Joulin O., et al. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock. 2008; 29(5): 572–6. DOI: 10.1097/SHK.0b013e318157e926
  30. Piagnerelli M., Boudjeltia K.Z., Vanhaeverbeek M., Vincent J.L. Red blood cell rheology in sepsis. Intensive Care Med. 2003; 29(7): 1052–61. DOI: 10.1007/s00134-003-1783-2
  31. Eichelbrönner O., Sielenkämper A., Cepinskas G., et al. Endotoxin promotes adhesion of human erythrocytes to human vascular endothelial cells under conditions of flow. Crit Care Med. 2000; 28(6): 1865–70. DOI: 10.1097/00003246-200006000-00030
  32. Edul V.S.K, Ince C., Navarro N., et al. Dissociation between sublingual and gut microcirculation in the response to a fluid challenge in postoperative patients with abdominal sepsis. Ann Intensive Care. 2014; 4: 39. DOI: 10.1186/s13613-014-0039-3
  33. Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care. 2015; 19(Suppl 3): S8. DOI: 10.1186/cc14726
  34. Dubin A., Pozo M.O., Casabella C.A., et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: A prospective study. Crit Care. 2009; 13(3): R92. DOI: 10.1186/cc7922
  35. Rady M.Y., Rivers E.P., Nowak R.M. Resuscitation of the critically ill in the ED: responses of blood pressure, heart rate, shock index, central venous oxygen saturation, and lactate. Am J Emerg Med. 1996; 14(2): 218–25. DOI: 10.1016/s0735-6757(96)90136-9
  36. Bateman R.M., Walley K.R. Microvascular resuscitation as a therapeutic goal in severe sepsis. Crit Care. 2005; 9(Suppl 4): S27–32. DOI: 10.1186/cc3756
  37. Vincent J.L., Privalle C.T., SingerM. et al. Multicenter, randomized, placebo-controlled phase III study of pyridoxalated hemoglobin polyoxyethylene in distributive shock (PHOENIX). Crit Care Med. 2015; 43(1): 57–64. DOI: 10.1097/CCM.0000000000000554
  38. Top A.P.C., Ince C., de Meij N., et al. Persistent low microcirculatory vessel density in nonsurvivors of sepsis in pediatric intensive care. Crit Care Med. 2011; 39(1): 8–13. DOI: 10.1097/CCM.0b013e3181fb7994
  39. Fleischmann C., Scherag A., Adhikari N.K.J., et al. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am J Respir Crit Care Med. 2016; 193(3): 259–72. DOI: 10.1164/rccm.201504-0781OC
  40. Fleischmann-Struzek C., Mellhammar L., Rose N., et al. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020; 46(8): 1552–62. DOI: 10.1007/s00134-020-06151-x
  41. Tian H.C., Zhou J.F., Weng L., et al. Epidemiology of Sepsis-3 in a sub-district of Beijing: secondary analysis of a population-based database. Chin Med J (Engl). 2019; 132(17): 2039–45. DOI: 10.1097/CM9.0000000000000392
  42. Liu Y.-C., Yao Y., Yu M.-M., et al. Frequency and mortality of sepsis and septic shock in China: a systematic review and meta-analysis. BMC Infect Dis. 2022; 22(1): 564. DOI: 10.1186/s12879-022-07543-8
  43. Xie J., Wang H., Kang Y., et al. The Epidemiology of Sepsis in Chinese ICUs: A National Cross-Sectional Survey. Crit Care Med. 2020; 48(3): e209–e218. DOI: 10.1097/CCM.0000000000004155
  44. Markwart R., Saito H., Harder T., et al. Epidemiology and burden of sepsis acquired in hospitals and intensive care units: a systematic review and meta-analysis. Intensive Care Med. 2020; 46(8): 1536–51. DOI: 10.1007/s00134-020-06106-2
  45. Lakbar I. Munoz M., Pauly V., et al. Septic shock: incidence, mortality and hospital readmission rates in French intensive care units from 2014 to 2018. Anaesth Crit Care Pain Med. 2022; 41(3): 101082. DOI: 10.1016/j.accpm.2022.101082
  46. Liang J., Li Z., Dong H., Xu C. Prognostic factors associated with mortality in mechanically ventilated patients in the intensive care unit: A single-center, retrospective cohort study of 905 patients. Medicine (Baltimore). 2019; 98(42): e17592. DOI: 10.1097/MD.0000000000017592
  47. Jones D., Moran J., Udy A., et al. Temporal changes in the epidemiology of sepsis-related intensive care admissions from the emergency department in Australia and New Zealand. Emerg Med Australas. 2022; 34(6): 995–1003. DOI: 10.1111/1742-6723.14034
  48. Chen S., Gao Z., Hu L., et al. Association of Septic Shock with Mortality in Hospitalized COVID-19 Patients in Wuhan, China. Adv Virol. 2022; 2022: 3178283. DOI: 10.1155/2022/3178283
  49. Li J., Luo H., Deng G., et al. Multidimensional Evaluation of All-Cause Mortality Risk and Survival Analysis for Hospitalized Patients with COVID-19. Int J Med Sci. 2021; 18(14): 3140–9. DOI: 10.7150/ijms.58889
  50. Lenney M., Kopp B., Erstad B. Effect of fixed-dose hydrocortisone on vasopressor dose and mean arterial pressure in obese and nonobese patients with septic shock. Am J Health Syst Pharm. 2022; 79(Suppl 3): S94–S99. DOI: 10.1093/ajhp/zxac156
  51. Meresse Z., Medam S., Mathieu C., et al. Vasopressors to treat refractory septic shock. Minerva Anestesiol. 2020; 86(5): 537–45. DOI: 10.23736/S0375-9393.20.13826-4
  52. Nandhabalan P., Ioannou N., Meadows C., Wyncoll D. Refractory septic shock: our pragmatic approach. Crit Care. 2018; 22(1): 215. DOI: 10.1186/s13054-018-2144-4
  53. Vincent JL, Ince C, Bakker J. Clinical review: Circulatory shock an update: a tribute to Professor Max Harry Weil. Crit Care. 2012; 16(6): 239. DOI: 10.1186/cc11510
  54. Hariri G., Joffre J., Leblanc G., et al. Narrative review: clinical assessment of peripheral tissue perfusion in septic shock. Ann Intensive Care. 2019; 9(1): 37. DOI: 10.1186/s13613-019-0511-1
  55. Preda G., Bourcier S., Joffre J., et al. Mottling score is associated with 28-day mortality in critically ill patients with sepsis. Minerva Anestesiol. 2017; 83(6): 664–6. DOI: 10.23736/S0375-9393.17.11816-X
  56. Amson H., Vacheron C.H., Thiolliere F., et al. Core-to-skin temperature gradient measured by thermography predicts day-8 mortality in septic shock: A prospective observational study. J Crit Care. 2020; 60: 294–9. DOI: 10.1016/j.jcrc.2020.08.022
  57. Magnin M., Amson H., Vacheron C.H., et al. Associations between peripheral perfusion disorders, mean arterial pressure and dose of norepinephrine administrated in the early phase of septic shock. Clin Exp Pharmacol Physiol. 2021; 48(10): 1327–35. DOI: 10.1111/1440-1681.13540
  58. Ait-Oufella H., Bige N., Boelle P.Y., et al. Capillary refill time exploration during septic shock. Intensive Care Med. 2014; 40(7): 958–64. DOI: 10.1007/s00134-014-3326-4
  59. Levy B. Lactate and shock state: the metabolic view. Curr Opin Crit Care. 2006; 12(4): 315–21. DOI: 10.1097/01.ccx.0000235208.77450.15
  60. Yang W.S., Kang H.D., Jung S.K., et al. A mortality analysis of septic shock, vasoplegic shock and cryptic shock classified by the third international consensus definitions (Sepsis-3). Clin Respir J. 2020; 14(9): 857–63. DOI: 10.1111/crj.13218
  61. Ko B.S., Kim K., Choi S.H., et al. Prognosis of patients excluded by the definition of septic shock based on their lactate levels after initial fluid resuscitation: a prospective multi-center observational study. Crit Care. 2018; 22(1): 47. DOI: 10.1186/s13054-017-1935-3
  62. Mengya Z., Meili D. Lactic acid, lactate clearance and procalcitonin in assessing the severity and predicting prognosis in sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2020; 32(4): 449–53.
  63. Dünser M.W., Takala J., Ulmer H., et al. Arterial blood pressure during early sepsis and outcome. Intensive Care Med. 2009; 35(7): 1225–33.DOI: 10.1007/s00134-009-1427-2
  64. Sasko B., Butz T., Prull M.W., et al. Earliest Bedside Assessment of Hemodynamic Parameters and Cardiac Biomarkers: Their Role as Predictors of Adverse Outcome in Patients with Septic Shock. Int J Med Sci. 2015; 12(9): 680–8. DOI: 10.7150/ijms.11720
  65. Houwink A.P.I., Rijkenberg S., Bosman R.J, van der Voort P.H.J. The association between lactate, mean arterial pressure, central venous oxygen saturation and peripheral temperature and mortality in severe sepsis: a retrospective cohort analysis. Crit Care. 2016; 20: 56. DOI: 10.1186/s13054-016-1243-3
  66. Xu J.Y., Ma S.Q., Pan C., et al. A high mean arterial pressure target is associated with improved microcirculation in septic shock patients with previous hypertension: a prospective open label study. Crit Care. 2015; 19(1): 130. DOI: 10.1186/s13054-015-0866-0
  67. Borthwick H.A., Brunt L.K., Mitchem K.L., Chaloner C. Does lactate measurement performed on admission predict clinical outcome on the intensive care unit? A concise systematic review. Ann Clin Biochem. 2012; 49(4): 391–4. DOI: 10.1258/acb.2011.011227
  68. Liu G., Lv H., An Y., et al. Early lactate levels for prediction of mortality in patients with sepsis or septic shock: A meta-analysis. Int J Clin Exp Med 2017; 10(1): 37–47.
  69. Evans L., Rhodes A., Alhazzani W., et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021; 47(11): 1181–247. DOI: 10.1007/s00134-021-06506-y
  70. Приказ Минздрава РФ от 10.05.2017 N 203Н — Об утверждении критериев оценки качества медицинской помощи [Electronicresource]. URL: https://normativ.kontur.ru/document?moduleId=1&documentId=293575 (accessed: 05.07.2022).
  71. Tarui T., Yamaguchi Y., Suzuki K., et al. Early evaluation of severity in patients with severe sepsis: a comparison with “septic shock” — subgroup analysis of the Japanese Association for Acute Medicine Sepsis Registry (JAAM-SR). Acute Med Surg. 2017; 4(4): 426–31. DOI: 10.1002/ams2.299
  72. Dumas G., Lavillegrand J.R., Joffre J., et al. Mottling score is a strong predictor of 14-day mortality in septic patients whatever vasopressor doses and other tissue perfusion parameters. Crit Care. 2019; 23(1): 211. DOI: 10.1186/s13054-019-2496-4
  73. Ait-Oufella H., Lemoinne S., Boelle P.Y., et al. Mottling score predicts survival in septic shock. Intensive Care Med. 2011; 37(5): 801–7. DOI: 10.1007/s00134-011-2163-y
  74. Zampieri F.G., Damiani L.P., Bakker J., et al. Effects of a Resuscitation Strategy Targeting Peripheral Perfusion Status versus Serum Lactate Levels among Patients with Septic Shock. A Bayesian Reanalysis of the ANDROMEDA-SHOCK Trial. Am J Respir Crit Care Med. 2020; 201(4): 423–9. DOI: 10.1164/rccm.201905-0968OC
  75. Kattan E., Hernández G., Ospina-Tascón G., et al. A lactate-targeted resuscitation strategy may be associated with higher mortality in patients with septic shock and normal capillary refill time: a post hoc analysis of the ANDROMEDA-SHOCK study. Ann Intensive Care. 2020; 10(1): 114. DOI: 10.1186/s13613-020-00732-1
  76. Morocho J.P., Martínez A.F., Cevallos M.M., et al. Prolonged Capillary Refilling as a Predictor of Mortality in Patients With Septic Shock. J Intensive Care Med. 2022; 37(3): 423–9. DOI: 10.1177/08850666211003507
  77. Kumar A., Roberts D., Wood K.E., et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006; 34(6): 1589–96. DOI: 10.1097/01.CCM.0000217961.75225.E9
  78. Brindley P.G., Zhu N., Sligl W. Best evidence in critical care medicine: Early antibiotics and survival from septic shock: It’s about time. Can J Anaesth. 2006; 53(11): 1157–60. DOI: 10.1007/BF03022884
  79. Rangel Frausto M.S., Pittet D., Costigan M., et al. The Natural History of the Systemic Inflammatory Response Syndrome (SIRS): A Prospective Study. JAMA. 1995; 273(2): 117–23
  80. Cheng M.P., Stenstrom R., Paquette K., et al. Blood Culture Results Before and After Antimicrobial Administration in Patients With Severe Manifestations of Sepsis: A Diagnostic Study. Ann Intern Med. 2019; 171(8): 547–54. DOI: 10.7326/M19-1696
  81. Opota O., Croxatto A., Prod'hom G., et al. Blood culture-based diagnosis of bacteraemia: state of the art. Clin Microbiol Infect. 2015; 21(4): 313–22. DOI: 10.1016/j.cmi.2015.01.003
  82. Белобородов В.Б., Гусаров В.Г., Дехнич А.В. и др. Диагностика и антимикробная терапия инфекций, вызванных полирезистентными микроорганизмами. Методические рекомендации Российской некоммерческой общественной организации «Ассоциация анестезиологов-реаниматологов», Межрегиональной общественной организации. Вестник анестезиологии и реаниматологии. 2020; 16(1): 52–83. DOI:10.21292/2078-5658-2020-17-1-52-83 [Beloborodov V.B., Gusarov V.G., Dekhnich A.V, et al. Diagnostics and antimicrobial therapy of the infections caused by multiresistant microorganisms. Guidelines of the Association of Anesthesiologists-Intensivists, the Interregional Non-Governmental Organization Alliance of Clinical Chemotherapists and Microbiologists, the Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy (IACMAC), and NGO Russian Sepsis Forum. Messenger of Anesthesiology and Resuscitation, 2020; 16(1): 52–83. DOI: 10.21292/2078-5658-2020-17-1-52-83 (In Russ)]
  83. Wolk D.M., Johnson J.K. Rapid Diagnostics for Blood Cultures: Supporting Decisions for Antimicrobial Therapy and Value-Based Care. J Appl Lab Med. 2019; 3(4): 686–97. DOI: 10.1373/jalm.2018.028159
  84. Gang L., Wei F., Zhang G., et al. Clinical value of early liquid resuscitation guided by passive leg-raising test combined with transthoracic echocardiography in patients with septic shock. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2019; 31(4): 413–17. DOI: 10.3760/cma.j.issn.2095-4352.2019.04.008
  85. Cherpanath T.G.V., Hirsch A., Geerts B.F, et al. Predicting Fluid Responsiveness by Passive Leg Raising: A Systematic Review and Meta-Analysis of 23 Clinical Trials. Crit Care Med. 2016; 44(5): 981–91. DOI: 10.1097/CCM.0000000000001556
  86. Misango D., Pattnaik R., Baker T., et al. Haemodynamic assessment and support in sepsis and septic shock in resource-limited settings. Trans R Soc Trop Med Hyg. 2017; 111(11): 483–9. DOI: 10.1093/trstmh/try007
  87. Kaur B., Kaur S., Yaddanapudi L.N., Singh N.V. Comparison between invasive and noninvasive blood pressure measurements in critically ill patients receiving inotropes. Blood Press Monit. 2019; 24(1): 24–9. DOI: 10.1097/MBP.0000000000000358
  88. Riley L.E., Chen G.J., Latham H.E. Comparison of noninvasive blood pressure monitoring with invasive arterial pressure monitoring in medical ICU patients with septic shock. Blood Press Monit. 2017; 22(4): 202–7. DOI: 10.1097/MBP.0000000000000258
  89. Araghi A., Bander J.J., Guzman J.A. Arterial blood pressure monitoring in overweight critically ill patients: invasive or noninvasive? Crit Care. 2006; 10(2): R64. DOI: 10.1186/cc4896
  90. Bur A., Hirschl M.M., Herkner H., et al. Accuracy of oscillometric blood pressure measurement according to the relation between cuff size and upper-arm circumference in critically ill patients. Crit Care Med. 2000; 28(2): 371–6. DOI: 10.1097/00003246-200002000-00014
  91. Won Y.K., Jong H.J., Jin W.H., et al. Radial to femoral arterial blood pressure differences in septic shock patients receiving high-dose norepinephrine therapy. Shock. 2013; 40(6): 527–31. DOI: 10.1097/SHK.0000000000000064
  92. Agudelo Torres D.E., Navarro-Martinez J., Galiana-Ivars M., Alarcon Martinez C. Comments on Cecconi et al.: Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2015; 41(3): 570. DOI: 10.1007/s00134-014-3588-x
  93. Хромачева Н.О., Фот Е.В, Кузьков В.В., Киров М.Ю. Целенаправленная дегидратационная терапия при сепсисе и остром респираторном дистресс-синдроме под контролем волюметрического мониторинга гемодинамики. Вестник анестезиологии и реаниматологии. 2019; 6: 6–15. DOI: 10.21292/2078-5658-2019-16-6-6-15 [Khromacheva N.O., Fot E.V., Kuzkov V.V., Kirov M.Yu. Goal-directed dehydration therapy in sepsis and acute respiratory distress syndrome guided by volumetric hemodynamic monitoring. Messenger of Anesthesiology and Resuscitation. 2019; 16(6): 6–15. DOI: 10.21292/2078-5658-2019-16-6-6-15 (In Russ)]
  94. Gavelli F., Shi R., Teboul J.L., et al. Extravascular lung water levels are associated with mortality: a systematic review and meta-analysis. Crit Care. 2022; 26(1): 202. DOI: 10.1186/s13054-022-04061-6
  95. Kuttab H.I., Lykins J.D., Hughes M.D., et al. Evaluation and Predictors of Fluid Resuscitation in Patients With Severe Sepsis and Septic Shock. Crit Care Med. 2019; 47(11): 1582–90. DOI: 10.1097/CCM.0000000000003960
  96. Leisman D.E., Goldman C., Doerfler M.E., et al. Patterns and Outcomes Associated With Timeliness of Initial Crystalloid Resuscitation in a Prospective Sepsis and Septic Shock Cohort. Crit Care Med. 2017; 45(10): 1596–606. DOI: 10.1097/CCM.0000000000002574
  97. National Heart, Lung, and Blood Institute Prevention and Early Treatment of Acute Lung Injury Clinical Trials Network. Early Restrictive or Liberal Fluid Management for Sepsis-Induced Hypotension. N Engl J Med. 2023; 388(6): 499–510. DOI: 10.1056/NEJMoa2212663
  98. Lewis S.R., Pritchard M.W., Evans D.J., et al. Colloids versus crystalloids for fluid resuscitation in critically ill people. Cochrane Database Syst Rev. 2018; 8(8): CD000567. DOI: 10.1002/14651858.CD000567.pub7
  99. Rochwerg B., Alhazzani W., Sindi A., et al. Fluid resuscitation in sepsis: a systematic review and network meta-analysis. Ann Intern Med. 2014; 161(5): 347–55. DOI: 10.7326/M14-0178
  100. Yang J., Liu F., Zhu X. Colloids vs. crystalloids in fluid resuscitation for septic shock: A meta-analysis. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2010; 22(6): 340–5.
  101. Chowdhury A.H., Cox E.F., Francis S.T., Lobo D.N. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9 % saline and Рlasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012; 256(1): 18–24. DOI: 10.1097/SLA.0b013e318256be72
  102. Kellum J.A. Fluid resuscitation and hyperchloremic acidosis in experimental sepsis: improved short-term survival and acid-base balance with Hextend compared with saline. Crit Care Med. 2002; 30(2): 300–5. DOI: 10.1097/00003246-200202000-00006
  103. Kellum J.A., Song M., Almasri E. Hyperchloremic acidosis increases circulating inflammatory molecules in experimental sepsis. Chest 2006; 130(4): 962–7. DOI: 10.1378/chest.130.4.962
  104. Waters J.H., Gottlieb A., Schoenwald P., et al. Normal saline versus lactated Ringer’s solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Chest 2006; 130(4): 962–7. DOI: 10.1378/chest.130.4.962
  105. Williams E.L., Hildebrand K.L., McCormick S.A., Bedel M.J. The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg. 1999; 88(5): 999–1003. DOI: 10.1097/00000539-199905000-00006
  106. Bayer O., Reinhart K., Kohl M., et al. Effects of fluid resuscitation with synthetic colloids or crystalloids alone on shock reversal, fluid balance, and patient outcomes in patients with severe sepsis: a prospective sequential analysis. Crit Care Med. 2012; 40(9): 2543–51. DOI: 10.1097/CCM.0b013e318258fee7
  107. Rochwerg B., Alhazzani W., Gibson A., et al. Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta-analysis. Intensive Care Med. 2015; 41(9): 1561–71. DOI: 10.1007/s00134-015-3794-1
  108. Haase N., Perner A., Hennings L.I., et al. Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. BMJ. 2013; 346: f839. DOI: 10.1136/bmj.f839
  109. Moeller C., Fleischmann C., Thomas-Rueddel D., et al. How safe is gelatin? A systematic review and meta-analysis of gelatin-containing plasma expanders vs crystalloids and albumin. J Crit Care. 2016; 35: 75–83. DOI: 10.1016/j.jcrc.2016.04.011
  110. Martin G.S., Bassett P. Crystalloids vs. colloids for fluid resuscitation in the Intensive Care Unit: A systematic review and meta-analysis. J Crit Care. 2019; 50: 144–54. DOI: 10.1016/j.jcrc.2018.11.031
  111. Park C.H.L., de Almeida J.P., de Oliveira G.Q., et al. Lactated Ringer’s Versus 4% Albumin on Lactated Ringer’s in Early Sepsis Therapy in Cancer Patients: A Pilot Single-Center Randomized Trial. Crit Care Med. 2019; 47(10): e798–e805. DOI: 10.1097/CCM.0000000000003900
  112. Kakaei F., Hashemzadeh S., Asheghvatan A., et al. Albumin As a Resuscitative Fluid in Patients with Severe Sepsis: A Randomized Clinical Trial. Australian International Academic Centre. 2017; 5(4): 8–16. DOI: 10.7575/aiac.abcmed.17.05.04.02
  113. Caironi P., Tognoni G., Masson S., et al. Albumin Replacement in Severe Sepsis or Septic Shock. N Engl J Med. 2014; 370(15): 1412–21. DOI: 10.1056/NEJMoa1305727
  114. Hébert P.C., Wells G., Blajchman M.A., et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N Engl J Med. 1999; 340(6): 409–17. DOI: 10.1056/NEJM199902113400601
  115. Rygård S.L., Holst L.B., Wetterslev J., et al. Long-term outcomes in patients with septic shock transfused at a lower versus a higher haemoglobin threshold: the TRISS randomised, multicentre clinical trial. Intensive Care Med. 2016; 42(11): 1685–94. DOI: 10.1007/s00134-016-4437-x
  116. Holst L.B., Haase N., Wetterslev J., et al. Lower versus higher hemoglobin threshold for transfusion in septic shock. N Engl J Med. 2014; 371(15): 1381–91. DOI: 10.1056/NEJMoa1406617
  117. Hirano Y, Miyoshi Y, Kondo Y, et al. Liberal versus restrictive red blood cell transfusion strategy in sepsis or septic shock: a systematic review and meta-analysis of randomized trials. Crit Care. 2019; 23(1): 262. DOI: 10.1186/s13054-019-2543-1
  118. Asfar P., Meziani F., Hamel J.F., et al. High versus low blood-pressure target in patients with septic shock. N Engl J Med. 2014; 370(17): 1583–93. DOI: 10.1056/NEJMoa1312173
  119. Bourgoin A., Leone M., Delmas A., et al. Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med. 2005; 33(4): 780–6. DOI: 10.1097/01.ccm.0000157788.20591.23
  120. He H.W., Liu W.L., Zhou X., et al. Effect of mean arterial pressure change by norepinephrine on peripheral perfusion index in septic shock patients after early resuscitation. Chin Med J (Engl). 2020; 133(18): 2146–52. DOI: 10.1097/CM9.0000000000001017
  121. LeDoux D., AstizM.E., Carpati C.M., Rackow E.C. Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med. 2000; 28(8): 2729–32. DOI: 10.1097/00003246-200008000-00007
  122. Leone M, Asfar P., Radermacher P., et al. Optimizing mean arterial pressure in septic shock: a critical reappraisal of the literature. Crit Care. 2015; 19(1): 101. DOI: 10.1186/s13054-015-0794-z
  123. Hylands M., Moller M.H., Asfar P., et al. A systematic review of vasopressor blood pressure targets in critically ill adults with hypotension. Can J Anaesth. 2017; 64(7): 703–15. DOI: 10.1007/s12630-017-0877-1
  124. Lamontagne F., Meade M.O., Hébert P.C., et al. Higher versus lower blood pressure targets for vasopressor therapy in shock: a multicentre pilot randomized controlled trial. Intensive Care Med. 2016; 42(4): 542–50. DOI: 10.1007/s00134-016-4237-3
  125. Lamontagne F., Richards-Belle A., Thomas K., et al. Effect of Reduced Exposure to Vasopressors on 90-Day Mortality in Older Critically Ill Patients With Vasodilatory Hypotension: A Randomized Clinical Trial. JAMA. 2020; 323(10): 938–49. DOI: 10.1001/jama.2020.0930
  126. Delaney A., Finnis M., Bellomo R., et al. Initiation of vasopressor infusions via peripheral versus central access in patients with early septic shock: A retrospective cohort study. Emerg Med Australas. 2020; 32(2): 210–19.DOI: 10.1111/1742-6723.13394
  127. Ricard J.D., Salomon L., Boyer A., et al. Central or peripheral catheters for initial venous access of ICU patients: a randomized controlled trial. Crit Care Med. 2013; 41(9): 2108–15. DOI: 10.1097/CCM.0b013e31828a42c5
  128. Cardenas-Garcia J., Schaub K.F., Belchikov Y.G., et al. Safety of peripheral intravenous administration of vasoactive medication. J Hosp Med. 2015; 10(9): 581–5. DOI: 10.1002/jhm.2394
  129. Tian D.H., Smyth C., Keijzers G., et al. Safety of peripheral administration of vasopressor medications: A systematic review. Emerg Med Australas. 2020; 32(2): 220–7. DOI: 10.1111/1742-6723.13406
  130. Loubani O.M., Green R.S. A systematic review of extravasation and local tissue injury from administration of vasopressors through peripheral intravenous catheters and central venous catheters. J Crit Care. 2015; 30(3): 653.e9–17. DOI: 10.1016/j.jcrc.2015.01.014
  131. Beck V., Chateau D., Bryson G.L., et al. Timing of vasopressor initiation and mortality in septic shock: a cohort study. Crit Care. 2014; 18(3): R97. DOI: 10.1186/cc13868
  132. Black L.P., Puskarich M.A., Smotherman C., et al. Time to vasopressor initiation and organ failure progression in early septic shock. J Am Coll Emerg Physicians Open. 2020; 1(3): 222–30. DOI: 10.1002/emp2.12060
  133. Li Y., Li H., Zhang D. Timing of norepinephrine initiation in patients with septic shock: A systematic review and meta-analysis. Crit Care. 2020; 24(1): 488. DOI: 10.1186/s13054-020-03204-x
  134. Avni T., Lador A., Lev S., et al. Vasopressors for the treatment of septic shock: Systematic review and meta-analysis. PLoS One. 2015; 10(8): e0129305. DOI: 10.1371/journal.pone.0129305
  135. Ruslan M.A., Baharuddin K.A., Noor N.M., et al. Norepinephrine in septic shock: A systematic review and meta-analysis. West J Emerg Med. 2021; 22(2): 196–203. DOI: 10.5811/westjem.2020.10.47825
  136. Elbouhy M.A., Soliman M., Gaber A., et al. Early Use of Norepinephrine Improves Survival in Septic Shock: Earlier than Early. Arch Med Res. 2019; 50(6): 325–32. DOI: 10.1016/j.arcmed.2019.10.003
  137. Sandilands A.J., O’Shaughnessy K.M., Brown M.J. Greater inotropic and cyclic AMP responses evoked by noradrenaline through Arg389 beta 1-adrenoceptors versus Gly389 beta 1-adrenoceptors in isolated human atrial myocardium. Br J Pharmacol. 2003; 138(2): 386–92. DOI: 10.1038/sj.bjp.0705030
  138. Ammar M.A., Ammar A.A., Wieruszewski P.M., et al. Timing of vasoactive agents and corticosteroid initiation in septic shock. Ann Intensive Care. 2022; 12(1): 47. DOI: 10.1186/s13613-022-01021-9
  139. Colon Hidalgo D., Patel J., Masic D., et al. Delayed vasopressor initiation is associated with increased mortality in patients with septic shock. J Crit Care. 2020; 55: 145–8. DOI: 10.1016/j.jcrc.2019.11.004
  140. De Backer D., Creteur J., Silva E., Vincent J.L. Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med. 2003; 31(6): 1659–67. DOI: 10.1097/01.CCM.0000063045.77339.B6
  141. Myburgh J.A., Higgins A., Jovanovska A., et al. A comparison of epinephrine and norepinephrine in critically ill patients. Intensive Care Med. 2008; 34(12): 2226–34. DOI: 10.1007/s00134-008-1219-0
  142. Belletti A., BenedettoU., Biondi-Zoccai G., et al. The effect of vasoactive drugs on mortality in patients with severe sepsis and septic shock. A network meta-analysis of randomized trials. J Crit Care. 2017; 37: 91–8. DOI: 10.1016/j.jcrc.2016.08.010
  143. Walley K.R. Sepsis-induced myocardial dysfunction. Curr Opin Crit Care. 2018; 24(4): 292–9. DOI: 10.1097/MCC.0000000000000507
  144. Gordon A.C., Perkins G.D., Singer M., et al. Levosimendan for the Prevention of Acute Organ Dysfunction in Sepsis. N Engl J Med. 2016; 375(17): 1638–48. DOI: 10.1056/NEJMoa1609409
  145. Bhattacharjee S., Soni K.D., Maitra S., Baidya D.K. Levosimendan does not provide mortality benefit over dobutamine in adult patients with septic shock: A meta-analysis of randomized controlled trials. J Clin Anesth. 2017; 39: 67–72. DOI: 10.1016/j.jclinane.2017.03.011
  146. Ferrer R., Artigas A., Suarez D., et al. Effectiveness of treatments for severe sepsis: a prospective, multicenter, observational study. Am J Respir Crit Care Med. 2009; 180(9): 861–6. DOI: 10.1164/rccm.200812-1912OC
  147. Kalil A.C., Johnson D.W., Lisco S.J., Sun J. Early Goal-Directed Therapy for Sepsis: A Novel Solution for Discordant Survival Outcomes in Clinical Trials. Crit Care Med. 2017; 45(4): 607–14. DOI: 10.1097/CCM.0000000000002235
  148. Seymour C.W., Gesten F., Prescott H.C., et al. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N Engl J Med. 2017; 376(23): 2235–44. DOI: 10.1056/NEJMoa1703058
  149. Klompas M., Calandra T., Singer M. Antibiotics for Sepsis-Finding the Equilibrium. JAMA. 2018; 320(14): 1433–4. DOI: 10.1001/jama.2018.12179
  150. Prescott H.C., Iwashyna T.J. Improving Sepsis Treatment by Embracing Diagnostic Uncertainty. Ann Am Thorac Soc. 2019; 16(4): 426–9. DOI: 10.1513/AnnalsATS.201809-646PS.
  151. Hammond N.E., Kumar A., Kaur P., et al. Estimates of Sepsis Prevalence and Outcomes in Adult Patients in the ICU in India: A Cross-sectional Study. Chest. 2022; 161(6): 1543–54. DOI: 10.1016/j.chest.2021.12.673
  152. Baggs J., Jernigan J.A., Halpin A.L., et al. Risk of Subsequent Sepsis Within 90 Days After a Hospital Stay by Type of Antibiotic Exposure. Clin Infect Dis. 2018; 66(7): 1004–12. DOI: 10.1093/cid/cix947
  153. Branch-Elliman W., O'Brien W., Strymish J., et al. Association of Duration and Type of Surgical Prophylaxis With Antimicrobial-Associated Adverse Events. JAMA Surg. 2019; 154(7): 590–8. DOI: 10.1001/jamasurg.2019.0569
  154. Hranjec T., Rosenberger L.H., Swenson B., et al. Aggressive versus conservative initiation of antimicrobial treatment in critically ill surgical patients with suspected intensive-care-unit-acquired infection: a quasi-experimental, before and after observational cohort study. Lancet Infect Dis. 2012; 12(10): 774–80. DOI: 10.1016/S1473-3099(12)70151-2
  155. Ong D.S.Y., Frencken J.F., Klein Klouwenberg P.M.C., et al. Short-Course Adjunctive Gentamicin as Empirical Therapy in Patients With Severe Sepsis and Septic Shock: A Prospective Observational Cohort Study. Clin Infect Dis. 2017; 64(12): 1731–6. DOI: 10.1093/cid/cix186
  156. Tamma P.D., Avdic E., Li D.X., et al. Association of Adverse Events With Antibiotic Use in Hospitalized Patients. JAMA Intern Med. 2017; 177(9): 1308–15. DOI: 10.1001/jamainternmed.2017.1938
  157. Teshome B.F., Vouri S.M., Hampton N., et al. Duration of Exposure to Antipseudomonal β-Lactam Antibiotics in the Critically Ill and Development of New Resistance. Pharmacotherapy. 2019; 39(3): 261–70. DOI: 10.1002/phar.2201
  158. Klein Klouwenberg P.M.C., Cremer O.L., van Vught L.A., et al. Likelihood of infection in patients with presumed sepsis at the time of intensive care unit admission: A cohort study. Crit Care. 2015; 19(1): 319. DOI: 10.1186/s13054-015-1035-1
  159. Heffner A.C., Horton J.M., Marchick M.R., Jones A.E. Etiology of illness in patients with severe sepsis admitted to the hospital from the emergency department. Clin Infect Dis. 2010; 50(6): 814–20. DOI: 10.1086/650580
  160. Contou D., Roux D., Jochmans S., et al. Septic shock with no diagnosis at 24 hours: a pragmatic multicenter prospective cohort study. Crit Care. 2016; 20(1): 360. DOI: 10.1186/s13054-016-1537-5
  161. Liu V.X., Fielding-Singh V., Greene J.D., et al. The Timing of Early Antibiotics and Hospital Mortality in Sepsis. Am J Respir Crit Care Med. 2017; 196(7): 856–63. DOI: 10.1164/rccm.201609-1848OC
  162. Wirz Y., Meier M.A., Bouadma L. et al. Effect of procalcitonin-guided antibiotic treatment on clinical outcomes in intensive care unit patients with infection and sepsis patients: a patient-level meta-analysis of randomized trials. Crit Care. 2018; 22(1): 191. DOI: 10.1186/s13054-018-2125-7
  163. Layios N., Lambermont B., Canivet J.L., et al. Procalcitonin usefulness for the initiation of antibiotic treatment in intensive care unit patients. Crit Care Med. 2012; 40(8): 2304–9. DOI: 10.1097/CCM.0b013e318251517a
  164. Jensen J.U., Hein L., Lundgren B., et al. Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial. Crit Care Med. 2011; 39(9): 2048–58. DOI: 10.1097/CCM.0b013e31821e8791
  165. Wacker C., Prkno A., Brunkhorst F.M., Schlattmann P. Procalcitonin as a diagnostic marker for sepsis: a systematic review and meta-analysis. Lancet Infect Dis. 2013; 13(5): 426–35. DOI: 10.1016/S1473-3099(12)70323-7
  166. Gornet M., Leroux P., Ramont L., et al. Lack of admission biomarkers’ clinical utility in outcomes prediction in patients suspected with infection in the emergency department. Am J Emerg Med. 2021; 47: 109–14. DOI: 10.1016/j.ajem.2021.03.050
  167. Программа СКАТ (Стратегия Контроля Антимикробной Терапии) при оказании стационарной медицинской помощи: Российские клинические рекомендации / Под ред. С.В. Яковлева, Н.И. Брико, С.В. Сидоренко, Д.Н. Проценко. М.: Перо, 2018. 156 с. ISBN 978-5-00122-157-9 [The AMS program (Strategy for Control of Antimicrobial Therapy) in the provision of inpatient care: Russian clinical recommendations / Eds. S.V. Yakovlev, N.I. Briko, S.V. Sidorenko, D.N. Protsenko. Moscow: Pero Publishing House, 2018. 156 p. ISBN 978-5-00122-157-9 (In Russ)]
  168. Aliberti S., Reyes L.F., Faverio P., et al. Global initiative for meticillin-resistant Staphylococcus aureus pneumonia (GLIMP): an international, observational cohort study. Lancet Infect Dis. 2016; 16(12): 1364–76. DOI: 10.1016/S1473-3099(16)30267-5
  169. Rhee C., Kadri S.S., Dekker J.P., et al. Prevalence of Antibiotic-Resistant Pathogens in Culture-Proven Sepsis and Outcomes Associated With Inadequate and Broad-Spectrum Empiric Antibiotic Use. JAMA Netw Open. 2020; 3(4): e202899. DOI: 10.1001/jamanetworkopen.2020.2899
  170. Callejo-Torre F., Bouza J.M.E., Astigarraga P.O., et al. Risk factors for methicillin-resistant Staphylococcus aureus colonisation or infection in intensive care units and their reliability for predicting MRSA on ICU admission. Infez Med. 2016; 24(3): 201–9.
  171. Shorr A.F., Myers D.E., Huang D.B., et al. A risk score for identifying methicillin-resistant Staphylococcus aureus in patients presenting to the hospital with pneumonia. BMC Infect Dis. 2013; 13: 268.DOI: 10.1186/1471-2334-13-268
  172. Wooten D.A., Winston L.G. Risk factors for methicillin-resistant Staphylococcus aureus in patients with community-onset and hospital-onset pneumonia. Respir Med. 2013; 107(8): 1266–70. DOI: 10.1016/j.rmed.2013.05.006
  173. Gasch O., Camoez M., Domínguez M.A., et al. Predictive factors for early mortality among patients with methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2013; 68(6): 1423–30. DOI: 10.1093/jac/dkt016
  174. Gasch O., Camoez M., Dominguez M.A., et al. Predictive factors for mortality in patients with methicillin-resistant Staphylococcus aureus bloodstream infection: impact on outcome of host, microorganism and therapy. Clin Microbiol Infect. 2013; 19(11): 1049–57. DOI: 10.1111/1469-0691.12108
  175. Lodise T.P., McKinnon P.S., Swiderski L., Rybak M.J. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis. 2003; 36(11): 1418–23. DOI: 10.1086/375057
  176. Paul M., Kariv G., Goldberg E., et al. Importance of appropriate empirical antibiotic therapy for methicillin-resistant Staphylococcus aureus bacteraemia. J Antimicrob Chemother. 2010; 65(12): 2658–65. DOI: 10.1093/jac/dkq373
  177. Schramm G.E., Johnson J.A., Doherty J.A., et al. Methicillin-resistant Staphylococcus aureus sterile-site infection: The importance of appropriate initial antimicrobial treatment. Crit Care Med. 2006; 34(8): 2069–74. DOI: 10.1097/01.CCM.0000227655.41566.3E
  178. Cowley M.C., Ritchie D.J., Hampton N., et al. Outcomes Associated With De-escalating Therapy for Methicillin-Resistant Staphylococcus aureus in Culture-Negative Nosocomial Pneumonia. Chest. 2019; 155(1): 53–9. DOI: 10.1016/j.chest.2018.10.014
  179. Paonessa J.R., Shah R.D., Pickens C.I., et al. Rapid Detection of Methicillin-Resistant Staphylococcus aureus in BAL: A Pilot Randomized Controlled Trial. Chest. 2019; 155(5): 999–1007. DOI: 10.1016/j.chest.2019.02.007
  180. Rhodes A., Evans L.E., Alhazzani W., et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017; 43(3): 304–77. DOI: 10.1007/s00134-017-4683-6
  181. Alevizakos M., Karanika S., Detsis M., Mylonakis E. Colonisation with extended-spectrum β-lactamase-producing Enterobacteriaceae and risk for infection among patients with solid or haematological malignancy: a systematic review and meta-analysis. Int J Antimicrob Agents. 2016; 48(6): 647–54. DOI: 10.1016/j.ijantimicag.2016.08.021
  182. Arulkumaran N., Routledge M., Schlebusch S., et al. Antimicrobial-associated harm in critical care: a narrative review. Intensive Care Med. 2020; 46(2): 225–35. DOI: 10.1007/s00134-020-05929-3
  183. Gonçalves-Pereira J., Póvoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of β-lactams. Crit Care. 2011; 15(5): R206. DOI: 10.1186/cc10441
  184. de Jong E., van Oers J.A., Beishuizen A., et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis. 2016; 16(7): 819–27. DOI: 10.1016/S1473-3099(16)00053-0
  185. Roberts J.A., Abdul-Aziz M.H., Davis J.S., et al. Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. A Meta-analysis of Individual Patient Data from Randomized Trials. Am J Respir Crit Care Med. 2016; 194(6): 681–91. DOI: 10.1164/rccm.201601-0024OC
  186. Vardakas K.Z., Voulgaris G.L., Maliaros A.,et al. Prolonged versus short-term intravenous infusion of antipseudomonal β-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials. Lancet Infect Dis. 2018; 18(1): 108–20. DOI: 10.1016/S1473-3099(17)30615-1
  187. Chumbita M., Puerta-Alcalde P., Gudiol C., et al. Impact of Empirical Antibiotic Regimens on Mortality in Neutropenic Patients with Bloodstream Infection Presenting with Septic Shock. Antimicrob Agents Chemother. 2022; 66(2): e0174421. DOI: 10.1128/AAC.01744-21
  188. Roberts J.A., Paratz J., Paratz E., et al. Continuous infusion of beta-lactam antibiotics in severe infections: a review of its role. Int J Antimicrob Agents. 2007; 30(1): 11–8. DOI: 10.1016/j.ijantimicag.2007.02.002
  189. De Waele J.J., Lipman J., Carlier M., Roberts J.A. Subtleties in practical application of prolonged infusion of β-lactam antibiotics. Int J Antimicrob Agents. 2015; 45(5): 461–3. DOI: 10.1016/j.ijantimicag.2015.01.007
  190. Kollef M., Micek S., Hampton N., et al. Septic shock attributed to Candida infection: importance of empiric therapy and source control. Clin Infect Dis. 2012; 54(12): 1739–46. DOI: 10.1093/cid/cis305
  191. Garey K.W., Rege M., Pai M.P., et al. Time to initiation of fluconazole therapy impacts mortality in patients with candidemia: a multi-institutional study. Clin Infect Dis. 2006; 43(1): 25–31. DOI: 10.1086/504810
  192. Magill S.S., Edwards J.R., Bamberg W., et al. Multistate Point-Prevalence Survey of Health Care-Associated Infections. N Engl J Med. 2022; 386(24): 2348. DOI: 10.1056/NEJMx210023
  193. Méan M., Marchetti O., Calandra T. Bench-to-bedside review: Candida infections in the intensive care unit. Crit Care. 2008; 12(1): 204. DOI: 10.1186/cc6212
  194. Pappas P.G., Kauffman C.A., Andes D.R., et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2016; 62(4): e1–50. DOI: 10.1093/cid/civ933
  195. Marriott D.J.E., Playford E.G., Chen S., et al. Determinants of mortality in non-neutropenic ICU patients with candidaemia. Crit Care. 2009; 13(4): R115. DOI: 10.1186/cc7964
  196. Morrell M., Fraser V.J., Kollef M.H. Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother. 2005; 49(9): 3640–5. DOI: 10.1128/AAC.49.9.3640-3645.2005
  197. Clancy C.J., Nguyen M.H. Diagnosing Invasive Candidiasis. J Clin Microbiol. 2018; 56(5): e01909–17. DOI: 10.1128/JCM.01909-17
  198. Kullberg B.J., Arendrup M.C. Invasive Candidiasis. N Engl J Med. 2015; 373(15): 1445–56. DOI: 10.1056/NEJMra1315399
  199. Sandven P., Qvist H., Skovlund E., et al. Significance of Candida recovered from intraoperative specimens in patients with intra-abdominal perforations. Crit Care Med. 2002; 30(3): 541–7. DOI: 10.1097/00003246-200203000-00008
  200. Hachem R., Hanna H., Kontoyiannis D., et al. The changing epidemiology of invasive candidiasis: Candida glabrata and Candida krusei as the leading causes of candidemia in hematologic malignancy. Cancer. 2008; 112(11): 2493–9. DOI: 10.1002/cncr.23466
  201. Horn D.L., Neofytos D., Anaissie E.J., et al. Epidemiology and outcomes of candidemia in 2019 patients: data from the prospective antifungal therapy alliance registry. Clin Infect Dis. 2009; 48(12): 1695–703. DOI: 10.1086/599039
  202. Andes D.R., Safdar N., Baddley J.W., et al. Impact of treatment strategy on outcomes in patients with candidemia and other forms of invasive candidiasis: a patient-level quantitative review of randomized trials. Clin Infect Dis. 2012; 54(8): 1110–22. DOI: 10.1093/cid/cis021
  203. Kett D.H., Azoulay E., Echeverria P.M., et al. Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med. 2011; 39(4): 665–70. DOI: 10.1097/CCM.0b013e318206c1ca
  204. Cleveland A.A., Harrison L.H., Farley M.M., et al. Declining incidence of candidemia and the shifting epidemiology of Candida resistance in two US metropolitan areas, 2008–13: results from population-based surveillance. PLoS One. 2015; 10(3): e0120452. DOI: 10.1371/journal.pone.0120452
  205. Zhang A.Y., Shrum S., Williams S., et al. The Changing Epidemiology of Candidemia in the United States: Injection Drug Use as an Increasingly Common Risk Factor-Active Surveillance in Selected Sites, United States, 2014–2017. Clin Infect Dis. 2020; 71(7): 1732–7. DOI: 10.1093/cid/ciz1061
  206. Blumberg H.M., Jarvis W.R., Soucie J.M., et al. Risk factors for candidal bloodstream infections in surgical intensive care unit patients: the NEMIS prospective multicenter study. The National Epidemiology of Mycosis Survey. Clin Infect Dis. 2001; 33(2): 177–86. DOI: 10.1086/321811
  207. Clumeck N., Sonnet J., Taelman H., et al. Acquired immunodeficiency syndrome in African patients. N Engl J Med. 1984; 310(8): 492–7. DOI: 10.1056/NEJM198402233100804
  208. Chow J.K., Golan Y., Ruthazer R., et al. Risk factors for albicans and non-albicans candidemia in the intensive care unit. Crit Care Med. 2008; 36(7): 1993–8. DOI: 10.1097/CCM.0b013e31816fc4cd
  209. Ostrosky-Zeichner L., Pappas P.G. Invasive candidiasis in the intensive care unit. Crit Care Med. 2006; 34(3): 857–63. DOI: 10.1097/01.CCM.0000201897.78123.44
  210. Vergidis P., Clancy C.J., Shields R.K., et al. Intra-Abdominal Candidiasis: The Importance of Early Source Control and Antifungal Treatment. PLoS One. 2016; 11(4): e0153247. DOI: 10.1371/journal.pone.0153247
  211. Ballard N., Robley L., Barrett D., et al. Patients’ recollections of therapeutic paralysis in the intensive care unit. Am J Crit Care. 2006; 15(1): 86–94.
  212. Horvath E.E., Murray C.K., Vaughan G.M., et al. Fungal wound infection (not colonization) is independently associated with mortality in burn patients. Ann Surg. 2007; 245(6): 978–85. DOI: 10.1097/01.sla.0000256914.16754.80
  213. Murray C.K., Loo F.L., Hospenthal D.R., et al. Incidence of systemic fungal infection and related mortality following severe burns. Burns. 2008; 34(8): 1108–12. DOI: 10.1016/j.burns.2008.04.007
  214. Kim H., Chung S.P., Choi S.H., et al. Impact of timing to source control in patients with septic shock: A prospective multi-center observational study. J Crit Care. 2019; 53: 176–82. DOI: 10.1016/j.jcrc.2019.06.012
  215. Martínez M.L., Ferrer R., Torrents E., et al. Impact of Source Control in Patients With Severe Sepsis and Septic Shock. Crit Care Med. 2017; 45(1): 11–9. DOI: 10.1097/CCM.0000000000002011
  216. Azuhata T., Kinoshita K., Kawano D., et al. Time from admission to initiation of surgery for source control is a critical determinant of survival in patients with gastrointestinal perforation with associated septic shock. Crit Care. 2014; 18(3): R87. DOI: 10.1186/cc13854
  217. Bloos F., Thomas-Rüddel D., Rüddel H., et al. Impact of compliance with infection management guidelines on outcome in patients with severe sepsis: a prospective observational multi-center study. Crit Care. 2014; 18(2): R42. DOI: 10.1186/cc13755
  218. Jimenez M.F., Marshall J.C. Source control in the management of sepsis Intensive Care Med. 2001; 27 Suppl 1: S49–62. DOI: 10.1007/pl00003797
  219. Bloos F., Rüddel H., Thomas-Rüddel D., et al. Effect of a multifaceted educational intervention for anti-infectious measures on sepsis mortality: a cluster randomized trial. Intensive Care Med. 2017; 43(11): 1602–12. DOI: 10.1007/s00134-017-4782-4
  220. Buck D.L., Vester-Andersen M., Møller M.H. Surgical delay is a critical determinant of survival in perforated peptic ulcer. Br J Surg. 2013; 100(8): 1045–9. DOI: 10.1002/bjs.9175
  221. Dhala A., Sasangohar F., Kash B., et al. Rapid Implementation and Innovative Applications of a Virtual Intensive Care Unit During the COVID-19 Pandemic: Case Study. J Med Internet Res. 2020; 22(9): e20143. DOI: 10.2196/20143
  222. Chao W.N., Tsai C.F., Chang H.R., et al. Impact of timing of surgery on outcome of Vibrio vulnificus-related necrotizing fasciitis. Am J Surg. 2013; 206(1): 32–9. DOI: 10.1016/j.amjsurg.2012.08.008
  223. Karvellas C.J., Abraldes J.G., Zepeda-Gomez S., et al. The impact of delayed biliary decompression and anti-microbial therapy in 260 patients with cholangitis-associated septic shock. Aliment Pharmacol Ther. 2016; 44(7): 755–66. DOI: 10.1111/apt.13764
  224. Solomkin J.S., Mazuski J.E., Bradley J.S., et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Surg Infect (Larchmt). 2010; 11(1): 79–109. DOI: 10.1089/sur.2009.9930
  225. Horlocker T.T., Wedel D.J., Rowlingson J.C., et al. Regional Anesthesia in the patient receiving antithrombotic or thrombolytic therapy; American Society of Regional Anesthesia and Pain Medicine evidence-based guidelines (Third Edition). Reg Anesth Pain Med. 2010; 35(1): 64–101. DOI: 10.1097/aap.0b013e3181c15c70
  226. Mermel L.A., Allon M., Bouza E., et al. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2009; 49(1): 1–45. DOI: 10.1086/599376
  227. Ярошецкий А.И., Грицан А.И., Авдеев С.Н. и др. Диагностика и интенсивная терапия острого респираторного дистресс-синдрома (Клинические рекомендации Общероссийской общественной организации «Федерация анестезиологов и реаниматологов»). Анестезиология и реаниматология. 2020; 2: 5–39. DOI: 10.17116/anaesthesiology20200215 [Yaroshetsky A.I., Gritsan A.I., Avdeev S.N., et al. Diagnostics and intensive therapy of Acute Respiratory Distress Syndrome (Clinical guidelines of the Federation of Anesthesiologists and Reanimatologists of Russia). Russian Journal of Anesthesiology and Reanimatology. 2020; 2: 5–39. DOI: 10.17116/anaesthesiology20200215 (In Russ)]
  228. Tasaka S., Ohshimo S., Takeuchi M., et al. ARDS Clinical Practice Guideline 2021. J Intensive Care. 2022; 10(1): 32. DOI: 10.1186/s40560-022-00615-6
  229. Acute Respiratory Distress Syndrome Network, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000; 342(18): 1301–8. DOI: 10.1056/NEJM200005043421801.
  230. Brochard L., Roudot-Thoraval F., Roupie E., et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med. 1998; 158(6): 1831–8. DOI: 10.1164/ajrccm.158.6.9801044
  231. Brower R.G., Shanholtz C.B., Fessler H.E., et al. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med. 1999; 27(8): 1492–8. DOI: 10.1097/00003246-199908000-00015
  232. Bernard G.R., Artigas A., Brigham K.L., et al. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med. 1994; 149(3 Pt 1): 818–24. DOI: 10.1164/ajrccm.149.3.7509706
  233. ARDS Definition Task Force; Ranieri V.M., Rubenfeld G.D., et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012; 307(23): 2526–33. DOI: 10.1001/jama.2012.5669
  234. Papazian L., Aubron C., Brochard L., et al. Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care. 2019; 9(1): 69. DOI: 10.1186/s13613-019-0540-9
  235. Laffey J.G., Bellani G., Pham T., et al. Potentially modifiable factors contributing to outcome from acute respiratory distress syndrome: the LUNG SAFE study. Intensive Care Med. 2016; 42(12): 1865–76. DOI: 10.1007/s00134-016-4571-5
  236. Villar J., Martín-Rodríguez C., Domínguez-Berrot A.M., et al. A Quantile Analysis of Plateau and Driving Pressures: Effects on Mortality in Patients With Acute Respiratory Distress Syndrome Receiving Lung-Protective Ventilation. Crit Care Med. 2017; 45(5): 843–50. DOI: 10.1097/CCM.0000000000002330
  237. Parsons P.E., Eisner M.D., Thompson B.T., et al. Lower tidal volume ventilation and plasma cytokine markers of inflammation in patients with acute lung injury. Crit Care Med. 2005; 33(1): 1–6; discussion 230–2. DOI: 10.1097/01.ccm.0000149854.61192.dc
  238. Gajic O., Dara S.I., Mendez J.L., et al. Ventilator-associated lung injury in patients without acute lung injury at the onset of mechanical ventilation. Crit Care Med. 2004; 32(9): 1817–24. DOI: 10.1097/01.ccm.0000133019.52531.30
  239. Neto A.S., Nagtzaam L., Schultz M.J. Ventilation with lower tidal volumes for critically ill patients without the acute respiratory distress syndrome: a systematic translational review and meta-analysis. Curr Opin Crit Care. 2014; 20(1): 25–32. DOI: 10.1097/MCC.0000000000000044
  240. Goligher E.C., Hodgson C.L., Adhikari N.K.J., et al. Lung Recruitment Maneuvers for Adult Patients with Acute Respiratory Distress Syndrome. A Systematic Review and Meta-Analysis. Ann Am Thorac Soc. 2017; 14(Suppl. 4): S304-S311. DOI: 10.1513/AnnalsATS.201704-340OT
  241. Gattinoni L., Caironi P., Cressoni M., et al. Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med. 2006; 354(17): 1775–86. DOI: 10.1056/NEJMoa052052
  242. Hodgson C.L., Cooper D.J., Arabi Y., et al. Maximal Recruitment Open Lung Ventilation in Acute Respiratory Distress Syndrome (PHARLAP). A Phase II, Multicenter Randomized Controlled Clinical Trial. Am J Respir Crit Care Med. 2019; 200(11): 1363–72. DOI: 10.1164/rccm.201901-0109OC
  243. Cavalcanti A.B., Suzumura E.A., Laranjeira L.N., et al. Effect of Lung Recruitment and Titrated Positive End-Expiratory Pressure (PEEP) vs Low PEEP on Mortality in Patients With Acute Respiratory Distress Syndrome: A Randomized Clinical Trial. JAMA. 2017; 318(14): 1335–45. DOI: 10.1001/jama.2017.14171
  244. Suzumura E.A., Amato M.B.P., Cavalcanti A.B. Understanding recruitment maneuvers. Intensive Care Med. 2016; 42(5): 908–11. DOI: 10.1007/s00134-015-4025-5
  245. Smetkin A.A., Kuzkov V.V., Suborov E.V., et al. Increased extravascular lung water reduces the efficacy of alveolar recruitment maneuver in acute respiratory distress syndrome. Crit Care Res Pract. 2012; 2012: 606528. DOI: 10.1155/2012/606528
  246. Caironi P., Cressoni M., Chiumello D., et al. Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med. 2010; 181(6): 578–86. DOI: 10.1164/rccm.200905-0787OC
  247. Rygård S.L., Butler E., Granholm A., et al. Low-dose corticosteroids for adult patients with septic shock: a systematic review with meta-analysis and trial sequential analysis. Intensive Care Med. 2018; 44(7): 1003–16. DOI: 10.1007/s00134-018-5197-6
  248. Huang L., Zhang S., Chang W., et al. Terlipressin for the treatment of septic shock in adults: a systematic review and meta-analysis. BMC Anesthesiol. 2020; 20(1): 58. DOI: 10.1186/s12871-020-00965-4
  249. Gordon A.C., Mason A.J., Thirunavukkarasu N., et al. Effect of Early Vasopressin vs Norepinephrine on Kidney Failure in Patients With Septic Shock: The VANISH Randomized Clinical Trial. JAMA. 2016; 316(5): 509–18. DOI: 10.1001/jama.2016.10485
  250. Malbrain M.L.N.G., Van Regenmortel N., Saugel B., et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D's and the four phases of fluid therapy. Ann Intensive Care. 2018; 8(1): 66. DOI: 10.1186/s13613-018-0402-x
  251. Wang H., Cui N., Su L., et al. Prognostic value of extravascular lung water and its potential role in guiding fluid therapy in septic shock after initial resuscitation. J Crit Care. 2016; 33: 106–13. DOI: 10.1016/j.jcrc.2016.02.011
  252. Vignon P., Begot E., Mari A., et al. Hemodynamic Assessment of Patients With Septic Shock Using Transpulmonary Thermodilution and Critical Care Echocardiography: A Comparative Study. Chest. 2018; 153(1): 55–64. DOI: 10.1016/j.chest.2017.08.022
  253. Annane D., Renault A., Brun-Buisson C., et al. Hydrocortisone plus Fludrocortisone for Adults with Septic Shock. N Engl J Med. 2018; 378(9): 809–18. DOI: 10.1056/NEJMoa1705716
  254. Venkatesh B., Finfer S., Cohen J., et al. Adjunctive Glucocorticoid Therapy in Patients with Septic Shock. N Engl J Med. 2018; 378(9): 797–808. DOI: 10.1056/NEJMoa1705835
  255. Madsen M.B., Hjortrup P.B., Hansen M.B., et al. Immunoglobulin G for patients with necrotising soft tissue infection (INSTINCT): a randomised, blinded, placebo-controlled trial. Intensive Care Med. 2017; 43(11): 1585–93. DOI: 10.1007/s00134-017-4786-0
  256. Welte T., Dellinger R.P., Ebelt H., et al. Efficacy and safety of trimodulin, a novel polyclonal antibody preparation, in patients with severe community-acquired pneumonia: a randomized, placebo-controlled, double-blind, multicenter, phase II trial (CIGMA study). Intensive Care Med. 2018; 44(4): 438–48. DOI: 10.1007/s00134-018-5143-7
  257. Cook D.J., Fuller H.D., Guyatt G.H., et al. Risk factors for gastrointestinal bleeding in critically ill patients. Canadian Critical Care Trials Group. N Engl J Med. 1994; 330(6): 377–81. DOI: 10.1056/NEJM199402103300601
  258. Krag M., Marker S., Perner A., et al. Pantoprazole in Patients at Risk for Gastrointestinal Bleeding in the ICU. N Engl J Med. 2018; 379(23): 2199–208. DOI: 10.1056/NEJMoa1714919
  259. Granholm A., Zeng L., Dionne J.C., et al. Predictors of gastrointestinal bleeding in adult ICU patients: a systematic review and meta-analysis. Intensive Care Med. 2019; 45(10): 1347–59
  260. D’Silva K.M., Mehta R., Mitchell M., et al. Proton pump inhibitor use and risk for recurrent Clostridioides difficile infection: a systematic review and meta-analysis. Clin Microbiol Infect. 2021; S1198-743X(21)00035-5. DOI: 10.1016/j.cmi.2021.01.008
  261. Cook D., Crowther M., Meade M., et al. Deep venous thrombosis in medical-surgical critically ill patients: prevalence, incidence, and risk factors. Crit Care Med. 2005; 33(7): 1565–71. DOI: 10.1097/01.ccm.0000171207.95319.b2.
  262. Alhazzani W., Lim W., Jaeschke R.Z., et al. Heparin thromboprophylaxis in medical-surgical critically ill patients: a systematic review and meta-analysis of randomized trials. Crit Care Med. 2013; 41(9): 2088–98. DOI: 10.1097/CCM.0b013e31828cf104
  263. Kahn S.R., Lim W., Dunn A.S., et al. Prevention of VTE in nonsurgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012; 141(2 Suppl): e195S–e226S. DOI: 10.1378/chest.11-2296
  264. Arabi Y.M., Al-Hameed F., Burns K.E.A., et al. Adjunctive Intermittent Pneumatic Compression for Venous Thromboprophylaxis. N Engl J Med. 2019; 380(14): 1305–15. DOI: 10.1056/NEJMoa1816150
  265. Finfer S., Chittock D.R., Su S.Y., et al. The NICE-SUGAR Study. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009; 360(13): 1283–97. DOI: 10.1056/NEJMoa0810625
  266. Badawi O., Waite M.D., Fuhrman S.A., et al. Association between intensive care unit-acquired dysglycemia and in-hospital mortality. Crit Care Med. 2012; 40(12): 3180–8. DOI: 10.1097/CCM.0b013e3182656ae5
  267. Krinsley J.S. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008; 36(11): 3008–13. DOI: 10.1097/CCM.0b013e31818b38d2
  268. Siegelaar S.E., Hermanides J., Oudemans-van Straaten H.M., et al. Mean glucose during ICU admission is related to mortality by a U-shaped curve in surgical and medical patients: a retrospective cohort study. Crit Care. 2010; 14(6): R224. DOI: 10.1186/cc9369
  269. Lu Z., Tao G., Sun X., et al. Association of Blood Glucose Level and Glycemic Variability With Mortality in Sepsis Patients During ICU Hospitalization. Front Public Health. 2022; 10: 857368. DOI: 10.3389/fpubh.2022.857368
  270. American Diabetes Association. Diabetes Care in the Hospital: Standards of Medical Care in Diabetes-2018. Diabetes Care. 2018; 41(Suppl 1): S144-S151. DOI: 10.2337/dc18-S014
  271. Van den Berghe G., Wouters P., Weekers F., et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001; 345(19): 1359–67. DOI: 10.1056/NEJMoa011300
  272. Brunkhorst F.M., Engel C., Bloos F., et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008; 358(2): 125–39. DOI: 10.1056/NEJMoa070716
  273. Preiser J.C., Devos P., Ruiz-Santana S., et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study. Intensive Care Med. 2009; 35(10): 1738–48. DOI: 10.1007/s00134-009-1585-2
  274. Griesdale D.E.G., de SouzaR.J., van Dam R.M., et al. Intensive insulin therapy and mortality among critically ill patients: a meta-analysis including NICE-SUGAR study data. CMAJ. 2009; 180(8): 821–7. DOI: 10.1503/cmaj.090206
  275. Song F., Zhong L.J., Han L., et al. Intensive insulin therapy for septic patients: a meta-analysis of randomized controlled trials. Biomed Res Int. 2014; 2014: 698265. DOI: 10.1155/2014/698265
  276. Jaber S., Paugam C., Futier E., et al. Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet (London, England). Lancet. 2018; 392(10141): 31–40. DOI: 10.1016/S0140-6736(18)31080-8
  277. Fujii T., Luethi N., Young P.J., et al. VITAMINS Trial Investigators: Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and free of vasopressor support among patients with septic shock: The VITAMINS randomized clinical trial. JAMA. 2020; 323(5): 423–31. DOI: 10.1001/jama.2019.22176
  278. Zarbock A., Kellum J.A., Schmidt C., et al. Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: The ELAIN randomized clinical trial. JAMA. 2016; 315(20): 2190–9. DOI: 10.1001/jama.2016.5828
  279. Network VNARFT; Palevsky P.M., Zhang J.H., et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008; 359(1): 7–20. DOI: 10.1056/NEJMoa0802639
  280. Payen D., Mateo J., Cavaillon J.M., et al. Impact of continuous venovenous hemofiltration on organ failure during the early phase of severe sepsis: a randomized controlled trial. Crit Care Med. 2009; 37(3): 803–10. DOI: 10.1097/CCM.0b013e3181962316
  281. Ricci Z, Romagnoli S, Reis T, et al. Hemoperfusion in the intensive care unit. Intensive Care Med. 2022; 48(10): 1397–408. DOI: 10.1007/s00134-022-06810-1
  282. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl. 2012; 2: 1–126. Available at: https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf
  283. Zarbock A., Nadim M.K., Pickkers P., et al. Sepsis-associated acute kidney injury: consensus report of the 28th Acute Disease Quality Initiative workgroup. Nat Rev Nephrol. 2023; 19(6): 401–17. DOI: 10.1038/s41581-023-00683-3
  284. Ким Т.Г., Проценко Д.Н., Магомедов М.А., и др. Динамика уровня активности эндотоксина и концентрации цитокинов в крови у пациентов с септическим шоком и острым повреждением почек при применении различных методов экстракорпоральной детоксикации. Анестезиология и реаниматология. 2022; 5: 36–45. [Kim T.G., Protsenko D.N., Magomedov M.A., et al. Dynamics of endotoxin activity and cytokine concentration in patients with septic shock and acute kidney injury undergoing various methods of extracorporeal detoxification. Russian Journal of Anesthesiology and Reanimatology. 2022; 5: 36–45. (In Russ)] DOI:10.17116/anaesthesiology202205136
  285. Ostermann M., Bellomo R., Burdmann E.A. et al. Conference Participants Controversies in acute kidney injury: conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) Conference Kidney Int. 2020; 98(2): 294–309. DOI: 10.1016/j.kint.2020.04.020
  286. Putzu A., Schorer R., Lopez-Delgado J. C. et al. Blood Purification and Mortality in Sepsis and Septic Shock A Systematic Review and Metaanalysis of Randomized Trials. Anesthesiology. 2019; 131(3): 580–93. DOI: 10.1097/ALN.0000000000002820.
  287. Snow T.A.C., Littlewood S., Corredor C., et al. Effect of Extracorporeal Blood Purification on Mortality in Sepsis: A Meta-Analysis and Trial Sequential Analysis. Blood Purif. 2021; 50(4–5): 462–72. DOI: 10.1159/000510982
  288. Chen J-Y., Chen Y-Y., Pan H-C. et al. Accelerated versus watchful waiting strategy of kidney replacement therapy for acute kidney injury: a systematic review and meta-analysis of randomized clinical trials. Clinical Kidney Journal. 2022; 15(5): 974–84. DOI: 10.1093/ckj/sfac011
  289. Gaudry S., Hajage D., Martin-Lefevre L. et al. Comparison of two delayed strategies for renal replacement therapy initiation for severe acute kidney injury (AKIKI 2): a multicentre, open-label, randomised, controlled trial. Lancet. 2021; 397(10281): 1293–300. DOI: 10.1016/S0140-6736(21)00350-0
  290. Kishikawa T., Fujieda H., Sakaguchi H. Comprehensive analysis of cytokine adsorption properties of polymethyl methacrylate (PMMA) membrane material. J Artif Organs. 2022; 25(4): 343–9. DOI: 10.1007/s10047-022-01323-6
  291. Ferrari F., Husain-Syed F., Milla P., et al. Clinical Assessment of Continuous Hemodialysis with the Medium Cutoff EMiC®2 Membrane in Patients with Septic Shock. Blood Purif. 2022; 51(11): 912–22. DOI: 10.1159/000522321.
  292. Lumlertgul N., Hall A., Camporota L., et al. Clearance of inflammatory cytokines in patients with septic acute kidney injury during renal replacement therapy using the EMiC2 filter (Clic-AKI study). Crit Care. 2021; 25(1): 39. DOI: 10.1186/s13054-021-03476-x.
  293. Broman M.E., Hansson F., Vincent J.L., et al. Endotoxin and cytokine reducing properties of the oXiris membrane in patients with septic shock: A randomized crossover double-blind study. PLoS One. 2019; 14(8): e0220444. DOI: 10.1371/journal.pone.0220444
  294. Schwindenhammer V., Girardot T., Chaulier K., et al. oXiris use in septic shock: experience of two French centres. Blood Purif. 2019; 47 (Suppl 3): 1–7. DOI: 10.1159/000499510
  295. Guan M., Wang H., Tang X., et al. Continuous Renal Replacement Therapy With Adsorbing Filter oXiris in Acute Kidney Injury With Septic Shock: A Retrospective Observational Study. Front Med (Lausanne). 2022; 9: 789623. DOI: 10.3389/fmed.2022.789623.
  296. Ye Z., Wang Y., Ge L. et al. Comparing Renal Replacement Therapy Modalities in Critically Ill Patients With Acute Kidney Injury: A Systematic Review and Network Meta-Analysis. Crit Care Explor. 2021; 3(5): e0399. DOI: 10.1097/CCE.0000000000000399.
  297. Rabindranath K., Adams J., Macleod A.M. et al. Intermittent versus continuous renal replacement therapy for acute renal failure in adults. Cochrane Database Syst Rev. 2007; (3): CD003773. DOI: 10.1002/14651858.CD003773.pub3
  298. Hawchar F., László I., Öveges N., et al. Extracorporeal cytokine adsorption in septic shock: A proof of concept randomized, controlled pilot study. J Crit Care. 2019; 49: 172–8. DOI: 10.1016/j.jcrc.2018.11.003
  299. Kogelmann K., Hübner T., Schwameis F., et al. First Evaluation of a New Dynamic Scoring System Intended to Support Prescription of Adjuvant CytoSorb Hemoadsorption Therapy in Patients with Septic Shock. J Clin Med. 2021; 10(13): 2939. DOI: 10.3390/jcm10132939
  300. Arslan B., Kucukbingoz C., Kutuk M., Gunduz H.M. A single-center experience with resin adsorption hemoperfusion combined with continuous veno-venous hemofiltration for septic shock patients. Medicine Science. 2019; 8(2): 390–4. DOI: 10.5455/medscience.2018.07.8950
  301. Kaçar C.K., Uzundere O., Kandemir D., Yektaş A. Efficacy of HA330 Hemoperfusion Adsorbent in Patients Followed in the Intensive Care Unit for Septic Shock and Acute Kidney Injury and Treated with Continuous Venovenous Hemodiafiltration as Renal Replacement Therapy. Blood Purif. 2020; 49(4): 448–56. DOI: 10.1159/000505565
  302. Dellinger R.P., Bagshaw S.M., Antonelli M. et al. Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients With Septic Shock and Elevated Endotoxin Level: The EUPHRATES Randomized Clinical Trial. JAMA. 2018; 320(14): 1455–63. DOI: 10.1001/jama.2018.14618
  303. Klein D.J., Foster D., Walker P.M. et al. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: a post hoc analysis of the EUPHRATES trial. Intensive Care Med. 2018; 44(12): 2205–12. DOI: 10.1007/s00134-018-5463-7
  304. Fujimori K., Tarasawa K., Fushimi K. Effectiveness of polymyxin B hemoperfusion for sepsis depends on the baseline SOFA score: A nationwide observational study. Ann Intensive Care. 2021; 11(1): 141. DOI: 10.1186/s13613-021-00928-z.
  305. Rey S., Kulabukhov V., Popov A., et al. Hemoperfusion using the LPS-selective mesoporous polymeric adsorbent in septic shock: a multicenter randomized clinical trial. Shock. 2023; 59(6): 846–54. DOI: 10.1097/SHK.0000000000002121.
  306. Busund R., Koukline V., UtrobinU., Nedashkovsky E. Plasmapheresis in severe sepsis and septic shock: a prospective, randomised, controlled trial. Intensive Care Med. 2002; 28(10): 1434–9. DOI: 10.1007/s00134-002-1410-7
  307. Rimmer E., Houston B.L., Kumar A. et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care. 2014; 18(6): 699. DOI: 10.1186/s13054-014-0699-2
  308. Keith P.D., Wells A.H., Hodges J. et al. The therapeutic efficacy of adjunct therapeutic plasma exchange for septic shock with multiple organ failure: a single-center experience. Critical Care. 2020; 24(1): 518. DOI: 10.1186/s13054-020-03241-6
  309. David S., Russell L., Castro P., et al. Research priorities for therapeutic plasma exchange in critically ill patients. Intensive Care Med Exp. 2023; 11(1): 26. DOI: 10.1186/s40635-023-00510-w.
  310. Белкин А.А., Алашеев А.М., Белкин В.А. и др. Реабилитация в отделении реанимации и интенсивной терапии (РеабИТ). Методические рекомендации Союза реабилитологов России и Федерации анестезиологов и реаниматологов. Вестник интенсивной терапии им. А. И. Салтанова. 2022; 2: 7–40. DOI: 10.21320/1818-474X-2022-2-7-40 [Belkin A.A., Alasheev A.M., Belkin V.A., et al. Rehabilitation in the intensive care unit (RehabICU). Clinical practice recommendations of the national Union of Physical and Rehabilitation Medicine Specialists of Russia and of the national Federation of Anesthesiologists and Reanimatologists. Russian Federation of anesthesiologists and reanimatologists guidelines. Annals of Critical Care. 2022; 2: 7–40. DOI: 10.21320/1818-474X-2022-2-7-40]
  311. Rhee C., Yu T., Wang R., et al. Association Between Implementation of the Severe Sepsis and Septic Shock Early Management Bundle Performance Measure and Outcomes in Patients With Suspected Sepsis in US Hospitals. JAMA Netw Open 2021; 4(12): e2138596. DOI: 10.1001/jamanetworkopen.2021.38596
  312. Madushani R.W.M.A., Patel V., Loftus T., et al. Early Biomarker Signatures in Surgical Sepsis. J Surg Res. 2022; 277: 372–83. DOI: 10.1016/j.jss.2022.04.052
  313. van Engelen T.S.R., Wiersinga W.J., Scicluna B.P., van der Poll T. Biomarkers in Sepsis. Crit Care Clin. 2018; 34(1): 139–52. DOI: 10.1016/j.ccc.2017.08.010
  314. Varis E., Pettilä V., Poukkanen M., et al. Evolution of Blood Lactate and 90-Day Mortality in Septic Shock. A Post Hoc Analysis of the FINNAKI Study. Shock. 2017; 47(5): 574–81. DOI: 10.1097/SHK.0000000000000772
  315. Yu B., Tian H., Hu Z., et al. Comparison of the effect of fluid resuscitation as guided either by lactate clearance rate or by central venous oxygen saturation in patients with sepsis . Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2013; 25(10): 578–83. DOI: 10.3760/cma.j.issn.2095-4352.2013.10.002
  316. Seymour C.W., Liu V.X., Iwashyna T.J., et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016; 315(8): 762–74. DOI: 10.1001/jama.2016.0288
  317. Ghanpur R., Santamaria J, Dixon B. Plastic blood gas syringes and measurement error in central venous oxygen saturations. Shock. 2016; 46(3): 287–9. DOI: 10.1097/SHK.0000000000000622
  318. Vogler J., Hart L., Holmes S., et al. Rapid Source-Control Laparotomy: Is There a Mortality Benefit in Septic Shock? Surg Infect (Larchmt). 2018; 19(2): 225–9. DOI: 10.1089/sur.2017.191
  319. Ordoñez C.A., Parra M., Garcia A.F., et al. Damage Control Surgery may be a Safe Option for Severe Non Trauma Peritonitis Management: Proposal of a New Decision Making Algorithm. World J Surg. 2021; 45(4): 1043–52. DOI:10.1007/s00268-020-05854-y
  320. Демко А.Е., Шляпников С.А., Батыршин И.М. и др. Применение тактики «Damage control» в лечении пациентов с распространенным перитонитом и септическим шоком. Вестник хирургии. 2021; 180 (6): 74–7. DOI: 10.24884/0042-4625-2021-180-6-74-79 [Demko A.E., Shlyapnikov S.A., Batyrshin I.M., et al. Use of “Damage control” tactics in the treatment of patients with widespread peritonitis and septic shock.Grekov s Bulletin of Surgery. 2021; 180 (6): 74–7. DOI: 10.24884/0042-4625-2021-180-6-74-79]
Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2023 Annals of Critical Care